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1 Goals

In this computer laboratory we will investigate how to analyze time series. The necessary
background to the lab is given in the book System Identification (SI). The tasks contain

1. Detrending (polynomial fitting)

2. Estimation of periodical components
3. AR modeling

4. Prediction

The methods for time series modeling and prediction taught in the system identification
course require the time series under study to be stationary. This means that its mean
and variance are independent of time. To obtain such a time series, we usually detrend
the data. This can for example be done by fitting a polynomial to the data and then
removing this polynomial trend.

The presence of deterministic periodical components in the data may also hamper the
analysis. Such periodical components should thus be removed before modeling.

There are many possible mathematical models for stationary time series: AR, MA,
ARMA etc (see Chapter 6 in SI). In this lab we will focus on describing the data as
an AR process and determine a suitable model order using Akaike’s Information Crite-
rion, AIC (Chapter 11).

Once a model has been fitted to the data, this model can be used for prediction of the
future behavior of the time series (Chapter 7). In the case of an AR model, the optimal
predictor is particularly easy to determine.

2 Preparations

As a preparation exercise you should solve the following tasks in advance, and study
the provided MATLAB code. Note that the provided MATLAB code can give you some
hints, how to solve some of the tasks given below.

1. Show how to fit a pth order polynomial to a set of N data points using a least-
squares (LS) approach.

/_AI]SWQI‘I \

N J

2. The frequency w of a periodical component

z(t) = Asin(wt + ¢) (2.1)
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in the data z(t) can be determined from the peak of the periodogram

A
®:(w) = + > a(t)e ™ (2.2)

Once w is available, postulate the model z(t) = z(t) + (¢), and show how the LS
method can be used to determine the parameters necessary to remove z(t) from
the time series, using N data points.

Hint: In order to deal with the phase ¢ in a linear manner it can be fruitful to
rewrite z(t) using the trigonometric identity Asin(wt + ¢) = asin(wt) + 5 cos(wt).

/Answer: \

N J

3. Assume that the detrended time-series (with any periodical components removed)
can be described by the following AR model:

y(t) = ﬁe(t) F=1,2,...,N (2.3)

where e(t) is a zero-mean white noise sequence with variance o and where

Az)=1+a1z " +agz 2+ Fapnz ™ (2.4)

By using the Yule-Walker method, show how to estimate the AR parameters
{ax}}_, and the driving noise variance 0%, given an estimate of (k) = E{y(t)y* (t—
k)}. Also show how to obtain an estimate of the spectrum ®,(w).

ﬁnswer: \

N /

4. The optimal multistep predictor (for £ < n) is given by

G+ k) = —arft+k—1]t) —af(t +k —2/t) — ... — ary(t)
—apy(t—1) — ... —apy(t —n+ k) (2.5)

where (¢t + k|t) denotes the prediction of y(¢ + k) given data up to and including
time £.
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(a) Give the optimal one step predictor for the AR process above. In view of
equation (2.5), give the optimal predictor for the case k > n and explain why
the output of the AR-predictor tends to zero as k increases.

(b) Using the optimal predictor above for the random component of the time se-
ries, explain how to predict the total time series including the trend and the
periodical component.

ﬁnswer: \

N /

3 Prediction of a simulated time series

In this section, we will work on a “fictitious” data series having the following form:

W) = el (3.1)
K

2(t) = y(t) +p(t)+ Y Agsin(wet + ¢x) (3:2)
k=1

where p(t) is a polynomial of order P, K is the number of sinusoids in the “periodical
component” and A(z) in (3.1) is given by (2.4). The data is generated with the MATLAB
command lab5gen (try several realizations of the data).

The objective of this exercise is to predict the future behavior of z(t) given N = 300 data
points. In order to solve this task we first have to make the time series stationary (by
removing the polynomial trend, see preparation exercise 1). Then the periodical com-
ponent is removed (preparation exercise 2) and the AR model is estimated (preparation
exercise 3). The predictor determined in preparation exercise 4 is then applied to the
data series. These tasks are solved with the interactive MATLAB program lab5.

1. Generate the data with lab5gen. The raw data z(¢) is displayed as a function of
time. Also the periodogram of z(t) is shown. Is the data stationary?

