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Requirements Exam

• Exercises alike and working knowledge.

• Required (print assignments, add solution pages, put
name/option and hand in at lecture)

– Answers to computer exercises.
– Homework assignments.
– Answers to laboratory session.

• Handed out during respective labs.

• Deadline - end lectures (1 march)

• Written exam ±18 march.

• Ph.D. - please contact me = kp@it.uu.se.
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Book

• Introduction (Chap.2)

• Nonparametric Methods (Chap.3)

• Linear Regression (Chap.4)

• Input Signals (Chap.5)

• Model Parametrizations (Chap.6)

• Prediction Error Methods (Chap.7)

• Instrumental Variable Methods (Chap.8)

• Recursive Identification (Chap.9)

• Identification of Systems Operating in Closed Loop (Chap.10)

• Model Validation (Chap.11)

SI-2010 K. Pelckmans Jan.-March, 2010 2



Key formulas

• Deterministic vs. stochastic.

• Expectation (for ergodic, stationary timeseries (y(t))t)

E[f(y(t))] =
1
N

N∑
t=1

f(y(t))

• (y(t))t and (e(t))t independent timeseries iff ∀f, g

E[f(y(t))g(e(t))] = E[f(y(t))]E[g(e(t))]

• Bias θ0 − E[θ̂N ], consistent if limN→∞ θ̂N = θ0

• System, model, parametrisation, estimator.

• Covariance of an estimate

cov(θ̂N) = E
[
(θ̂N − θ0)T (θ̂N − θ0)

]
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• Least Squares estimator

• PE, SI, PI
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Preparation Exercise 1

Given a system

H1(z) =
b

z + a
, H1(z) =

b0z + b1
z2 + a1z + a2

1. If this filters white noise, zero mean, unit variance and

φy(ω) =
1
2π

0.75
1.25− cos(ω)

.

What is the variance of the filtered signal?

2. What happens to the output of the second system when you
move the poles of H2(z) towards the unit circle?

3. Where to place the poles to get a ’low-pass’ filter?

4. Where to put the poles in order to have a resonance top at
ω = 1?
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5. How does a resonant system appear on the different plots?

6. What happens if H2(z) got a zero close to the unit circle?
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Preparation Exercise 2

Determine the covariance function for an AR(1) process

y(t) + a(y(t− 1)) = e(t)

where e(t) white, zero mean and unit variance.
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Preparation Exercise 3

Determine the covariance function for a MA(1) process

y(t) = e(t) + ce(t− 1)

where e(t) white, zero mean and unit variance.

Consider a general MA(n). For which values τ is it in
general true that r(τ) = 0?
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Preparation Exercise 4

Given an input u(t) shaped by an ARMA filter,

A(q−1)x(t) = C(q−1)v(t)

where v(t) white, zero mean and variance λ2
v. Given noisy

observations of this signal, or

y(t) = x(t) + e(t)

where e(t) white, zero mean and variance λ2
e and uncorrelated

to v(t). Rewrite this as a ARMA process, what would be the
corresponding variance of the ’noise’? How would the spectrum
of y(t) look like?
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Exercise 2.2

Convergence rates for consistent estimators.

For most consistent estimators of the parameters of stationary
processes, the estimation error θ̂−θ0 tends to zero as 1/N when
N → ∞. For nonstationary processes, faster convergence rates
may be expected. To see this, derive the variance of the least
squares estimate in the model

y(t) = αt+ e(t), t = 1, . . . , N

with e(t) white noise, zero mean and variance λ2.
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Exercise 2.3

Illustration of unbiasedness and consistency properties. Let
{xi}i be a sequence of i.i.d. Gaussian random variables with
mean µ and variance σ. Both are unknown. Consider the
following estimate of µ:

µ̂ =
1
N

N∑
i=1

xi

and the following two estimates of σ:{
σ̂1 = 1

N

∑N
i=1(xi − µ̂)2

σ̂2 = 1
N−1

∑N
i=1(xi − µ̂)2

determine the mean and the variance of the estimates µ̂, σ̂1 and
σ̂2. Discuss their bias and consistency properties. Compare σ̂1

and σ̂2 in terms of their Mean Square Error (mse).
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Exercise 2.4

Least square estimates with white noise as inputs.

