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4. The “surrounding infrastructure”

Besides models for dynamics, sensors and world, a successful sensor fusion solution heavily 
relies on a well functioning “surrounding infrastructure”.

This includes for example:

• Time synchronization of the measurements from the different sensors

• Mounting of the sensors and calibration

• Computer vision, radar processing

• Etc...

Relative pose calibration: 

Compute the relative translation and rotation of the 
camera and the inertial sensors that are rigidly connected.

An example:

Jeroen D. Hol, Thomas B. Schön and Fredrik Gustafsson. Modeling and Calibration of 
Inertial and Vision Sensors. International Journal of Robotics Research (IJRR), 29(2):
231-244, February 2010.
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The story I am telling

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j

(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

f
i

=
ÿ
jœW

wall
j

(p
i

), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

2. The dynamical systems exist in a context. 

This requires a world model.

3. The dynamical systems must be able to perceive their own 
(and others’) motion, as well as the surrounding world.

This requires sensors and sensor models.

4. We must be able to transform the measurements 
from the sensors into knowledge about the 

dynamical systems and their surrounding world.

This requires inference.

World model

Dynamic model

Sensor model

Inference

1. We are dealing with dynamical systems 

This requires a dynamical model.

ẋ = f(x, u, ✓)
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Sensor fusion - definition

Definition (sensor fusion) 

Sensor fusion is the process of using information from several different sensors to infer what is 
happening (this typically includes finding states of dynamical systems and various static 
parameters).

World model

Inference

Dynamic model

Sensor model

...

Sensors
Sensor fusion

...

Applications

Situational 
awareness
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Outline

Sensor fusion 

1. Probabilistic models of dynamical systems
2. Probabilistic models of sensors and the world
3. Formulate and solve the state inference problem
4. Surrounding infrastructure

Industrial application examples: 

1. Calibration of a camera and an IMU
2. Autonomous landing of a helicopter
3. Helicopter navigation
4. Fighter aircraft navigation
5. Vehicle motion using night vision
6. Indoor motion capture
7. Indoor positioning5. 

A few words about the particle filter

Conclusions
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State inference - simple special case

Consider the following special case (Linear Gaussian State Space (LGSS) model)

or, equivalently,

xt+1 = Axt +But + vt, vt ⇠ N (0, Q),

yt = Cxt +Dut + et, et ⇠ N (0, R).

It is now straightforward to show that the solution to the time update and measurement update 
equations is given by the Kalman filter, resulting in

p(xt | y1:t) = N
�
xt | bxt|t, Pt|t

�
,

p(xt+1 | y1:t) = N
�
xt+1 | bxt+1|t, Pt+1|t

�
.

xt+1 | xt ⇠ f(xt+1 | xt) = N (xt+1 | Axt +But, Q),

yt | xt ⇠ g(yt | xt) = N (yt | Cxt +Dut, R).
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State inference - interesting case

Obvious question: what do we do in an interesting case, for example when we have a nonlinear 
model including a world model in the form of a map?

• Need a general representation of the filtering PDF
• Try to solve the equations 

as accurately as possible.

p(xt | y1:t) =
g(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)
,

p(xt+1 | y1:t) =
Z

f(xt+1 | xt)p(xt | y1:t)dxt,



System identification and sensor fusion in dynamical systems
Thomas Schön, user.it.uu.se/~thosc112

Guest lecture - System identification
Uppsala, Sweden

State inference - the particle filter (I/II)

p(xt | y1:t)

xt+1 | xt ⇠ f(xt+1 | xt, ut),

yt | xt ⇠ h(yt | xt, ut),

x1 ⇠ µ(x1).

The particle filter provides an approximation of the filter PDF

when the state evolves according to an SSM

The particle filter maintains an empirical distribution made up N samples (particles) and
corresponding weights

bp(x
t

| y1:t) =
NX

i=1

w

i

t

�

x

i
t
(x

t

)

Xiao-Li Hu, Thomas B. Schön and Lennart Ljung.  A Basic Convergence Result for Particle Filtering. IEEE Transactions on Signal 
Processing, 56(4):1337-1348, April 2008.

