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Things I need to say

1. Projects (Go!).

2. Computer lab reports (deadline extension to evening after last
lab (mon./tue. 11/12-05)).

3. Thomas’ guest lecture (25-05).

4. Exam (3/06 - 8-12am).
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Projects

What do I expect from you:

1. I give you data + description - you give me good model.

2. Single out a SISO problem, make a model and assess
why/whynot satisfactory.

3. Set a baseline - where do you want to improve on?

4. Make model of MIMO system.

5. Make plots of the results, and interpret results. What is
good? What is not good?

6. Use for intended purpose.

7. What’s next?

SI-2015 K. Pelckmans March-June, 2015 2



State Space System

{
xt+1 = Axt + But

yt = Cxt + Dut,
∀t = −∞, . . . ,∞.

with

• {xt}t ⊂ Rn the state process.

• {ut}t ⊂ Rp the input process.

• {yt}t ⊂ Rq the output process.

• A ∈ Rn×n the system matrix.

• B ∈ Rn×p the input matrix.

• C ∈ Rq×n the output matrix.

• D ∈ Rq×p the feed-through matrix.
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State Space System

Advantages over fractional polynomial models

• Closer to physical modeling.

• Control!

• MIMO systems.

• Noise and Innovations.

• Canonical representation.

• Problems of identiafibility.
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State Space System - ex. 1

From PDE to state-space: the heating-rod system:
z=0 z=L

u(t)
y(t)

Let x(t, z) denote temperature at time t, and location z on
the rod.

∂x(t, z)

∂t
= κ

∂2x(t, z)

∂z2

The heating at the far end means that

∂x(t, z)

∂z

∣∣∣
z=L

= Ku(t),

The near-end is insulated such that

∂x(t, z)

∂z

∣∣∣
z=0

= 0.
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The measurements are

y(t) = x(t, 0) + v(t),∀t = 1, 2, . . .

The unknown parameters are

θ =

[
κ
K

]

This can be approximated as a system with n states

x(t) =
(
x(t, z1), x(t, z2), . . . , x(t, zn)

)T
∈ Rn

with zk = L(k − 1)/(n − 1).. Then we use the approximation
that

∂2x(t, z)

∂z2
≈ x(t, zk+1)− 2x(t, zk) + x(t, zk−1)

(L/(n− 1))2

where zk = argminz1,,...,zn
‖z − zk‖. Hence the continuous
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state-space approximation becomes

ẋ(t) =
(
n−1
L

)2
κ


−1 1

1 −2 1
. . . . . . . . .

1 −2 1

 x(t) +


0
...

K

u(t)

y(t) =


0
...

1

 x(t) + v(t)

and a discrete Euler approximation

xt+1 − xt = ∆′
(
n−1
L

)2
κ

−1 1

1 −2 1
. . . . . . . . .

1 −2 1

 xt + ∆′


0
...

K

∫∆′ u(t)

yt =


0
...

1

 xt +
∫

∆′ v(t)
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State Space System - ex. 2

Models for the future size of the population (UN, WWF).

Leslie model: key ideas: discretize population in n aging
groups and

• Let xt,i ∈ R+ denote the size of the ith aging group at time
t.
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• Let xt+1,i+1 = sixt,i with si ≥ 0 the ’survival’ coefficient.

• Let xt+1,1 = s0

∑n
i=1 fixt,i with fi ≥ 0 the ’fertility’ rate.

Hence, the dynamics of the population may be captured by the
following discrete time model

xt+1 =


s0f1 s0f2 . . . s0fn

s1 0

0 s2 0
. . .

sn−1 0

xt + ut

yt =
∑n
i=1 xt,i
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Impulse Response to State Space System

What is now the relation of state-space machines, and the
system theoretic tools seen in the previous Part?

Recall impulse response (SISO)

yt =

∞∑
τ=0

hτut−τ ,

and MIMO

yt =

∞∑
τ=0

Hτut−τ ,
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where {Hτ}τ ⊂ Rp×q.