ﬂnswer: \
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2. Use the program lab5b to analyze the data. What order of the polynomial trend did
you choose? What would happen if you choose a polynomial of a too high degree?

ﬂnswer: \

N /

3. How many sinusoids did you find in the data? What are their frequencies? Does
the estimated periodical component fit the data well?

ﬁ&nswer: \

N /

4. What model order did you choose for the AR part of the data? Is the spectrum
given by the estimated model close to the spectrum obtained from the data? Are
there any discrepancies? If yes, how can they be explained?

ﬁnswer: \

N /

5. Predict the future behavior of the data. Compare the predicted data to the real
time series. Did you do a good job predicting the future?
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( Answer: I

N /

6. As can be seen in the top figure, the AR predictor tends to zero as the prediction
horizon becomes large (see preparation exercise 4). This is of course the reason
why we cannot predict arbitrarily far ahead with good accuracy! How many steps
ahead do you manage to predict with reasonable results?

ﬁnswer: \




4 PREDICTION OF REAL DATA 6

4 Prediction of real data

Situate yourself in the happy 80’s: the year is 1987, money is abundant and the real-
estate market is flourishing. The politicians of a small coastal town in the far north
of Sweden have plans to build a large outdoor water activity center: with tax-payer’s
money, of course. The first reactions from the public were negative: the weather is too
cold and the season is far too short for this kind of project!

But the Mayor is not worried; he has read about global warming and is convinced that
the average temperature in his town will increase rapidly, especially since he himself has
bought a very large American car that pollutes just below the authorized limit.

To support his ideas, you have been given the task to look at temperature data and see if
you can find evidence of warmer weather coming the Mayor’s way. To your help you have
the monthly temperatures measured since 1860. The data is prepared for processing by
invoking the MATLAB command lab5real.

Analyze the data using lab5. Note below the parameters you choose. According to
your predictions, what is your advice to the optimistic Mayor? Do you find any signs of
warming in this part of Sweden? Will the project be a success?

s N

nswer:
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5 Stability monitoring in a nuclear power plant

When a nuclear power plant is running with low core circulation flow and high power,
there is an increased risk that the reactor become unstable. This gives an oscillating
neutron flux which may lead to a shut down of the reactor and/or fuel damages.

In order to surveillance the reactor stability, many nuclear power plants are using stability
detectors. The idea is as follows. A time series model is recursively estimated from the
data. Typically an AR model is used:

AlgMy(t) = e(?)

The stability margin can be determined by using a measure how close the model is to
instability. The standard approach is to use the decay ratio (DR), which is defined as
the damping between two peaks in the impulse response. DR=1 then corresponds to
instability. Here we will study a simplified method, namely to inspect the radius of the
pole closest to the unit circle.

In this exercise we will study (real!) data from a Swedish nuclear power plant. Load
the data by the command load zdec. Plot the data (plot(zdec))! What you see is
the reactor power (prefiltered!), sampled at a sampling rate of 3 Hz. Notice that it is
difficult to comment about the stability of the process by just inspecting the plotted data.

In the first exercise we will recursively estimate a 2'nd order AR model and plot the
largest pole radius as a function of time. Run the file stabtest and study the result.
Use A = 0.999 as default value. As you see, the pole radius is well within the unit circle.
However look at the spectra of the signal:

g=spa(zdec);
bode (g) ;

Is a second order model feasible?

/ Answer: I

o /

Try different model orders in stabtest and inspect the results. You may also want to try
different forgetting factors. Is it possible to detect any instability using a higher order
model?
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K’&nswer:

\_

% stabtest

if(Texist(’zdec’)), load zdec, end

norder=input (’Give order (RETURN = 2): ’ );

if (isempty(norder)) ,norder=2;end

lam=input(’Give forgetting factor (RETURN = 0.999): ’ );
if (isempty(lam)),lam=0.999;end

% An AR model of order norder is to be recursively estimated
th=rarx(zdec,norder,’ff’,lam);

% Find the largest root of the estimated model
for j=1:length(th);rr(j,:)=max(abs(roots([1 th(j,:)])))’;end

% Plot the pole radius (skip first 100 samples)

plot([100:1ength(th)]/3,rr(100:1length(th)))
title(’Largest pole radius as a function of time?)

