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Lecture 6

• Model Structure Determination and Model Validation (Ch.
11)

”A model is no use if its validity is not verified.”

SI-2010 K. Pelckmans Jan.-March, 2010 1



Choice of Model Structure

• Type of model set.

– Ex.: Linear, Nonlinear, black- or white box models
– Here: ARX, OE, ARMAX, ...

• Size of the model set. Orders of the polynomials (A(q−1),
B(q−1), C(q−1), D(q−1), ...). Not the ’true’ orders in
reality..

• Model Parametrization:

– Transformation of data.
– Choice of operators: e.g. q ↔ q−1

h .
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Objective: Obtain a good model at a low cost!

• Quality of model: A scalar measure of goodness, e.g. the
mean square error (MSE)

– MSE consists of bias+variance:

MSE(θ̂) = E‖θ̂ − θ0‖2 = E‖E[θ̂]− θ̂‖2 + E‖E[θ̂]− θ0‖2

– Reduce bias → more flexible model structures.
– Decrease variance → decrease the number of estimated

parameters.
– Trade-off: flexibility versus parsimony.

• Price of modeling:

– Algorithm complexity.
– Computation time.

• Intended use of the model!
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Model Validation

Reasons:

• Underparametrized.

• Overparametrized.

Basic Approaches:

• Plots of signals.

• Common sense (will the model serve its purpose?)

• Statistical ’goodness of fit’ tests.
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Basic Plots and Common Sense

• Compare the measured output with the simulated output

ŷ = G(q−1, θ̂N)u(t).

The differences y(t) − ŷ (not prediction errors!) are due to
disturbances and modeling errors.

• Plot the differences y(t)− ŷ.

• Compare a step response of the system to the step response
of the model.

• Compare the nonparametric estimate of the transfer function
to the transfer function of the model (frequency model).

Figure ... .
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What to compare?

Def. The k-step ahead model predictors ŷ(t, θ̂|t − k) are
based on the data

u(1), . . . , u(t− k), y(1), . . . , y(t− k),

using the estimate θ̂

Common choice are

• ŷ(t, θ̂|t− 1) is the mean square optimal predictor

ŷ(t, θ̂|t−1) = H−1(q−1, θ̂)G(q−1, θ̂)u(t)+(1−H−1(q−1, θ̂))y(t)

• ŷ∞(t, θ̂), only based on past inputs (referred to as simulation)

ŷ(t, θ̂) = G(q−1, θ̂)u(t)
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To compare different models, we use a scalar measure, e.g.

V k(θ̂) =
1
N

N∑
t=1

(
y(t)− ŷ(t, θ̂|t− k)

)2

Example. Use ŷ(t, θ̂|t− k) = y(t− k).
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Question

In the following we will concern ourselves with the following
questions:

• Is the model structure flexible enough to cover the observed
behavior?

• Is a given model too complex?

• Given two different models, which one should be chosen?
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Is a model Flexible enough?

The ’leftovers’ from the modeling process - the part of the
data that the model could not reproduce - are ’the residuals’

ε(t) = ε(t, θ̂) = (y(t)− ŷ(t, θ̂|t− 1))2.

Rem. the residuals are the prediction errors evaluated at θ̂.
If θ̂ = θ0, the residuals are white.

• If

R̂ε(τ) =
1
N

N−τ∑
t=1

ε(t)ε(t+ τ)T

is not small for τ 6= 0, then part of ε(t) could be ’explained’
from past data. This means that y(t) could have been
predicted better.
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• The cross-covariance between residuals and inputs

R̂ε,u(τ) =
1
N

N−τ∑
t=1

ε(t)u(t+ τ)T

should be small if the model has picked up the essential part of
the dynamics from u to y (assuming open loop identification).
This also indicates that the residual test should be invariant
to inputs.
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Testing Whiteness

If the model is accurately describing the observed data, then
the residuals ε(t) should be white. A way to verify this is to test
for the hypothesis. {

H0 : ε(t) is white

H1 : otherwise

this can be done in several ways, for example:
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Autocorrelation Test

The autocorrelation of the residuals (single output) are
estimated as

r̂ε(τ) =
1
N

N−τ∑
t=1

ε(t)ε(t+ τ)

If H0 holds, then the squared covariance should be χ2-
distributed, or

N

r̂2(0)

m∑
i=1

r̂2(i)→ χ2(m).

Furthermore, the normalized auto-covariance estimates are
asymptotically Gaussian distributed, or for all τ = 1, . . . ,m

√
N
r̂2(τ)
r̂2(0)

→ N (0, 1).

SI-2010 K. Pelckmans Jan.-March, 2010 12



A typical way to use the first test statistic is as follows (the
second can be used similarly). Let x be a random variable which
is distributed as χ2(m), define χ2

α for given α as follows

α = P
(
x > χ2

α

)
.