This approximation converge to the true filter PDF,

“Think of each particle as one simulation of the 
system state. Only keep the good ones.”
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The weights and the particles in 

are updated as new measurements becomes available. This approximation can for example be used 
to compute an estimate of the mean value,

State inference - the particle filter (II/II)

The theory underlying the particle filter has been developed over the past two decades and the 
theory and its applications are still being developed at a very high speed. For a timely tutorial, see

A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: fifteen years later. In Oxford Handbook of 
Nonlinear Filtering, 2011, D. Crisan and B. Rozovsky (eds.). Oxford University Press. 

or my new course on computational inference in dynamical systems

user.it.uu.se/~thosc112/CIDS.html

bp(x
t

| y1:t) =
NX

i=1

w

i

t

�
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i
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t

)

bx
t|t =

Z
x

t

p(x
t

| y1:t)dxt

⇡
Z
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Using world models in solving state inference problems

Consider a 1D localization example.

xt+1 = xt + ut + vt,

yt = h(xt) + et.

position
velocity (measured 

input)
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(terrain database)
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Using world models in solving state inference problems

Filter PDF after 1 measurement
p(x1 | y1)
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Using world models in solving state inference problems

The simple 1D localization example is an illustration of a problem involving a multimodal filter PDF

• Straightforward to represent and work with using a PF
• Horrible to work with using e.g. an extended Kalman filter

The example also highlights the key capabilities of the PF: 

1. To automatically handle an unknown and dynamically changing number of 
hypotheses.

2. Work with nonlinear/non-Gaussian models

We have implemented a similar 
localization solution for this 
aircraft (Gripen).

Industrial partner: Saab
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Outline

Sensor fusion 

1. Probabilistic models of dynamical systems
2. Probabilistic models of sensors and the world
3. Formulate and solve the state inference problem
4. Surrounding infrastructure

Industrial application examples: 

1. Calibration of a camera and an IMU
2. Autonomous landing of a helicopter
3. Helicopter navigation
4. Fighter aircraft navigation
5. Vehicle motion using night vision
6. Indoor motion capture
7. Indoor positioning5. 

A few words about the particle filter

Conclusions
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1. Calibration of a camera and an IMU

Aim: Compute high quality estimates of the relative position and orientation of a camera and an 
inertial measurement unit (IMU) that are rigidly mounted.

Industrial partner: Xsens

The resulting algorithm does not require any 
additional hardware, except a piece of paper with 
a checkerboard pattern.

Coordinate frames

Earth (e): Fixed frame
Body (b): The coordinate frame where the 
inertial measurements are obtained.
Camera (c): Attached to the camera.
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1. Calibration of a camera and an IMU

Sensor unit developed within the project!

Benefits!
•  Handles unconstrained motions!
•  Always works!

Drawbacks!
•  Big drift!
•  Only relative measurements!

Benefits!

Drawbacks!

•  Absolute pose!
•  Drift-free!

•  Only works for slow motions!
•  Problems with occlusion, etc.!
•  Requires many correspondences !

Vision (and existing 3D model)!

Inertial sensors!
The sensor unit consists of:!
•  IMU!

•  Camera!

Gyroscope (3-D)!
Accelerometer (3-D)!
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1. Calibration of a camera and an IMU

The camera information is 
modeled as output !

The inertial information is 
modeled as input !

What is the first step of solving a system identification problem?
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1. Calibration of a camera and an IMU

Derive a good predictor!

Pose and solve an appropriate optimization problem (NLS)!

where,!

This is a standard gray-box system identification problem!!

We formulate it as a standard gray-box problem
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1. Calibration of a camera and an IMU

Rotate! Subtract 
gravity!

Inertial navigation:!

The gyroscopes measures the angular velocities!

The accelerometers measures the specific force!
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1. Calibration of a camera and an IMU

3D model of the scene! Camera image of the scene!

