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Exercise 4.1

Consider the linear regression model

y(t) = a+ bt+ e(t)

Find the LS estimate of a and b in the following cases:

1.(a) The data are y(1), y(2), . . . , y(N). Set

S0 =
N∑
t=1

y(t), S1 =
N∑
t=1

ty(t)

(b) The data are y(−N), . . . , y(0), . . . , y(N). Set

S′0 =
N∑

t=−N

y(t), S′1 =
N∑

t=−N

ty(t)
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Hint:
∑N
t=1 t = 1

2N(N−1) and
∑N
t=1 t

2 = 1
6N(N+1)(2N+

1).

2. Next, suppose the parameter a is first estimated as

â =
1
N
S0, â′ =

1
2N + 1

S′0

then estimate b using LS, in the model

y(t)− â = bt+ e(t)

What will b̂LS become? Compare to (a).

Now assume e(t) is white noise with variance λ2.

1. Find the variance of s(t) = â− b̂t. What is this quantity for
t = 1 and t = N? Where does it find its minimum?

2. Write the covariance matrix of θ = (âb̂)T in the form

P = cov(θ) =
[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
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Find the asymptotic value of ρ.

3. Introduce the concentration ellipsoid

Qξ =
{
θ
∣∣∣ (θ − θ̂)TP−1(θ − θ̂) ≤ ξ

}
Roughly, vectors θ outside the ellipsoid Qξ are unlikely to

’generate’ the estimate θ̂ if ξ ∼ n. In fact, one has for any
θ ∈ Rn that

E[(θ̂ − θ)TP−1(θ̂ − θ)]

= tr
(
P−1E

[
(θ̂ − θ0)(θ̂ − θ0)T

])
= tr

(
P−1

(
(θ − θ0)(θ − θ0)T + P

))
= n+ (θ − θ0)T (θ − θ0) ≈ n

If θ̂ AN, then (θ̂ − θ0)TP−1(θ̂ − θ0) ∼ χ2. Plot a the
concentration ellipsoid when λ2 = 0.1, ξ = 2 and (i) N = 3,
(ii) N = 8.
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Exercise 4.5

Ill-conditioning of the normal equations in case of a
polynomial trend model.

Given model

y(t) = a0 + a1t+ · · ·+ art
r + e(t)

Show that the condition number of the associated matrix ΦTΦ
is ill-conditioned:

cond(ΦTΦ) ≥ O(N2r/(2r + 1))

for large N , and where r > 1 is the polynomial order. Hint. Use
the relations for a symmetric matrix A:

• λmax(A) ≥ maxiAii

• λmin(A) ≤ miniAii
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Exercise 4.6

Fourier spectral analysis as a special case of regression
analysis.

Assume a system

y(t) =
n∑
i=1

ai cos(ωkt) +
n∑
i=1

bi sin(ωkt)

with ωi = 2πi
N and n ≤ bN2 c. Show that the LS estimates of

θ = (a1, . . . , an, b1, . . . , bn)T ∈ R2N are equal to the Fourier
coefficients for k = 1, . . . , n defined as

{
ak = 2

N

∑N
t=1 y(t) cos(ωkt)

bk = 2
N

∑N
t=1 y(t) sin(ωkt)
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Hint. Show first that the following inequalities hold:
∑N
t=1 cos(ωkt) cos(ωpt) = 2

Nδk,p∑N
t=1 sin(ωkt) sin(ωpt) = 2

Nδk,p∑N
t=1 cos(ωkt) sin(ωpt) = 0.
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Exercise 4.10

Conditions for the LS estimate to be BLUE.

For the (full) linear regression model

Y = Φθ + e, E[e] = 0N , E[eeT ] = R > 0, (ΦTΦ) > 0

show that conditions (i) and (ii) below are necessary and
sufficient for LS to be BLUE.

1.
ΦTR−1

(
Id − Φ(ΦTΦ)−1ΦT

)
= 0

2.
RΦ = ΦF, F ∈ Rn×n (∃F−1)

(A) Give an example of R satisfying (1), (B) consider R =
IN + αΦkΦk where α > 0 is such that R > 0
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Exercise 5.6

Spectral properties of a random wave.

Let uα(t) be generated as uα(1) = ±a, and

uα(t) =

{
u(t− 1) With Probability 1− α
−u(t− 1) With Probability α

where 0 < α < 1. The stochastic events are independent to
past.

1. Derive the covariance function.

2. Derive the spectral densities. Show that the signal has mainly
low-frequency character iff α ≤ 0.5.
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Exercise 5.9

Estimating impulse response with a PRBS.