6 MATLAB Code

hto oo toToToToToToTo ol oo oo o o o o o 1o To 1o To T To T To o o o o oo oo Jo oo o To T To T To o Tl o o o o oo oo o o o o

h
% MATLAB FILE LAB5 data analysis
h

% Computer laboratory number 5, "Time Series Modeling and

% Prediction" in the System Identification Course.

b

h
h

Tl lololoTolo ToToTo ToTo T ToToTo T To oo o oo oo o o o o o o ol o T T To T T T T T o o o oo oo oo oo o o o o o o
Tl oo ToToTo T To T ToToToTo o oo 1o 1o o o o oo o o o o o o o T T T T T T T T o o o o o o o o oo oo oo o o o

zoom off
clf;figure(1) ;zoom xon
clear; load data;

Zzy 5
% Plot the raw data

subplot(211)
plot(time(1:M)?,z(1:M));
title(’Raw data’)
ylabel(’z(t)?)
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xlabel(’t?)

subplot (212)
P=periodogram(z(1:M),zpad);
P=P(zpad/2+1:zpad) ;
f=linspace(0,1,zpad/2)’;
plot(f,P)

title(’Periodogram raw data’)
xlabel(’Normalized frequency’)
ylabel(’Periodogram’)

Tl TotototoTo o ToToToTo o 1o oo o To ToTo o 1o o o T To 1o 1o 1o o o o Jo To T 1o o o o o T To 1 1o o o T T Jo o 1o oo o T T o 1o 1o oo o
h

% Estimate polynomial trend

h

disp(® ?)

n=input (’Give order of polynomial tremnd: ’);

phat=polyfit (t(1:M)’,z(1:M),n);

subplot(211)

hold on
plot(time(1:M)’,polyval(phat,t(1:M)),’-r’);
hold off

legend (’Raw data’,’Polynomial trend’,0)

disp(’Hit any key to remove polynomial trend...’)
pause

b It oo toto oo Tototo o ToToto o T To o o o o To to o To o Jo o Jo T 1o o o To o o o T To o o o To o o o o To 2o o o T o o o o T o o o
h
% Remove polynomial trend

h
z=z-polyval (phat,t’);

subplot(211)

plot (time (1:M)?,z(1:M));

title(’Data with polynomial trend removed?’)
ylabel(’z(t)?)

xlabel(’t?)

subplot(212)
P=periodogram(z(1:M),zpad);

P=P(zpad/2+1:zpad);
f=1linspace(0,1,zpad/2)’;

plot (f,P)

%plot (P)

title(’Periodogram polynomial trend removed’)
xlabel(’Normalized frequency’)
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10

ylabel(’Periodogram’)

disp(’Estimation of sinusoidal frequencies...?)
disp(’ ?)

Toloto o Toto o Toto o Joto o Toto oo To o JoTo 1o Jo Jo Jo o JoJo o Jo 1o o Jo T o Jo 1o o Jo T o Jo 1o o Jo T o Jo o o o Jo o o o Jo o Jo 1o o Jo 1o o o o
h

% Estimate peaks

h

n=input (’Give the number of sinusoids: ’);
fhat=f (findpeaks(-P,n)’);
disp([’fhat=’,num2str(sort(fhat)’)]);

subplot (212)

ax=axis;

ax=ax(3:4)°;

line([1;1]*fhat’,ax*ones(1,n))
title(’Periodogram, estimated peak frequencies’)

T o b o th o Tt o hodoto oot to To ot to To o o To o o to To o o o To o o o To o oo To o o o to To oo to to o o Fo T o o o B To o o
%
% Estimate data

b

Ph=[cos(pi*fhat*t) ; sin(pi*fhat*t)];
th=inv (Ph*Ph?’) *Phx*z;

zsin=Ph’*th;

subplot(211)

hold on

plot(time(1:M)?,zsin(1:M),’-r?)

hold off

legend(’Data’, ’Estimated sinusoidal data’)

disp(’Hit any key to remove sinusoidal data...’)
pause

Tt bt b oot o ot oo to ot to o T to o To To o Bo oo T ot o o To T o to To o to o o o o to o o Bo To o o o o o o Fo o o o o oo o
%
% Remove sinusoidal data

h
zZ=z-zsin;

subplot(211)

plot(time(1:M)?,z(1:M));

title(’Data with sinusoid(s) removed’)
ylabel(’z(t)?)

xlabel(’t?)