Given a system

y(t) + a0y(t− 1) = b0u(t− 1) + e(t) + c0e(t− 1)

with e(t) white, zero mean and variance λ2, and zero mean
white noise input (u(t))t with variance σ2, uncorrelated with
noise e(s), s ≤ t, then

E[y(t)u(t)] = 0

E[y(t)y(t− 1)] = −a0b
2
0+(c0−a0)(1−a0c0)λ

2

(1−a2
0)

E[y(t)u(t− 1)] = b0σ
2

rewrite as a model LIP:

y(t) = (y(t− 1), u(t− 1))T (α, β)
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Application of LS yields estimates for N →∞α̂ = a0 + −c0(1−a2
0)λ

2

b20σ
2+(1+c20−2a0c0)λ2

β̂ = b0
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Exercise 2.5

Least square estimates of the same system with a step
function u(t) = σI(t > 0) as inputs.

Let S = b0
1+a0

. The covariance matrices become

E[y2(t)] = S2σ2 + (1+c20−2a0c0)λ
2

1−a2
0

E[u2(t)] = σ2

E[y(t)u(t)] = Sσ2

E[y(t)u(t− 1)] = Sσ2

E[y(t)y(t− 1)] = S2σ2 + (c0−a0)(1−a0c0)λ
2

1−a2
0

Application of LS yields estimates for N →∞α̂ = a0 − c0(1−a2
0)

(1+c20−2a0c0)

β̂ = b0 − b0c0
(

1−a0

1+c20−2a0c0

)
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Exercise 2.6

Least square estimates of the same system with a step
function u(t) = σI(t > 0) as inputs (Ct’d).

Verify that the gain S is estimated correctly when N → ∞
by

Ŝ =
β̂

1 + α̂
=

b0
1 + a0

In the noise-free case where λ = 0, we run into troubles, the
covariance matrix is noninvertible:[

E[y2(t)] E[y(t)u(t)]
E[u(t)y(t)] E[u2(t)]

]
How are all possible solutions characterized?
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Exercise 3.1

Determine the time constant T from a step response.

A first order system Y (s) = G(s)U(s) with

G(s) =
K

1 + sT
e−sτ

or in time domain as a differential equation

T
dy(t)
dt

+ y(t) = Ku(t− τ)

derive a formula of the step response of an input u(t) = I(t > 0).
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Exercise 3.7

Correlation analysis with truncated weighting function.

 ruy(0)
...

ruy(M − 1)

 ru(0) ru(M − 1)
. . .

ru(M − 1) ruy(0)

 ĥ(0)
...

ĥ(M − 1)


1. Let an input u(t) be white noise, note that regardless of M

the solution ĥ(k) = h0(k) for k = 0, . . . ,M − 1.

2. Consider the input (|α| < 1, and v(t) zero mean white noise
with variance σ2).

u(t)− αu(t− 1) = v(t)

and assume a first order system

y(t) + ay(t− 1) = bu(t− 1), |a| < 1
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Then
h(0) = 0
h(k) = b(−a)k−1, ∀k ≥ 1
ĥ(k) = h0(k), k = 0, . . . ,M − 2ĥ(M − 1) = h(M−1)

1+aα

Hint:
1 α . . . αM−1

α 1
. . .

αM−1 1

 =
1

1− α2


1 −α
−α 1 + α2

. . .
1


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Exercise 3.10

Step response as a special case of spectral analysis.

Let (y(t))t be the step response of an LTI H(q−1) to an
input u(t) = aI(t ≥ 1). Assume y(t) = 0 for t < 1 and y(t) ≈ c
for t > N . Justify the following rough estimate of H

ĥ(k) =
y(k)− y(k − 1)

a
, ∀k = 0, . . . , N

and show that it is approximatively equal to the estimate provided
by the spectral analysis.
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