Derive the solution of correlation analysis up to order M − 1
when u(t) is a PRBS with levels ±1 and period N ≥M , or

ĥ(k) =
N

(N + 1)(N −M + 1) M−1∑
i=0,i6=k

r̂yu(i) + (N −M + 2)r̂uy(k)


If N � M show that this can be simplified to ĥ(k) ≈ r̂uy(k).

If M = N , then ĥ(k) ≈ r̂uy(k) +
∑N−1
i=0 r̂uy(i). This might

appear to be a contradiction to the fact that for large m the
covariance matrix of a PRBS with with unit variance converges
to the identity matrix. Why is it not?
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Exercise 6.1

Stability boundary for a second-order system.

Consider the second-order AR model

y(t) + a1y(t− 1) + a2y(t− 2) = e(t)

Derive and plot the area in the (a1, a2)-plane for which the
model is asymptotically stable.
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Exercise 7.4

Gradient calculation.

Consider the model structure:

y(t) =
B(q−1)
F (q−1)

u(t) +
C(q−1)
D(q−1)

e(t)

with the parameter vector

θ =
(
b1, . . . , bnb, . . . , cnc, . . . , dnd, . . . fnf

)T
what is the gradient

∂ε(t, θ)
∂θ

to be used in PEM?
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Exercise 7.5

Newton-Raphson minimization procedure.

Let V (θ) be an analytical cost function in terms of θ. An
iterative approach to finding the minimum to V (θ) can be found
as follows. Let θ(k) be the estimate at iteration k, then take
θ(k+1) as the minimum of the quadratic approximation to V
around θ(k). Show that this principle leads to the Newton-
Raphson procedure with αk = 1.
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Exercise 7.6

Gauss-Newton optimization procedure.

The Gauss-newton procedure for minimizing

VN(θ) =
N∑
t=1

ε2(t, θ)

where ε(t, θ) is differentiable wrt θ. The optimum can be
obtained from the Newton-Approximation procedure by making
an approximation of the Hessian. It can also be obtained by
’quasilinearization’, and in fact is sometimes referred to as the
quasilinearization minimization method. To be more precise,
consider the following linearization of ε around the current
estimate θ(k):

ε̃(t, θ) = ε(t, θ(k))− ψT (t, θ(k))(θ − θ(k))
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with ψ(t, θ) = −∂
T ε(t, θ)
∂θ

. Then

θ(k+1) = argmin
θ

N∑
t=1

ε̃2(t, θ)

Show that the obtained recursion is precisely the Gauss-Newton
procedure.
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Exercise 7.7

Convergence-rate for the Newton-Raphson and Gauss-
Newton procedures.

Consider the algorithms:{
A1 : x(k+1) = x(k) − V ′′(x(k))−1V ′(x(k))T

A2 : x(k+1) = x(k) − SV ′(x(k))T

for minimization of V (x), the matrix S is positive definite.

(a) Introduce a positive constant α > 0 in A2 for controlling the
step length:

A′2 : x(k+1) = x(k) − αSV ′(x(k))T

Show that this algorithm has a decreasing sequence of of
function values V (x(k+1)) ≤ V (x(k)) if α is sufficiently small.
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(b) Apply the algorithms to the function

V (x) =
1
2
xTAx+ bTx− c

where A is (strictly) positive definite. The minimum point
satisfies Ax∗ = −b, for A1, one has x(1) = x∗. For A2 one
has

(x(k+1) − x∗) = (I − SA)(x(k) − x∗)
(Assuming that (I − SA) has all eigenvalues inside the unit
circle, A2 will converge with a linear rate. In particular when
S = A−1 + Q and Q is small, then convergence will be
superlinear.)
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Exercise 7.22

The Steiglitz-McBride method.

Consider the output-error model

y(t) =
B(q−1)
A(q−1)

u(t) + e(t)

where both A and B are of degree n. Consider the following
iterative scheme

(A(k+1), B(k+1)) = argmin
A,B

N∑
t=1

(
A(q−1)

(
1

A(k)
y(t)

)

−B(q−1)
(

1
A(k)

u(t)
))2

Assume the system

A0(q−1)y(t) = B0(q−1)u(t) + v(t)
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where A0, B0 are coprime and of order n, u(t) is PE of order 2n,
and v(t) is a stationary disturbance independent of the input.
Consider the asymptotic case.

(1) Assume that v(t) is white noise. Show that the only stationary
solution to the algorithm is A = A0 and B = B0.

(2) Assume that v(t) is colored noise, show that A = A0 and B =
B0 is in general not a stationary solution to the algorithm.
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