11.4 Recursive Identification

11.4.1 Exercises + Solutions

Exercise 4.1: Derivation of the real-time RLS algorithm.
Show that the weighted RLS algorithm

$$
\left\{\begin{array}{l}
\hat{\theta}_{t}=\hat{\theta}_{t-1}+K_{t} \epsilon_{t} \\
\epsilon_{t}=y_{t}-\varphi_{t}^{T} \hat{\theta}_{t-1} \\
K_{t}=\mathbf{P}_{t} \varphi_{t} \\
\mathbf{P}_{t}=\frac{1}{\lambda}\left[\mathbf{P}_{t-1}-\frac{\mathbf{P}_{t-1} \varphi_{t} \varphi_{t}^{T} \mathbf{P}_{t-1}}{\lambda+\varphi_{t}^{T} \mathbf{P}_{t-1} \varphi_{t}}\right]
\end{array}\right.
$$

solves in each step the problem

$$
\hat{\theta}_{t}=\underset{\theta}{\operatorname{argmin}} \sum_{s=1}^{t} \lambda^{t-s} \epsilon_{s}^{2}(\theta)
$$

where $\epsilon_{s}^{2}(\theta)=y_{s}-\varphi_{s}^{T} \theta$ for all $s=1, \ldots, t$.
Solution:
The solution to the least squares problem is given as

$$
\hat{\theta}_{t}=\mathbf{R}_{t}^{-1} \sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} y_{s}
$$

where

$$
\mathbf{R}_{t}=\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} \varphi_{s}^{T}
$$

Then we have that

$$
\begin{aligned}
& \hat{\theta}_{t}=\mathbf{R}_{t}^{-1}\left(\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s}\left(y_{s}-\varphi_{s}^{T} \hat{\theta}_{t-1}\right)\right)+\hat{\theta}_{t-1} \\
&=\hat{\theta}_{t-1}+\mathbf{R}_{t}^{-1}\left(\lambda \sum_{s=1}^{t-1} \lambda^{t-s} \varphi_{s}\left(y_{s}-\varphi_{s}^{T} \hat{\theta}_{t-1}\right)+\varphi_{t}\left(y_{t}-\varphi_{t}^{T} \hat{\theta}_{t-1}\right)\right)
\end{aligned}
$$

The first of the two terms within the large brackets equals zero, Hence

$$
\hat{\theta}_{t}=\hat{\theta}_{t-1}+\mathbf{R}_{t}^{-1}\left(y_{t}-\varphi_{t} \hat{\theta}_{t-1}\right) \varphi_{t}
$$

. Turn now to computing the terms \mathbf{R}_{t}^{-1} in a recursive manner, since

$$
\mathbf{R}_{t}=\lambda \mathbf{R}_{t-1}+\varphi_{t} \varphi_{t}^{T}
$$

and by the matrix inversion lemma, we have

$$
\mathbf{R}_{t}^{-1}=\frac{1}{\lambda} \mathbf{R}_{t-1}^{-1}-\frac{1}{\lambda^{2}} \frac{\mathbf{R}_{t-1}^{-1} \varphi_{t} \varphi_{t}^{T} \mathbf{R}_{t-1}^{-1}}{1+\frac{1}{\lambda} \varphi_{t}^{T} \mathbf{R}_{t-1}^{-1} \varphi_{t}}
$$

Using the above expression, we get a computationally more attractive expression for the gain vector in (i) as

$$
\mathbf{K}_{t}=\mathbf{R}_{t}^{-1} \varphi_{t}=\frac{\mathbf{R}_{t-1}^{-1} \varphi_{t}}{\lambda+\varphi_{t}^{T} \mathbf{R}_{t-1}^{-1} \varphi_{t}}
$$

which concludes the proof.

Exercise 4.2: Influence of forgetting factor on consistency properties of parameter estimates.

Consider the static-gain system

$$
y_{t}=b u_{t}+e_{t}, \quad \forall t=1,2, \ldots
$$

where

$$
\mathbb{E}\left[e_{t}\right]=0, \mathbb{E}\left[e_{s} e_{t}\right]=\delta_{t, s}
$$

and u_{t} is a persistently exciting nonrandom signal. The unknown parameter b is estimated as

$$
\hat{b}=\underset{b}{\operatorname{argmin}} \sum_{t=1}^{n} \lambda^{n-t}\left(y_{t}-b u_{t}\right)^{2}
$$

where n denotes the number of datapoints, and the forgetting factor λ satisfies $0<\lambda \leq 1$. Determine $\operatorname{var}(\hat{b})$. Show that for $n \rightarrow \infty$ one has $\operatorname{var}(\hat{b})=0$. Also, show that for $\lambda<1$ there are signals u_{t} for which consistence is not obtained.

