4.The “surrounding infrastructure”

Besides models for dynamics, sensors and world, a successful sensor fusion solution heavily
relies on a well functioning “surrounding infrastructure”.

This includes for example:

* Time synchronization of the measurements from the different sensors
* Mounting of the sensors and calibration

e Computer vision, radar processing

* Etc...

An example:

Relative pose calibration:

Compute the relative translation and rotation of the
camera and the inertial sensors that are rigidly connected.

Jeroen D. Hol, Thomas B. Schon and Fredrik Gustafsson. Modeling and Calibration of
Inertial and Vision Sensors. International Journal of Robotics Research (I|RR), 29(2):
231-244, February 2010.
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|.We are dealing with dynamical systemsg

This requires a dynamical model.

2.The dynamical systems exist in a context.:

This requires a world model.

: 3.The dynamical systems must be able to perceive their own
(and others’) motion, as well as the surrounding world.

Inference

C World model )

This requires sensors and sensor models. ] :
: 4.WWe must be able to transform the measurements | : CDynamic mode,) :

from the sensors into knowledge about the
dynamical systems and their surrounding world.

This requires inference.
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Definition (sensor fusion)

Sensor fusion is the process of using information from several different sensors to infer what is
happening (this typically includes finding states of dynamical systems and various static
g parameters).

Sensor fusion

Sensors Applications
( )_> . T ST ETEE RS [ _>C )
' Inference '
: World model ) "
C ; + | Situational :
: :( Dynamic model ): AWareness
- = s o )
( )—P E( Sensor model ) :
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A few words about the particle filter

Industrial application examples:

|. Calibration of a camera and an IMU
2.Autonomous landing of a helicopter
3. Helicopter navigation

4. Fighter aircraft navigation

5.Vehicle motion using night vision

6. Indoor motion capture

/. Indoor positioning

Conclusions
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Consider the following special case (Linear Gaussian State Space (LGSS) model)

Tey1 = Axy + Buy + vy, vy ~ N(0,Q),
yr = Cry + Duy + ey, e ~ N(0, R).

or, equivalently,

LTt41 | Xt ~ f(«??t+1 ’ xt) = N($t+1 | Axs + Buy, Q)a
Y | oo ~ g(ye | 2¢) = N(ys | Coe + Dug, R).

It is now straightforward to show that the solution to the time update and measurement update
equations is given by the Kalman filter, resulting in

p(xe | Y1) =N (fﬁt | aj\tltvpﬂt) ;

p($t+1 | yu) =N (33t+1 | /x\t—|—1|t7Pt—|—1|t) :
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State inference - interesting case

Obvious question: what do we do in an interesting case, for example when we have a nonlinear
model including a world model in the form of a map?

* Need a general representation of the filtering PDF
* Try to solve the equations

g(yt | CI?t)P(fEt | yl:t—l)
p(ye | Yr:e—1)

P(iﬂt+1 | yl:t) = /f(il?t+1 | m7:)10(351: | yl:t)dﬂft,

p(xt | yl:t) —

Y

as accurately as possible.




The particle filter provides an approximation of the filter PDF
p(xt | ylzt)

when the state evolves according to an SSM

Lt+4+1 | Xy ~ f(37t+1 | xtaut)a
Y | o ~ h(ye | T, ue),
1 ~ p(xy).

The particle filter maintains an empirical distribution made up N samples (particles) and
corresponding weights

N
-~ _ ] “Think of each particle as one simulation of the
) = 10
Pl [ Y1) z; WO} (1) system state. Only keep the good ones.”
1=

This approximation converge to the true filter PDF

Xiao-Li Hu,Thomas B. Schon and Lennart Ljung. A Basic Convergence Result for Particle Filtering. IEEE Transactions on Signal
Processing, 56(4):1337-1348, April 2008.
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The weights and the particles in

N
Plae | yre) = Y wid, (2¢)
1 =1

are updated as new measurements becomes available. This approximation can for example be used
to compute an estimate of the mean value,

N N
T = [ zep(@e | y1e)dae = [ 4 Zw%x;(mt)dl’t = Zw;ﬁx;
i=1 i=1

The theory underlying the particle filter has been developed over the past two decades and the
theory and its applications are still being developed at a very high speed. For a timely tutorial, see

A.Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: fifteen years later. In Oxford Handbook of
Nonlinear Filtering, 201 |, D. Crisan and B. Rozovsky (eds.). Oxford University Press.

or my new course on computational inference in dynamical systems

user.it.uu.se/~thosc| | 2/CIDS.html
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Consider a ID localization example. 100
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Using world models in solving state inference problems