10
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subplot(212)

P=periodogram(z(1:M),zpad);
P=P(zpad/2+1:zpad);

f=linspace(0,1,zpad/2)’;

plot(£f,P)

title(’Periodogram with sinusoid(s) removed?’)
xlabel(’Normalized frequency’)
ylabel(’Periodogram’)

disp(’Hit any key to select the order of the model...?)
pause

T It st e I T o ot o T to o T o o T e o ot T o T To o to To o o Fo o o o to o o T o o o o o o o Jo o o o o o o o
%
% Choose a model order

b

v=[1;
Ahat=[];
si2=0;

nmax=50;
Sys=zeros (nmax,nmax+1) ;

for n=1:nmax,

r=xcov(z(1:M),z(1:M),n, ’biased?);
R=toeplitz(r(n+1:2%n+1));

ah=-inv(R(2:n+1,2:n+1))*R(2:n+1,1);
Ahat=[1 ah’];
Sys(n,1:n+1)=Ahat;

si2(n)= R(1,1:n+1)*Ahat’;

e=filter(Ahat,1,z(1:M));

V(n)=e’*e/M;

end

subplot(212)

plot (V(1:20))

title(’AIC loss function V_N (\theta)?’)
xlabel (’Number of parameters’)
ylabel(’Loss function’)

Tt oo loToToToToToTo o To oo oo o o o o Jo Jo 1o 1o 1o ToTo T To T ol o o o oo oo oo o o T To T T T o o o o oo oo oo o o o
h

11
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% Estimate AR system of order n

h

disp(’ ?);

norder=input (’Give the order of the AR process: ’);

Ahat=Sys(norder,1:norder+1);

bttt o toto ToToTototo ToToto o ToToto o o o Toto o Toto o o To T 1o o o To T o o T To o o o To o o o o To 2o o o T To o o o T o o o
h
% Compare AR spectrum

h
clf

ind=exp(i*linspace(-pi,pi,M));
Phat=1/M*e’*e./(polyval(Ahat,ind) . *polyval (Ahat,conj(ind)))’;
Phat=Phat (round (M/2)+1:M);

f=1linspace(0,1,zpad/2)’;
fh=linspace(0,1,length(Phat))’;

plot(f,P,fh,Phat)

title(’True and estimated periodograms’)
xlabel(’Normalized frequency’)
ylabel(’Periodogram’)

legend (’Periodogram data’,’Estimated periodogram’)
grid

disp(’Hit any key to predict data ...?)
pause

Tl toto oo Toto o foToToto oo ToTo 1o o o To o o o Jo Fo 1o o o To o o o o 1o 1o o o Jo o o o To o o o o Jo o o o o Fo 1o o o o o o o o o oo
/)

% Optimal predictor

h

tlag=t (M:M+maxlag) ;

zpred=[z(M-norder:M) ; zeros(size(tlag?’))];
for k = norder+2 : maxlag+norder+1,
zpred (k)=-Ahat(2:norder+1)*zpred (k-1:-1:k-norder) ;
end;
zpred=zpred (norder+1:maxlag+norder+1) ;

% Predicted AR data

subplot (211)
plot(time (M-maxlag:M+maxlag)’,z(M-maxlag:M+maxlag),’-b’,time (M:M+maxlag)’,zpred, ’-

title([’Crossvalidation AR data, Prediction starts at Jan 1987°])

ax=axis;
line([time (M) time(M)], [ax(3) ax(4)])

12
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legend (’Measured data’,’Predicted data’,0)
ylabel(’y(t)?)
xlabel(’t?)