Recall: System identification studies method to build a model
from observed input-output behaviors, i.e. {ut}t and {yt}t.

Now it is a simple exercise to see which impulse response
matrices {Hτ}τ are implemented by a state-space model with
matrices (A,B,C,D):

Hτ =

{
D τ = 0

CAτ−1B τ = 1, 2, . . .
, ∀τ = 0, 1, 2, . . .

Contrast with rational polynomials where typically

hτ ⇔ h(q−1) =
b1q
−1 + b2q

−2 + . . .

1 + a1q−1 + a2q−2 + . . .

Overlapping: consider FIR model

yt = b0ut + b1ut−1 + b2ut−2 + et
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then equivalent state-space with states xt = (ut, ut−1, ut−2)T ∈
R3 becomes 

xt =

0 0 0

1 0 0

0 1 0

xt−1 +

1

0

0

ut
yt =

[
b0 b1 b2

]
xt + et

and x0 = (u0, u−1, u−2)T .
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Controllability and Observability

A state-space model is said to be Controllable iff for any
terminal state x ∈ Rn one has that for all initial state x0 ∈ Rn,
there exists an input process {ut}t which steers the model from
state x0 to x.

A state-space model is said to be Reachable iff for any initial
state x0 ∈ Rn one has that for all terminal states x ∈ Rn there
exists an input process {ut}t which steers the model from state
x0 to x.

The mathematical definition goes as follows: Define the
reachability matrix C ∈ Rn×np as

C =
[
B AB A2B . . . An−1B

]
The State space (A,B) is reachable (controllable) if

rank(C) = n.
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Intuition: if the matrix C is full rank, the image of C equals Rn, and

the superposition principle states that any linear combination of states can

be reached by a linear combination of inputs.

A state-space model is Observable iff any two different initial
states x0 6= x′0 ∈ Rn lead to a different output {ys}s≥0 of the
state-space model in the future when the inputs are switched off
henceforth (autonomous mode).

Define the Observability matrix O ∈ Rqn×n as

O =


C
CA

...
CAn−1


Hence, a state-space model (A,C) is observable iff

rank(O) = n

Intuition: if the (right) null space of O is empty, no two different x, x′ ∈ Rn

lead to the Ox = Ox′.
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Let
u− = (u0,u−1,u−2, . . . )

T

And
y+ = (y1,y2, . . . )

T

Then
x1 ∝ Cu−

and
y+ ∝ Ox1
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Realization Theory

Problem: Given an impulse response sequence {Hτ}τ , can
we recover (A,B,C,D)?

Def. Minimal Realization. A state-space model (A,B,C,D)
is a minimal realization of order n iff the corresponding C and O
are full rank, that is iff the model is reachable (observable) and
controllable.

Thm. (Kalman) If (A,B,C,D) and (A′,B′,C′,D′) are two
minimal realizations of the same impulse response {Hτ}, then
they are linearly related by a nonsingular matrix T ∈ Rn×n such
that 

A′ = T−1AT

B′ = T−1B

C′ = CT

D′ = D

Intuition: a linear transformation of the states does not alter input-output

behavior; that is, the corresponding {Hτ}τ is the same. The thm states that

those are the only transformations for which this is valid.
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Hence, it is only possible to reconstruct a minimal realization
of a state-space model (A,B,C,D) from {Hτ}τ up to a linear
transformation of the states.

In case we only observe sequences {ut}t≥1 and {yt}t≥1, we
have to account for the transient effects and need to estimate
x0 ∈ Rn as well. This is in many situations crucial. The above
thm. is extended to include x0 as well.

Now the celebrated Kalman-Ho realization algorithm goes as
follows:

• Hankel-matrix

Hn =


H1 H2 H3 . . . Hn

H2 H3 H4
. . .

Hn H2n+1



=


CB CAB CA2B . . . CAn−1B
CAB CA2B

. . .
CAn−1B CA2n−1B

 = OC
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• The state space is identifiable up to a non-singular matrix
T ∈ Rn×n such that

Hn = OC = OTT−1C

.

