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Lecture 5

e Instrumental Variables Methods (IVM) (Ch. 8)

Main Idea- modify the LS method to be consistent also for
correlated disturbances
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Least Squares Reuvisited

The LS estimate

Consequently, for 0 — 0y — 0,,, one needs
E[¢" (t)e(t)] = On,
which is satisfied (essentially) only if €(t) is white noise. Hence

the LS estimate is not necessarily consistent for correlated noise
sources!
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Cure:

e PEM. Model the noise.

— Applicable for general model structures.
— In general very good properties of the estimates.
— Computationally quite demanding.

e Instrumental Variable Method (IVM). Do not model the noise.

— Maintain the simple OLS structure.

— Computationally simple and efficient.

— Consistent for correlated noise.

— Less robust and statistical efficient than PEM.
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The IV Method

Introduce a time series (z(t)); C R™ with entries uncorrelated
to the noise sequence (e(t))¢. Then one has for N — oo that
(second moments)

0n = 1 D2 2(elt) = 1 D =(0) (w(t) — (1)60) ()

which yields (if inverse exists)
j. = (}V;z@ww) (}V;z@)t(w)

The time-series z(t) are denoted as instruments. Note that the
OLS is obtained when () = 2(t).
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Figure 1: Instrumental Variable as Modified Projection.
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Choice of Instruments

Obviously the choice of instruments is very important: They
have to be chosen such that

1. such that (z(t)); is uncorrelated to (e(t));.

2. such that the matrix

R. =+ > 26" (1

t=1

has full rank. In other words, it is crucial that z(¢) and ()
are correlated!
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In practice those requirements are satisfied by choosing the
instruments as delayed /filtered inputs. A common choice is:

2t) = (—nt=1),...,—n(t —na), —ut —1),...,ult —np))"

where

Clq~)n(t) = D(q )u(t)-
In case C(¢~') =1 and D(q~ ') = —¢~"™ one has

2(t) = (uw(t—1),...,u(t —ng —mp))"

rem. We exploit the assumption that (u(t)); and (e(t)); are
uncorrelated.
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Extended IV Methods

Recall that the basic IV estimate can be obtained by

minimizing

S 2 (t)eo(t)

. 1
Oy = argmin —
o 2 ,

More flexibility is obtained when the instruments (z(t)); are

augmented to dimension n, (with n, > n). and if we allow for
weighting and prefiltering of the residuals by some stable filter

F(g™Y), ie.

2

. 1
Oy = argmin —
g 2

> 2(OF (g eq(t)

Q

where Q € R"=*"= is a positive definite weighting matrix such
that [|z(|g = T Qu.
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Working out terms gives the extended IV method:

(Z (t)> 0 — <Z Z(t)F(ql)y(t)>

t=1

2

mln —

Q

When F(¢~') = 1 and Q = I,,, the basic IV method is
recovered.

Introduce
{RN = &3 2 F (e  (ry = % 3y 2()F (g Hy(t)
Then
O = arggnin |RnO — rNHE2

= argmin(Ry0 —ry) ' QRNO — ry)
0

—1
= (RyQRy) RLQry.
Numerical unstable!

Rem.: Ry is in general not square.
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Theoretical Analysis

Assumptions

. The system is strictly causal and asymptotically stable.
. The input is PE of a sufficiently high order.

. The disturbance is a stationary stochastic process with
rational spectral density

e(t) =H(q 'e(t), Ele*(t)] =N’

. The inputs and disturbances are not correlated (open loop).

. The model # and the 'true’ system 6y have the same transfer
function if and only if 6 = 6y (PI)

. The instruments and disturbances are uncorrelated.
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Given the system

y(t) = ¢(t)0o + €(?)

Then
A %;zqu-l)y(t)
— %Z 2(V)F (g 1) ()b + %Z 2(t)F (g~ )e(t)
= RpnbOo+qn
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Thus
Ao — 0o = (RLQRy)'RLQry — (RTQR)'RTQr
with
{Ry = E[2(t)F(q )" (0)] tn = E [5(t)F (g~ ")y(®)]
Therefore the IV estimate will be consistent if

1. R has full rank. (Inaccurate if R nearly rank deficient)
2. E[z(t)F(q~)e(t)] = 0n

Furthermore, the parameter estimation errors are
asymptotically gaussian distributed with zero mean and
covariance Py € R™*™, or

VN Oy — 0y) ~ N (0, Pry)
where

Prv =X (R"QR)"'(R"QSQR)(R"QR) !
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and

S = B [F(g ) H(g)=(0] B [Fla™)H(g)=(0)]"

For MIMO systems, S must be modified.
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Optimal IVM

The main use for expressing Py is for comparison with P.
(recall that PEM is efficient for Gaussian disturbances). A good
choice of instruments leads to 'optimal’ IVM. For example

(2(t) = H (¢ 1)@(t)
F(g=t) =H (¢
\Q =1,

\

where (%) is the noise-free part of ¢(t). Then

P = A2 (E[(H (g ")) (H (g )a0))

and Pppy <P < Pry.
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Approximative implementation of the optimal
IVM

Note that the optimal instruments require knowledge of the
'true’ undisturbed outputs, the noise variance and the shaping
filter H(qg™ 1), hence

1. Use OLS to obtain ég\})

2. Estimate ¢(t) as

3. Use the IV with instruments

(1) = (—95(1)(?5 — 1), @ = na),ult = 1), ut =g

S1-2010 K. Pelckmans Jan.-March, 2010 15



4. Estimate H(q™ ') based on the residuals. Postulate an AR
model and use OLS

5. Use the IVM with F(qg~1)
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Summary IVM

e The implementation of PEM is computationally too
demanding in many cases.

e The comp. convenient OLS is normally bias for such model
structures (correlated noise)

e [he IV method uses instruments that are uncorrelated with
the disturbances to make a OLS-alike formulation.

e The parameters obtained by the IVM are consistent (when
choosing the instruments with care). but it has a (slightly)
larger variance than PEM estimates.

e Approximately optimal IV methods can be implemented in
an iterative way to achieve lowest possible variance of the IV
estimates.
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