100f 1 100f 1 100t

o 80 i 1 o 80f - 1 o 80f —
g I E I E |
= 60r 1 = 60r | = 60f 1
= | = | = |
< 401 1 < 40 1 < 40t 1

1 I I

|

p(a| y1)
p(@3] Y1)
P($10| Y1i:10
o

0 20 40 60 80 10C 0 20 40 60 80 10C 26 4‘0 60 86 100
Position = Position = Position z
Filter PDF after | measurement Filter PDF after 3 measurements Filter PDF after |10 measurements
P(xl | yl) p($3 | y1:3) p(fﬂlo | y1:10)




The simple ID localization example is an illustration of a problem involving a multimodal filter PDF

e Straightforward to represent and work with using a PF
* Horrible to work with using e.g. an extended Kalman filter

The example also highlights the key capabilities of the PF:

|. To automatically handle an unknown and dynamically changing number of
hypotheses.

2. Work with nonlinear/non-Gaussian models

We have implemented a similar
localization solution for this
aircraft (Gripen).

Industrial partner: Saab

System identification and sensor fusion in dynamical systems
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Industrial application examples:

|. Calibration of a camera and an IMU
2.Autonomous landing of a helicopter
3. Helicopter navigation

4. Fighter aircraft navigation

5.Vehicle motion using night vision

6. Indoor motion capture

/. Indoor positioning

Conclusions
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Aim: Compute high quality estimates of the relative position and orientation of a camera and an
inertial measurement unit (IMU) that are rigidly mounted.

Industrial partner: Xsens

The resulting algorithm does not require any
additional hardware, except a piece of paper with
a checkerboard pattern.

Coordinate frames

Earth (e): Fixed frame

Body (b):The coordinate frame where the
inertial measurements are obtained.
Camera (c):Attached to the camera.

System identification and sensor fusion in dynamical systems Guest lecture - System identification
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Sensor unit developed wit

The sensor unit consists of:

- IMU

Gyroscope (3-D)———
—

Accelerometer (3-D)

« Camera

System identification and sensor fusion in dynamical systems
Thomas Schon, user.it.uu.se/~thosc| 12

Benefits
 Absolute pose

* Drift-free

Drawbacks
+ Only works for slow motions

* Problems with occlusion, etc.

* Requires many correspondences

Benefits
» Handles unconstrained motions

+ Always works

Drawbacks
+ Big drift

+ Only relative measurements

Guest lecture - System identification
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What is the first step of solving a system identification problem?

Z = {ula'”’uﬂ[ayl:" °>y]\'r}

0.1r :
WWW
E o1} i
é p— TN ——— N — : i N N
2 _0.3} '
e :
-0.5 : L
2 4 6 8 10 12 14
time (s)
30r
v 0
(@]
-60
The camera information is The inertial information is
modeled as output{¥1,..., YN} modeled as input {u1,...,ups}

System identification and sensor fusion in dynamical systems
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We formulate it as a standard gray-box problem

Derive a good predictor §y|;_1(6, Z)

Pose and solve an appropriate optimization problem (NLS)

§ = argmin Vy (0, Z)
v
where,
VN (0, 7) E |y —yt|t 1(‘9)
This is a standard gray-box system identification problem!
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b q
Web /

\ 4 fe
fb Rotate Subtract
gravity

The gyroscopes measures the angular velocities
Yo = wip + 05 + €5

eb

v

The accelerometers measures the specific force
ya = RPe(b® — ¢°) +60 + €l
1o
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3D model of the scene Camera image of the scene

The vision measurements consists in 2D-3D correspondences between
the 2D camera image and the 3D model of the scene.

2D position in the normalized image frame X
L u\ _ i X Y | = /1)('/)(R$I)C(p§:k —_ bg) - ('/’)
v 7z \Y Z

Corresponding 3D position in the camera frame
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Coordinate frames:

Earth (e): Fixed frame

Body (b): The coordinate frame where the
inertial measurements are obtained

Camera (c): Attached to the camera

State vector: Frames b and c are rigidly connected

Position of the body (b) frame,
resolved in the earth (e) frame

be
— pe Velocity of the body (b) frame,
be resolved in the earth (e) frame
q . . L
Unit quaternion describing the
orientation (from e to b)
System identification and sensor fusion in dynamical systems Guest lecture - System identification
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|. Calibration of a camera and an IMU

Calibration algorithm (standard gray-box identification)

/ (pcb\
Cb
— b
0 fsb Minimization -
\ g ) VN (07 6)

€
o
(Measurements )—> —>( Innovations )

EKF

( Inputs )——I—»( State )

N
A . 1 . _ .
0 = g 5 Z yt|t—1(9))TSt(9) l(yt - yt|t—1(9))
t=1
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1. Place a camera calibration pattern on a horizontal, level surface.