% total data

Ph=[cos(pi*fhat*tlag) ; sin(pi*fhat*tlag)];
zsin=Ph’*th;

zpoly=polyval(phat,tlag’);
zptot=zpred+zsin+zpoly;

subplot (212)
plot (time (M-maxlag:M+maxlag)’,y(M-maxlag:M+maxlag),’-b’,time (M:M+maxlag)’,zptot, ’-

title([’Crossvalidation total data, Prediction starts at Jan 1987°])
ax=axis;

line([time(M) time(M)], [ax(3) ax(4)])

legend(’Measured data’,’Predicted data’,0)

ylabel(’z(t)?)

xlabel(’t?)

?%%%%%%%%Z%%%%%%%%%Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
; MATLAB FILE LAB5GEN Simulated data generation ;
; Computer laboratory number 5, "Time Series Modeling and ;
% Prediction" in the System Identification Course. %
h .

Tl ol oo ToToTo T To T ToToTo T T 1o 1o 1o 1o 1o o o oo o o o o o o o Tl T T T T T T T T o o 1o 1o 1o o o o oo oo o o o o o
Tl o o ToToTo T ToToToToTototo oo 1o 1o o o o oo o o o o o o o T T T T T T T T o o o o o o oo oo oo oo o o o o

% Generate the raw data

K=3; % Number of sinusoids

N=1000; % Number of data points

M=300; % - " - used in estimation
tN=1:N;

maxlag=10;

t=tN(1:M+maxlag);
time=tN(1:M+maxlag);

e_w=randn(N,1);
x=randn(N,1);

om=[1.24 1.51 1.6]’;
fi=[3 3 6]7;
a=ones(K,1);

A=[1 0.64 0.7];

%A=[1 -2.76 3.809 -2.654 0.924];
B=[11;

13
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x=filter(B,A,e_w);
p=[5e-2 1e-3];

y=x+(a’*sin(om*tN+fi*ones(size(tN))))’ + polyval(p,tN)’;
y=y(1:M+maxlag) ;

save data

zoom off
clf;figure(1) ;zoom xon
clear; load data;

zZ=y;
% Plot the raw data

subplot (211)
plot(t(1:M)’,z(1:M));
title(’Raw data?’)
ylabel(’z(t)?)
xlabel(’t?)

subplot (212)
P=periodogram(z(1:M));
P=P(M/2+1:M);
f=linspace(0,1,M/2)’;

semilogy (f,P)
title(’Periodogram raw data’)
xlabel(’Normalized frequency’)
ylabel(’Periodogram’)

TlolotolotoToToToToTola oo oo o o o o oo o 1o 1o 1o To To T To T ol o o o oo oo oo Fo o T To T T T o o o o oo oo oo o o o

h h
% MATLAB FILE LABSREAL Prepare real data %
% %
% Computer laboratory number 5, "Time Series Modeling and b
% Prediction" in the System Identification Course. h
y [/

Tt o to o ToToToToToTolo oo oo o o o o o o To To 1o 1o To To T To T o o o oo oo o oo o o o T To T T T o o o o oo oo oo o o o
Tl lololoToToToToToTo o oo oo o o o o oo To To 1o To T To T To Tl o o o o oo oo oo o o T To T T T o o o o oo oo oo o o o

% Prepare the real data
load temperature;

X=stensele;
clear stensele;

year=flipud(X(:,1))’;

X=flipud(X(:,2:13));
[N,m]=size(X);

14
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years=127+1/12;

M=round (12*years) ;

maxlag=24;

y=reshape (X’ ,m*N, 1) ;

y=y(1:M+maxlag) ;
time=linspace(year(1),year(1l)+years+maxlag/12,M+maxlag+1l);
time=time (2:M+maxlag+1);

t=1:M+maxlag;

zpad=2"15;

save data;

zoom off
clf;figure(1l) ;zoom xon
clear; load data;

Z=y 5
% Plot the raw data

subplot (211)
plot (time (1:M)’,z(1:M));

title(’Raw data’)
ylabel(’z(t)?)
xlabel(’t?)

subplot (212)
P=periodogram(z(1:M),zpad);
P=P(zpad/2+1:zpad) ;
f=linspace(0,1,zpad/2)’;

plot (f,P)

title(’Periodogram raw data’)
xlabel(’Normalized frequency’)
ylabel(’Periodogram’)

15