Then for some α = 0.1, 0.01 one has{
N

r̂2(0)

∑m
i=1 r̂

2(i) > χ2
α reject H0

N
r̂2(0)

∑m
i=1 r̂

2(i) ≤ χ2
α accept H0

Figure 1: test of the autocorrelation sequence (a) accept H0,
(b) reject H0.
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Zero Crossing Test

Given a white noise sequence, one can expect that the
residuals change sign on the average every second time step.
Introduce xN as the number of times the residual changes sign
up to moment N , or

xN =
N−1∑
t=1

I(ε(t)ε(t+ 1) < 0)

then it can be shown that

xN → N (m, p),

where m ≈ N/2 and p ≈ N/4, or

2xN −N√
N

→ N (0, 1).
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Cross-Correlation Test

If the model as an accurate description of the system, then
the input and residuals should be uncorrelated (no unmodeled
dynamics), or

r̂ε,u(τ) =
1
N

N−τ∑
t=1

ε(t)u(t+ τ)→ 0

• If limN→∞ r̂ε,u(τ) 6= 0, then there is output feedback in the
input

• ... or indicating wrong time-delay in the model. If a time
delay of two samples has been assumed in the model, but the
’true’ time delay is 1, clearly E[u(t− 1)ε(t)] 6= 0

• This can be seen by rewriting the model as

ε(t) = G′(q−1)u(t)

SI-2010 K. Pelckmans Jan.-March, 2010 15



The following result can be used to design a hypothesis test
if inputs/residuals are uncorrelated. Let

R̂u =
1
N

N∑
t=m+1

 u(t− 1)
...

u(t−m)

 [u(t− 1) . . . u(t−m)
]

and
r̂m =

[
r̂uε(τ + 1) . . . r̂uε(τ + 1)

]T
then

Nr̂Tm

(
r̂ε(0)R̂u

)−1

r̂m → χ2(m)

can be used to design a hypothesis test.
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Is a model too complex?

If a model is overparameterized , it is unneccesarily
complicated and can be sensitive to parameter variations. For
example, look at the pole-zero behavior of the estimated transfer
function in such a case.
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Figure 2: Pole-Zero Cancelation: (i) ARX (3,2), (ii) ARX(5,4)
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Cross-validation

• Check the criterion V 1(θ̂). A model structure that is too
large will also model the disturbances in the given data. This
is called overfitting the data.

• Using a ’fresh’ dataset that was not used during identification,
is called ’validation’.

• (Cross-) validation is a nice and simple way to compare models
to detect ’overfitted’ models.

• (Cross-) validation requires a large amount of data, as the
’validation’ data cannot be used during identification.
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The Parsimony Principle

’Simple models are to be preferred (Occam’s razor)’ Assume
a model quality is measures by E[V 1(θ̂)]

• If θ̂ = θ0, the residuals would equal the noise and E[V 1(θ0)] =
λ2.

• In the Least Squares case, we had tat E[V 1(θ̂)] = N−n
N λ2

Hence, each extra parameter will ’bias’ the criterion a factor
λ2

N ...
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Comparisons of Model Structures

Use the PEM loss function V 1(θ̂) as a measure of the model
quality. For models of increasnig order, the value of this loss will
decrease monotonically, and the problem is to find the lowest
model order that gives acceptable loss.

Let V and V ′ be the loss of two models for two different
model orders n and n′. Then

xN , N
V 2 − V ′2

V 2
→ χ2(n′ − n).

Hence we choose model order n at significance level α if

xN ≤ χ2
α(n
′ − n),

otherwise select n′.

Another approach is to formulate a criterion that is a function
of the loss V 1(θ̂), and which also penalizes the model order:

IC(M) = V 1(θ̂)(1 + β(N,n))
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where β(N,n) is a function increasing proportional to n, but
decreasing (to zero when N → 0) proportional to N .

Important examples of penalization functions are

1. (Akaike AIC)

AIC(M) ∝ log V 1(θ̂) +
2n
N

2. (Final Prediction Error FPE)

FPE(M) = V 1(θ̂)
(

1 + n/N

1− n/N

)

3. (Minimum Description Length, MDL)

MDL(M) = V 1(θ̂)
(

1 +
n log(N)

N

)

The AIC and the FPE are asymptotically equivalent, but it can
be shown that both will tend to select to high model orders. The
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MDL yields consistent estimates. Again, physical insight might
significantly help the analysis.
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Summary - Model Validation

• Many different tests can be used to verify the validity of a
model (try simple things first).

• Th choice of an appropriate model structure (model order)
can be based on a statistical test based on the residuals (auto-
and cross-correlation tests).

• To decide on the appropriate model order, AIC, FPE or MDL
can be used.

• (Cross-) validation is best if lots of data is available.

• Implementations available in the MATLAB SI toolbox.
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