2. Acquire inertial measurements and images.

- Rotate around all 3 axes, with sufficiently exciting angular
velocities.
- Always keep the calibration pattern in view.

3. Obtain the point correspondences of the calibration pattern for all images.

4. Compute an estimate 0 by minimizingVx (6, Z)
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Empirical density Theoretical density

\
oy [y
[ =
g 3
o o
[ L
-5 0 5 -5 0 5
normalized innovation normalized innovation
(a) fisheye lens, using 6o (b) fisheye lens, using #
& oy
c c
o o
3 =
g g
-5 0 5 -5 0 5
normalized innovation

normalized innovation

(c) perspective lens, using 6o (d) perspective lens, using 6

Histograms of the normalized innovations using validation data.

Full details are available here:
Jeroen D. Hol, Thomas B. Schon and Fredrik Gustafsson. Modeling and Calibration of Inertial and Vision Sensors. International Journal of Robotics

Research (IJRR), 29(2):23 1-244, February 2010.

Recently we also solved the problem of calibrating magnetometers and inertial sensors, see

Manon Kok and Thomas B. Schon. Maximum likelihood calibration of a magnetometer using inertial sensors. In Proceedings of the |8th World
Congress of the International Federation of Automatic Control (IFAC), Cape Town, South Africa, August 2014.

Guest lecture - System identification
Uppsala, Sweden
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Aim: Land a helicopter autonomously using information from a camera, GPS, compass and inertial
Sensors.

Industrial partner: Cybaero

Sensor fusion

Sensors

( camera )—>
( es >
( Compass F—>
( nertal )

Pose and
velocit
A P( Controller )
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Results from |5 landings

Experimental helicopter

* Weight: Skg

¢ Electric motor

[em]

Compass ||| |' GPS antenna
| N |

" | g

Camera

The two circles mark 0.5m and Im landing error,
respectively.

Dots = achieved landings
Cross = perfect landing

Joel Hermansson, Andreas Gising, Martin Skoglund and Thomas B. Schon. Autonomous Landing of an Unmanned Aerial Vehicle. Reglerméte
(Swedish Control Conference), Lund, Sweden, June 2010.

System identification and sensor fusion in dynamical systems
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Aim: Compute the position and orientation of a helicopter by exploiting the information present
in Google maps images of the operational area.

Sensor fusion e
Sensors
. TSt STt EEEEe T 1
. Inference -
Camera ' '
1 1
: ( World model ) : Pose
1
( Inertial ’_’ : ' >
1 1
: ( Dynamic model ) :
1 1
( Barometer )—V : :
1
:( Sensor model ) :
1 1
System identification and sensor fusion in dynamical systems Guest lecture - System identification

Thomas Schon, user.it.uu.se/~thosc| |12 Uppsala, Sweden



3. Helicopter pose estimation using a map (ll/lll)

Map over the operational Manually classified map with
environment obtained from grass, asphalt and houses as pre-
Google Earth. specified classes.

Image from on-board camera Extracted superpixels Superpixels classified as grass,  Three circular regions used for
asphalt or house computing class histograms
System identification and sensor fusion in dynamical systems Guest lecture - System identification
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3. Helicopter pose estimation using a map (llI/11l)

“Think of each particle as one simulation of the system state (in the movie, only the horizontal position is
visualized). Only keep the good ones.”

Fredrik Lindsten, Jonas Callmer, Henrik Ohlsson, David Tornqvist, Thomas B. Schon, Fredrik Gustafsson, Geo-referencing for UAV Navigation using
Environmental Classification. Proceedings of the International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA, May 2010.
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4. Fighter aircraft navigation

u N

“Think of each particle as one simulation of the system state (in the movie, only the horizontal position is
visualized). Only keep the good ones.”

Thomas Schon, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized Particle Filters for Mixed Linear/Nonlinear State-Space Models.
IEEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.
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Aim: Use images from an infrared (IR) camera in order to obtain better estimates of the ego-
vehicle motion and the road geometry in 3D.

Industrial partner: Autoliv

Sensors Sensor Fusion

\4

Inertial sensors

Estimation problem

IR camera » | ( ) .
‘ World model Estimates
) g > {a) Road scene. as seen with a standard camera.

\4

:Wheel speed

Dynamic model

J/

Steering angle 1 )
~ g ang Sensor model
(b) Same road scene as above, seen with the FIR camera.
IR camera
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Measurements recorded during night-time driving on rural roads in Sweden.
ol i w

Using CAN data
and IR camera

Only CAN data

Showing the ego-motion estimates reprojected onto the images.