Hint. Consider the signal where u_{t} is constant.
Solution: Simple calculation gives that

$$
\hat{b}=\frac{\sum_{t=1}^{n} \lambda^{n-t} y_{t} u_{t}}{\sum_{t=1}^{n} \lambda^{n-t} u_{t}^{2}}=b+\frac{\sum_{t=1}^{n} \lambda^{n-t} e_{t} u_{t}}{\sum_{t=1}^{n} \lambda^{n-t} u_{t}^{2}}
$$

Thus

$$
\operatorname{var}(\hat{b})=\frac{\left(\sum_{t=1}^{n} \sum_{s=1}^{n} \lambda^{2 n-s-t} u_{s} u_{t} \mathbb{E}\left[e_{s} e_{t}\right]\right)}{\left(\sum_{t=1}^{n} \lambda^{n-t} u_{t}^{2}\right)^{2}}
$$

or

$$
\begin{equation*}
\operatorname{var}(\hat{b})=\frac{\left(\sum_{t=1}^{n} \lambda^{2(n-t)} u_{t}^{2}\right)}{\left(\sum_{t=1}^{n} \lambda^{n-t} u_{t}^{2}\right)^{2}} \tag{i}
\end{equation*}
$$

Let $\lambda=1$, then (i) gives

$$
\operatorname{var}(\hat{b})=\frac{1}{\sum_{t=1}^{n} u_{t}^{2}}
$$

Since u_{t} is PE , it follows that $\sum_{t=1}^{n} u_{t}^{2} \rightarrow \infty$. Hence part 3 of the question follows.
If $\lambda<1$, then consistency of \hat{b} might be lost. To exemplify this, let $u_{t}=1$ for all $t=1, \ldots, n$. This is PE of order 1. Then from (i) above we have that

$$
\operatorname{var}(\hat{b})=\frac{\left(1-\lambda^{2 n}\right)}{\left(1-\lambda^{2}\right)} \frac{(1-\lambda)^{2}}{\left(1-\lambda^{n}\right)^{2}}=\frac{\left(1+\lambda^{n}\right)}{\left(1-\lambda^{n}\right)} \frac{(1-\lambda)}{(1+\lambda)} \rightarrow \frac{1-\lambda}{1+\lambda}>0
$$

if $n \rightarrow \infty$. The lack of consistency in such case might be explained as follows For $\lambda<1$, 'old' measurements are weighted out from the criterion, so that the effective number of samples used in estimating \hat{b} does not increase with growing n.

Exercise 4.3: Convergence properties and dependence on initial conditions of the RLS estimate.

Consider the model

$$
y_{t}=\varphi_{t}^{T} \theta+\epsilon_{t}
$$

Let the offline weighted LS estimate of θ_{0} up to instant t be

$$
\bar{\theta}_{t}=\left(\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} \varphi_{s}^{T}\right)^{-1}\left(\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} y_{s}\right)
$$

Consider also the online weighted RLS estimates $\left\{\hat{\theta}_{s}\right\}_{s}$
(i) Derive the difference equations for \mathbf{P}_{t}^{-1} and $\mathbf{P}_{t}^{-1} \hat{\theta}_{t}$. Solve this equations to find how $\hat{\theta}_{t}$ depends on the initial values $\hat{\theta}_{0}$ and \mathbf{P}_{0} and on the forgetting factor λ.
(ii) Let $\mathbf{P}_{0}=\rho I_{n}$, then prove that for every t where $\bar{\theta}_{t}$ exists

$$
\lim _{\rho \rightarrow \infty} \hat{\theta}_{t}=\bar{\theta}_{t}
$$

(iii) Suppose that $\bar{\theta}_{t}$ is bounded, and suppose that $\lambda^{t} \mathbf{P}_{t} \rightarrow 0$ as $t \rightarrow \infty$. Prove that

$$
\lim _{t \rightarrow \infty}\left(\hat{\theta}_{t}-\bar{\theta}_{t}\right)=0
$$

Solution:
We have that

$$
\hat{\theta}_{t}=\left(\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} \varphi_{s}^{T}\right)^{-1}\left(\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} y_{s}\right)
$$

or

$$
\left\{\begin{array}{l}
\hat{\theta}_{t}=\hat{\theta}_{t-1}+\mathbf{P}_{t} \varphi_{t}\left(y_{t}-\varphi_{t}^{T} \hat{\theta}_{t-1}\right) \\
\mathbf{P}_{t}=\frac{1}{\lambda}\left(\mathbf{P}_{t-1}-\frac{\mathbf{P}_{t-1} \varphi_{t} \varphi_{t}^{T} \mathbf{P}_{t-1}}{\lambda+\varphi_{t}^{T} \mathbf{P}_{t-1} \varphi_{t}}\right)
\end{array}\right.
$$