The vision measurements consists in 2D-3D correspondences between 
the 2D camera image and the 3D model of the scene.!

Corresponding 3D position in the camera frame !

2D position in the normalized image frame!
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1. Calibration of a camera and an IMU

Coordinate frames:!

Earth (e): Fixed frame!

Body (b): The coordinate frame where the 
inertial measurements are obtained!

Camera (c): Attached to the camera!

State vector:!
Position of the body (b) frame, 
resolved in the earth (e) frame!

Velocity of the body (b) frame, 
resolved in the earth (e) frame!

Unit quaternion describing the 
orientation (from e to b)!

Frames b and c are rigidly connected!
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1. Calibration of a camera and an IMU

Calibration algorithm (standard gray-box identification)
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1. Calibration of a camera and an IMU

1.  Place a camera calibration pattern on a horizontal, level surface."
2.  Acquire inertial measurements and images."

3.  Obtain the point correspondences of the calibration pattern for all images."
4.  Compute an estimate    by minimizing"

•  Rotate around all 3 axes, with sufficiently exciting angular 
velocities."
•  Always keep the calibration pattern in view."
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1. Calibration of a camera and an IMU

Histograms of the normalized innovations using validation data.!

Empirical density! Theoretical density!

Jeroen D. Hol, Thomas B. Schön and Fredrik Gustafsson. Modeling and Calibration of Inertial and Vision Sensors. International Journal of Robotics 
Research (IJRR), 29(2):231-244, February 2010.

Full details are available here:

Manon Kok and Thomas B. Schön. Maximum likelihood calibration of a magnetometer using inertial sensors. In Proceedings of the 18th World 
Congress of the International Federation of Automatic Control (IFAC), Cape Town, South Africa, August 2014.

Recently we also solved the problem of calibrating magnetometers and inertial sensors, see 
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2. Autonomous helicopter landing (I/III)

Aim: Land a helicopter autonomously using information from a camera, GPS, compass and inertial 
sensors.

Industrial partner: Cybaero

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose and 
velocity

Camera

GPS

Compass

Inertial

Controller
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2. Autonomous helicopter landing (II/III)

The two circles mark 0.5m and 1m landing error, 
respectively. 

Dots = achieved landings
Cross = perfect landing

Results from 15 landings

Experimental helicopter

•  Weight: 5kg

•  Electric motor

Joel Hermansson, Andreas Gising, Martin Skoglund and Thomas B. Schön. Autonomous Landing of an Unmanned Aerial Vehicle. Reglermöte 
(Swedish Control Conference), Lund, Sweden, June 2010.
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2. Autonomous helicopter landing (III/III)
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3. Helicopter pose estimation using a map (I/III)

Aim: Compute the position and orientation of a helicopter by exploiting the information present 
in Google maps images of the operational area.

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Camera

Inertial

Barometer
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3. Helicopter pose estimation using a map (II/III)

Image from on-board camera Extracted superpixels Superpixels classified as grass, 
asphalt or house

Three circular regions used for 
computing class histograms

Map over the operational 
environment obtained from 

Google Earth.

Manually classified map with 
grass, asphalt and houses as pre-

specified classes.
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3. Helicopter pose estimation using a map (III/III)

“Think of each particle as one simulation of the system state (in the movie, only the horizontal position is 
visualized). Only keep the good ones.”

Fredrik Lindsten, Jonas Callmer, Henrik Ohlsson, David Törnqvist, Thomas B. Schön, Fredrik Gustafsson, Geo-referencing for UAV Navigation using 
Environmental Classification. Proceedings of the International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA, May 2010.
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4. Fighter aircraft navigation

“Think of each particle as one simulation of the system state (in the movie, only the horizontal position is 
visualized). Only keep the good ones.”

Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized Particle Filters for Mixed Linear/Nonlinear State-Space Models. 
IEEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.
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5. Vehicle motion using night vision

Aim: Use images from an infrared (IR) camera in order to obtain better estimates of the ego-
vehicle motion and the road geometry in 3D.

