
Chapter 11

11.1 Dynamic Models

11.1.1 Exercises + Solutions

Exercise 1.0: Hello world

1. Given a discrete system G(z) = K
τ−z with K = 1 and τ = 2. Is it BIBO stable? Why/not?

Solution : No. The system has a pole outside the unit circle and therefore is unstable.

2. Given a system which outputs positive values for any input. Is it LTI? Why/not?

Solution: No. For LTI system if the input u(t) produces the output y(t) which is strictly
positive then −u(t) produces the output −y(t) which is negative.

3. Can you solve a least squares estimate for θ for a system satisfying xiθ = yi for any {(xi, yi)}i?
Why/not?

Solution: No. The least square solution for the system xiθ = yi given {(xi, yi)}ni=1 is

θ̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

in case
∑n
i=1 x

2
i 6= 0.

4. Is the median estimate optimal in a least squares sense? Why/not?

Solution: No. The mean value (sample average) is optimal in a least square sense. The median
estimate is optimal for the absolute objective value.

5. If we are to model a certain behavior and we know some of the physics behind it - should we
go for a black box model? Why/not?

Solution: No. But we don’t have to. We better go for the white box model. The white
box model is formalized in terms of physical laws, chemical relations, or other theoretical
considerations.

6. If we have a very fast system (time constants smaller than O(10−2)s). Can we get away with
slow sampling? Why/not?

Solution: No. A fast system does need a fast sampling (In general).
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7. Does a non-causal model allow an impulse representation? Why/not?

Solution: No. From the impluse response of a system yt =
∑n
k=0 hkut−k one can see that the

output does not depend on future inputs.

8. Is a sequence of two nontrivial LTIs identifiable from input-output observations? Why/not?

Solution: No. Consider the following sequence of two LTIs

S1 S2
u z y

cS1
1
cS2

u z′ y

where c is a constant parameter. The two LTIs have the same input-output behavior but
different systems. Thus it is not identifiable from the input u and output y observations.

9. Is an ARMAX system linear in the parameters of the polynomials? Why/not?

Solution: No. For example the ARMAX model

y(t) + ay(t− 1) = bu(t− 1) + e(t) + ce(t− 1)

is not LIP, since c and e(t− 1) are unknown.

10. Is an OE model LIP? Why/not?

Solution: No. The OE model

y(t) =
B(q−1)

F (q−1)
u(t) + e(t)

which can be written as F (q−1)e(t) = F (q−1)y(t)−B(q−1)u(t). A simple example is

y(t) + f1y(t− 1) = u(t− 1) + e(t) + f1e(t− 1)

since f1 and e(t− 1) are unknown, f1e(t− 1) is not LIP.

Exercise 1.2: Least Squares with Feedback

Consider the second-order AR model

yt + a0yt−1 = b0ut−1 + et

where ut is given by feedback as

ut = −Kyt.

Show that given realizations of this signal we cannot estimate a0, b0 separately, but we can estimate
a0 + b0K.

Solution: (Book p. 26)
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Exercise 1.3: Determine the time constant T from a step response.

A first order system Y (s) = G(s)U(s) with

G(s) =
K

1 + sT
e−sτ

or in time domain as a differential equation

T
dy(t)

dt
+ y(t) = Ku(t− τ)

derive a formula of the step response of an input ut = I(t > 0).

Solution: The step response of the system T dy(t)
dt + y(t) = Ku(t− τ) is

y(t) =

{
o t < τ
K(1− exp(−(t− τ)/T ))

the tangent at t = τ is given as

y′(t) =
K

T
(t− τ)

The tangent reaches the steady state value K at time t = τ + T .

Exercise 1.4: Step response as a special case of spectral analysis.

Let (yt)t be the step response of an LTI H(q−1) to an input ut = aI(t ≥ 0). Assume yt = 0 for
t < 0 and yt ≈ c for t > N . Justify the following rough estimate of H

ĥk =
yk − yk−1

a
, ∀k = 0, . . . , N

and show that it is approximatively equal to the estimate provided by the spectral analysis.
Solution:

The response yt of the LTI system to the input ut is

yt =

t∑
k=0

hkut−k = a

t∑
k=0

hk

and since yt remains constant for values t > N it follows that

ht =
yt − yt−1

a

for t = 0, 1, 2, . . . , n. Since ht ≈ 0 for large n, thus the possible estimate of the transfer function is:

Ĥ(eiω) =

n∑
k=0

hk exp(−iωk)

=
1

a

n∑
k=0

(yk − yk−1) exp(−iωk)

≈ 1

a

n∑
k=0

yk exp(−iωk)− 1

a
yk exp(−iωk)exp(−iω) =

1

a
Yn(ω)(1− exp(−iω))
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Now

U(ω) =

∞∑
k=0

uk exp(−iωk) = a

∞∑
k=0

exp(−iωk) =
a

1− exp(−iω)