(a) We can also write that

$$
\mathbf{P}_{t}^{-1}=\lambda \mathbf{P}_{t-1}^{-1}+\varphi_{t} \varphi_{t}^{T}
$$

This is a linear difference equation in \mathbf{P}_{t}^{-1} or

$$
\mathbf{P}_{t}=\lambda^{t} \mathbf{P}_{0}^{-1}+\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} \varphi_{s}^{T}
$$

Define $\mathbf{x}_{t}=\mathbf{P}_{t}^{-1} \hat{\theta}_{t}$, then

$$
\mathbf{x}_{t}=\mathbf{P}_{t}^{-1}\left(\hat{\theta}_{t-1}+\mathbf{P}_{t} \varphi_{t}\left(y_{t}-\varphi_{t}^{T} \hat{\theta}_{t-1}\right)\right)=\left(\mathbf{P}_{t}^{-1}-\varphi_{t} \varphi_{t}^{T}\right) \hat{\theta}_{t-1}+\varphi_{t}^{T} y_{t}=\lambda \mathbf{x}_{t-1}+\varphi_{t} y_{t}
$$

Solving this linear difference equation in \mathbf{x}_{t} gives

$$
\mathbf{x}_{t}=\lambda^{t} \mathbf{x}_{0}+\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} y_{s}
$$

Thus we find that

$$
\hat{\theta}_{t}=\mathbf{P}_{t} \mathbf{x}_{t}=\left(\lambda^{t} \mathbf{P}_{0}^{-1}+\sum_{t=1}^{n} \lambda^{t-s} \varphi_{s} \varphi_{s}^{T}\right)^{-1}\left(\lambda^{t} \mathbf{P}_{0}^{-1} \hat{\theta}_{0}+\sum_{t=1}^{n} \lambda^{t-s} \varphi_{s} y_{s}\right)
$$

(b). Let $\mathbf{P}_{0}=\rho I_{d}$. Assume θ_{t} exists, then $\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} \varphi_{s}^{T}$ is invertible. We get

$$
\hat{\theta}_{t}=\left(\frac{\lambda^{t}}{\rho} I_{d}+\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} \varphi_{s}^{T}\right)^{-1}\left(\frac{\lambda^{t}}{\rho} \theta_{0}+\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} y_{s}\right)
$$

which tends to $\bar{\theta}_{t}$ when $\rho \rightarrow \infty$.
(c). If $\lambda^{t} \mathbf{P}_{t} \rightarrow 0$ when $t \rightarrow \infty$, then

$$
\hat{\theta}_{t}-\bar{\theta}_{t}=\mathbf{P}_{t}\left(\lambda^{t} \mathbf{P}_{0}^{-1} \hat{\theta}_{0}+\sum_{s=1}^{t} \lambda^{t-s} \varphi_{s} y_{s}-\mathbf{P}_{t}^{-1} \bar{\theta}_{t}\right)
$$

and hence

$$
=\mathbf{P}_{t}\left(\lambda^{t} \mathbf{P}_{0}^{-1} \hat{\theta}_{0}-\lambda^{t} \mathbf{P}_{0}^{-1} \bar{\theta}_{t}\right)
$$

or

$$
=\mathbf{P}_{t} \lambda^{t} \mathbf{P}_{0}^{-1}\left(\hat{\theta}_{t}-\bar{\theta}_{t}\right)
$$

which tends to 0 if $t \rightarrow \infty$.

Exercise 4.4: An RLS algorithm with a sliding window.

Consider the parameter estimate

$$
\hat{\theta}_{t}=\underset{\theta}{\operatorname{argmin}} \sum_{s=t-m+1}^{t} \epsilon_{s}^{2}(\theta)
$$

where $\epsilon_{s}(\theta)=y_{s}-\varphi_{s}^{T} \theta$. The number m is the size of the sliding window. Show that such $\hat{\theta}_{t}$ can be computed recursively as