Industrial partner: Autoliv

Sensors! Sensor Fusion!

Estimates!

Inertial sensors!

IR camera!

Wheel speed!

Steering angle!

Dynamic model!

Sensor model!

Estimation problem!

World model!

IR camera!
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5. Vehicle motion using night vision

Measurements recorded during night-time driving on rural roads in Sweden.!

Using CAN data 
and IR camera!

Only CAN data!

Showing the ego-motion estimates reprojected onto the images.!

Thomas B. Schön and Jacob Roll, Ego-Motion and Indirect Road Geometry Estimation Using Night Vision. 
Proceedings of the IEEE Intelligent Vehicle Symposium (IV), Xi�an, China, June 2009. !
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Aim: Estimate the position and orientation of a human (i.e. human motion) using measurements 
from inertial sensors and ultra-wideband (UWB).

Industrial partner: Xsens Technologies

4. Indoor human motion estimation

6. Indoor human motion estimation (I/V)

World model

Inference

Dynamic model

Sensor model

Sensors Sensor fusion

Pose

Accelerometer

Gyroscope

Magnetometer

(17 IMU’s)

(UWB)

Transmitter

Receiver 1

Receiver 6

...
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Sensor unit integrating an IMU and a UWB 
transmitter into a single housing.!

• Inertial measurements @ 200 Hz
• UWB measurements @ 50 Hz

6. Indoor human motion estimation (II/V)

UWB - impulse radio using very short pulses (~ 1ns)

• Low energy over a wide frequency band
• High spatial resolution
• Time-of-arrival (TOA) measurements
• Mobile transmitter and 6 stationary, synchronized 
receivers at known positions.

Excellent for indoor positioning
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6. Indoor human motion estimation (III/V)

Performance evaluation using a camera-based reference system (Vicon).

RMSE: 0.6 deg. in orientation and 5 cm in position.

Manon Kok, Jeroen D. Hol and Thomas B. Schön. Indoor positioning using ultrawideband and inertial measurements. IEEE Transactions on 
Vehicular Technology, 64(4):1293-1303, 2015.
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6. Indoor human motion estimation (IV/V)

Show movie using VLC…

Manon Kok, Jeroen Hol and Thomas B. Schön. An optimization-based approach to human body motion capture using inertial sensors. In 
Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC), Cape Town, South Africa, August 2014.
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6. Indoor human motion estimation (V/V)

Show movie using VLC…

Manon Kok, Jeroen Hol and Thomas B. Schön. An optimization-based approach to human body motion capture using inertial sensors. In 
Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC), Cape Town, South Africa, August 2014.
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7. Indoor positioning of humans (I/III)

Aim: Compute the position of a person moving around indoors using sensors (inertial, 
magnetometer and radio) located in an ID badge and a map.

Industrial partner: Xdin

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.
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7. Indoor positioning of humans (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j

(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

f
i

=
ÿ
jœW

wall
j

(p
i

), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Accelerometer

Gyroscope

Radio
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7. Indoor positioning of humans (III/III)
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Conclusions

Quite a few different applications from different areas, all solved using the 
same underlying system identification and sensor fusion strategy

• Model the dynamics (possibly sys.id.)

• Model the sensors (possibly sys.id.)

• Model the world

• Solve the resulting inference problem

and, do not underestimate the “surrounding infrastructure” (possibly sys.id.)!

• There is a lot of interesting research that remains to be done!

• The number of available sensors is currently skyrocketing 

• The industrial utility of this technology is growing as we speak!
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2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
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those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j

(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

f
i

=
ÿ
jœW

wall
j

(p
i

), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.

p(xt | y1:t) =
h(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)
,

p(xt | y1:t�1) =

Z
f(xt | xt�1)p(xt�1 | y1:t�1)dxt�1,

xt+1 | xt ⇠ f✓(xt+1 | xt, ut),

yt | xt ⇠ h✓(yt | xt, ut).

Thank you for your attention!!