Thomas B. Schén and Jacob Roll, Ego-Motion and Indirect Road Geometry Estimation Using Night Vision.
Proceedings of the IEEE Intelligent Vehicle Symposium (IV), Xi’ an, China, June 2009.
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Aim: Estimate the position and orientation of a human (i.e. human motion) using measurements
from inertial sensors and ultra-wideband (UWB).

Industrial partner: Xsens Technologies

Sensors Sensor fusion

( Accelerometer

(17 IMU%) ( Gyroscope

( Magnetometer

I [T TTT

—— 1 1
i Inference '
( Transmitter . "

! ( World model ) : Pose
: 1 '
( Receiver | ' '
UWB ! . .
( ) . '\ Dynamic model );
. 1 1
. 1 1
1 '
: '( Sensor model ) )
Receiver 6 : :
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6. Indoor human motion estimation (ll/V)

Sensor unit integrating an IMU and a UWB
transmitter into a single housing.

Receiver
(Integrated transmitter)

./— Transmitter
.

UWB - impulse radio using very short pulses (~ Ins)

* Low energy over a wide frequency band

* High spatial resolution

* Time-of-arrival (TOA) measurements

* Mobile transmitter and 6 stationary, synchronized
receivers at known positions.

Excellent for indoor positioning

System identification and sensor fusion in dynamical systems
Thomas Schon, user.it.uu.se/~thosc| 12

e Inertial measurements @ 200 Hz
e UWB measurements @ 50 Hz

Guest lecture - System identification
Ubppsala, Sweden




6. Indoor human motion estimation (lll/V)

40+
=2 S 20f
£ <
> ol § ol
- 1 1 1 1 1 1 1 | 1 Il
% 10 20 - 30 40 50 2% 10 20 30 40 50
time (s) time (s)
4_
2r 5
— <
E ot <
> §
oL B
_4 1 1 1 1 1 _20 1 1 1 1 1
0 10 20 30 40 50 0 10 20 30 40 50
time (s) time (s)
2r 100
——Optical ——Optical
1.51 —IMU + UWB 5 o0 —IMU + UWB
—_ [
E kS
~ 1 \M\N =
o5l © -100+
_ 1 L 1 1 |
% 10 20 30 40 50 2005 10 20 30 40 50
time (s) time (s)

Performance evaluation using a camera-based reference system (Vicon).

RMSE: 0.6 deg. in orientation and 5 cm in position.

Manon Kok, Jeroen D. Hol and Thomas B. Schon. Indoor positioning using ultrawideband and inertial measurements. IEEE Transactions on
Vehicular Technology, 64(4):1293-1303,2015.
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6. Indoor human motion estimation (IV/V)

Show movie using VLC...

Manon Kok, Jeroen Hol and Thomas B. Schon. An optimization-based approach to human body motion capture using inertial sensors. In
Proceedings of the |8th World Congress of the International Federation of Automatic Control (IFAC), Cape Town, South Africa, August 2014.




6. Indoor human motion estimation (V/V)

Show movie using VLC...

Manon Kok, Jeroen Hol and Thomas B. Schon. An optimization-based approach to human body motion capture using inertial sensors. In
Proceedings of the |8th World Congress of the International Federation of Automatic Control (IFAC), Cape Town, South Africa, August 2014.




/.Indoor positioning of humans (I/1ll)

Aim: Compute the position of a person moving around indoors using sensors (inertial,
magnetometer and radio) located in an ID badge and a map.

Industrial partner: Xdin
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Sensor fusion

Sensors

1
(Accelerometer )_’ :
1

1

1

( Gyroscope ,_’ :
:

1

1

1

1

1

1

1

Pose

( Radio )r—>

PDF of an office environment, the bright areas
are rooms and corridors (i.e., walkable space).
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K=1214999
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Quite a few different applications from different areas, all solved using the
same underlying system identification and sensor fusion strategy

* Model the dynamics (possibly sys.id.)
* Model the sensors (possibly sys.id.)
* Model the world

* Solve the resulting inference problem
- J

and, do not underestimate the “surrounding infrastructure” (possibly sys.id.)!

* There is a lot of interesting research that remains to be done!
* The number of available sensors is currently skyrocketing

* The industrial utility of this technology is growing as we speak!
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Thank you for your attention!!

h(yt | xt>p(37t \ yl:t—1)
P(Ye | Y1:4-1)

p(xt | yl:t) —

Y

4 p(x‘l,h, yl:t—l) = /f(:lj‘t | xt—l)p(xt—l | y1. -
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