$$
\left\{\begin{array}{l}
\hat{\theta}_{t}=\hat{\theta}_{t-1}+\mathbf{K}_{1} \epsilon\left(t, \hat{\theta}_{t-1}\right)-\mathbf{K}_{2} \epsilon\left(t-m, \hat{\theta}_{t-1}\right) \\
\mathbf{K}_{1}=\mathbf{P}_{t-1} \varphi_{t}\left(I+\left[\begin{array}{c}
\varphi_{t}^{T} \\
-\varphi_{t-m}^{T}
\end{array}\right] \mathbf{P}_{t-1}\left[\begin{array}{ll}
\varphi_{t} & \varphi_{t-m}
\end{array}\right]\right)^{-1} \\
\mathbf{K}_{2}=\mathbf{P}_{t-1} \varphi_{t-m}\left(I+\left[\begin{array}{c}
\varphi_{t}^{T} \\
-\varphi_{t-m}^{T}
\end{array}\right] \mathbf{P}_{t-1}\left[\begin{array}{ll}
\varphi_{t} & \varphi_{t-m}
\end{array}\right]\right)^{-1} \\
\mathbf{P}_{t}=\mathbf{P}_{t-1}-\left[\begin{array}{ll}
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{c}
\varphi_{t}^{T} \\
-\varphi_{t-m}^{T}
\end{array}\right] \mathbf{P}_{t-1}
\end{array}\right.
$$

Solution:
Set

$$
\mathbf{P}_{t}=\left(\sum_{s=t-m+1}^{t} \varphi_{s} \varphi_{s}^{T}\right)^{-1}
$$

Then

$$
\mathbf{P}_{t}^{-1}=\mathbf{P}_{t-1}^{-1}+\varphi_{t} \varphi_{t}^{T}-\varphi_{t-m} \varphi_{t-m}^{T}
$$

and hence

$$
\begin{aligned}
& \hat{\theta}_{t}=\mathbf{P}_{t} \sum_{s=t-m+1}^{t} \varphi_{s} y_{s}=\mathbf{P}_{t}\left(\varphi_{t} y_{t}-\varphi_{t-m} y_{t-m}+\sum_{s=t-m}^{t-1} \varphi_{s} y_{s}\right) \\
&=\mathbf{P}_{t}\left(\varphi_{t} y_{t}-\varphi_{t-m} y_{t-m}+\mathbf{P}_{t-1}^{-1} \hat{\theta}_{t-1}\right)
\end{aligned}
$$

Set

$$
\left(K_{t}^{1}, K_{t}^{2}\right)=\mathbf{P}_{t}\left(\varphi_{t}, \varphi_{t-m}\right)
$$

Then

$$
\hat{\theta}_{t}=K_{t}^{1} y_{t}-K_{t}^{2} y_{t-m}+\mathbf{P}_{t}\left(\mathbf{P}_{t}^{-1}-\varphi_{t} \varphi_{t}^{T}+\varphi_{t-m} \varphi_{t-m}^{T}\right)
$$

or

$$
=\hat{\theta}_{0}+K_{t}^{1} e_{t}\left(\hat{\theta}_{t-1}\right)-K_{t}^{2} e_{t-m}\left(\hat{\theta}_{t-1}\right)
$$

Application of the matrix inversion lemma gives that

$$
\mathbf{P}_{t}=\mathbf{P}_{t-1}-\left(\begin{array}{ll}
\left.\mathbf{P}_{t-1}\left[\begin{array}{ll}
\varphi_{t} & \varphi_{t-m}
\end{array}\right]\left(I_{2}+\left[\begin{array}{c}
\varphi_{t}^{T} \\
\varphi_{t-m}^{T}
\end{array}\right] \mathbf{P}_{t-1}\left[\begin{array}{ll}
\varphi_{t} & \varphi_{t-m}
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
\varphi_{t}^{T} \\
\varphi_{t-m}^{T}
\end{array}\right] \mathbf{P}_{t-1}\right) ~ . ~
\end{array}\right.
$$

It remains to be verified that K_{t}^{1} and K_{t}^{2} as defined above satisfies the relation stated in the problem. Let

$$
\tilde{K}_{t}=\mathbf{P}_{t-1}\left(\varphi_{t}, \varphi_{t-m}\right)
$$

Straightforward calculation then gives that

$$
\left(K_{t}^{1}, K_{t}^{2}\right)=\mathbf{P}_{t}\left(\varphi_{t}, \varphi_{t-m}\right)
$$

or

$$
\begin{gathered}
=\tilde{K}_{t}-\tilde{K}_{t}\left(I_{d}+\left[\begin{array}{c}
\varphi_{t}^{T} \\
\varphi_{t-m}^{T}
\end{array}\right] \tilde{K}_{t}\right)^{-1}\left[\begin{array}{c}
\varphi_{T}^{T} \\
\varphi_{t-m}^{T}
\end{array}\right] \tilde{K}_{t} \\
=\tilde{K}_{t}\left(I_{d}+\left[\begin{array}{c}
\varphi_{t}^{T} \\
\varphi_{t-m}^{T}
\end{array}\right] \tilde{K}_{t}\right)^{-1}
\end{gathered}
$$

as desired.

