

OUTLINE

- > Research Topics @ Ericsson Research
- System Identification related applications at SMN
- > Important issues when dealing with real-world problems

RESEARCH TOPICS © ERICSSON RESEARCH

- > Ericsson Research Blogg
 - http://www.ericsson.com/research-blog

- > 5G
- Cloud
- Context AwareCommunication
- Data and Knowledge
- Internet of Things

- > LTE
- Media Coding
- **SDN**
- Security
- Sevice Systems
- Smart Cities

CONTEXTUAL COMMUNICTION EXCAVATOR DEMO @ MWC 2015

> Excavator

- Excavators from Volvo CE
- Powerful Linux PC
- Python application with custom signaling built on top of OpenWebRTC

Control Rig

- Simulator from Oryx and Volvo CE
- Mac OS X computer
- OS X Cocoa application with custom signaling built on top of OpenWebRTC
- Signaling Server

REMOTE EXCAVATION

> Technologies

- Spatial scene capture, both video and audio
- Spatial scene rendering, both video and audio
- Low latency real time communication
- Low latency remote control

MEDIA PROCESSING ARCHITECTURE

SYSTEM IDENTIFICATION RELATED APPLICATIONS AT MMT

- > Audio and Speech Coding
- > Audio Mining (ASR)
- > Audio Media Processing
 - Acoustic Echo Cancellation
 - Noise Suppression
 - Voice Activity Detection
 - Spatial Audio Capture
 - Spatial Audio Rendering
- > Video Coding (2D and 3D)
- > Objective Quality Estimation of Encoded Audio and Video
- Congestion Control in IP Networks

AUDIO AND SPEECH CODING

- Clean speech signals can be modeled very efficiently with Code-Excited Linear Prediction (CELP) encoders (Based on ARX model of the speech signal)
- Music signals are better encoded with transform encoding methods (Subband filter banks, MDCT)
- Signal classification and hybrid encoding used to obtain efficient encoding of audio signals of varying content
- > EVS (Enhanced Voice System) just standardized in 3GPP standardization
- Special EVS session at ICASSP 2015 in Australia

CELP SPEECH MODEL

EVS SPEECH/AUDIO CODEC PROTOTYPE HL STRUCTURE

Mode	Technology	
TD	Improved AMR-WB technology	Linear Pred. + ACELP FCB variable sf.
TD- BWE	Parametric high band	Linear prediction, energy/gain
FD	G.719-like	Transform (<i>LD</i> -MDCT), block switching

ACOUSTIC ECHO CANCELLATION

- > Long echo impulse reponses: 300-500 msec
- > At 48 kHz sampling: 14,400 24,000 samples

SPATIAL AUDIO CAPTURE

- > Microphone arrays
- > Filter design in the spatial and frequency domains
- > Beamforming techniques
- > Adaptive tracking of the most active speakers in a room

SPATIAL AUDIO RENDERING

- Spatial hearing
- 3D binaural rendering through Head Related Filtering (HRF)
- Very useful in 3D gaming and evolved communication solutions
- Spatial audio rendering onto any loudspeaker configuration

ACOUSTIC WAVE RECEPTION

ASR SYSTEM – MAIN COMPONENTS

Speech recognition is the problem of deciding on

- How to represent the signal
- > How to *model* the constraints
- > How to search for the most optimal answer

ASR SYSTEM – SOLUTION COMPONENTS

IMPORTANT ISSUES WHEN DEALING WITH REAL-WORLD PROBLEMS

- Understand the strengths and weaknesses of the different identification methods
- > Preprocessing the data before the optimization can be crucial
- Choose the minimization criterion with care and adapt it to the problem at hand
 - Different type of regularization components in the criterion can make the difference between success and failure
 - Some times a criterion having components in both the time and frequency domains will work, when single domain criterions fail.

IMPORTANT ISSUES WHEN DEALING WITH REAL-WORLD PROBLEMS

- Some applications require classification based modelling, where the current model used depends on signal classification of some signals
- Many systems have to deal with spurious events
 - This will require the detection of such events and special model updates when they are detected
 - Monitoring of system model
 - Hypothesis testing and estimation

Erlendur Karlsson, email: erlendur.karlsson@ericsson.com

ERICSSON