• Then take the SVD of Hn, such that

Hn = UΣVT

with U ∈ Rpn×n,V ∈ Rn×nq and Σ = diag(σ1, . . . , σn) ∈
Rn×n.

• Hence a minimal realization is given as{
O′ = U

√
Σ

C′ =
√

ΣV

• From O′, C′ it is not too difficult to extract (A,B,C)
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Stochastic Systems

Stochastic disturbances (no inputs){
Xt+1 = AXt +Wt

Yt = CXt + Vt

with

• {Xt}t the stochastic state process taking values in Rn.

• {Yt}t the stochastic output process, taking values in Rp.

• A ∈ Rn×n the (deterministic) system matrix.

• C ∈ Rp×n the (deterministic) output matrix.

• {Wt}t the stochastic process disturbances taking values in
Rn.
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• {Vt}t the stochastic measurement disturbances taking values
in Rp.

The stochastic vectors follow a probability law assumed to
follow

• E[Wt] = 0n, and E[WtW
T
s ] = δs,tQ ∈ Rn×n.

• E[Vt] = 0p, and E[VtV
T
s ] = δs,tR ∈ Rp×p.

• E[WtV
T
t ] = δs,tS ∈ Rn×p.

• Wt, Vt assumed independent of . . . , Xt.
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Main questions:

• Covariance matrix states E[XtX
T
t ] = Π:

Π = AΠAT + Q

- Lyapunov, stable.

• Covariance matrix outputs E[YtY
T
t ].
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This model can equivalently be described in its innovation
form {

X ′t+1 = AX ′t + KDt

Yt = CX ′t +Dt

with K ∈ Rn×p the Kalman gain, such that P,K solves{
P = APA + (G−APCT )(Λ0 −CPCT )−1(G−APCT )T

K = (G−APCT )(Λ0 −CPCT )

and

• E[DtD
′
t
T

] = (Λ0 −CPCT )

• P = E[X ′tX
′
t
T

]
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Overview Subspace Identification

1. Deterministic.

2. Stochastic.

3. Extensions.

K. De Cock, B. De Moor, ”Subspace Identification Methods”,
report, 2003.
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Motivation

Why?

• MIMO.

• State space models.

• Inherent identifiability ’up to T’.

• Numerical matching.

• Numerical Robust techniques (perturbations).

• Connection to systems theory.

Least 
Squares

Maximum 
Likelihood

Predicition 
Error 
Methods

Subspace 
Identification
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State Space System

{
xt+1 = Axt + But

yt = Cxt + Dut,
∀t = −∞, . . . ,∞.

with

• {xt}t ⊂ Rn the state process.

• {ut}t ⊂ Rp the input process.

• {yt}t ⊂ Rq the output process.

• A ∈ Rn×n the system matrix.

• B ∈ Rn×p the input matrix.

• C ∈ Rq×n the output matrix.

• D ∈ Rq×p the feed-through matrix.
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Problem Statement

Problem SI: Given multivariate timeseries {ut}Nt=0 ⊂ Rp
and {y}Nt=0 ⊂ Rq, can you figure out the order n, matrices
(A,B,C,D) and {xt}t ⊂ Rn?

Realization: Given impulse response matrices {Hτ}τ , recover
n and (A,B,C,D).

A first (naive) approach:

(1) Estimate IR matrices {Ĥτ}τ by solving/approximating
yTn
yTn+1

yTn+2
...

yTN

 =


uT1 uT2 . . . uTn
uT2 uT3 uTn+1

uT3 uT4 uTn+2
... ... ...

uTN−n+1 uTN−n+2 uTN



HT
n−1

HT
n−2
...

HT
0



(2) Realization: transform {Ĥτ}τ into n̂ and (Â, B̂, Ĉ, D̂)
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But:

• Computational burdensome.

• Not robust.

• PE...

• Numerically ill-conditioned.

• Process Noise.

• State-Space structure.

That’s why subspace ID:

• N4SID (’enforce it’) (Numerical algorithm for Subspace State-
space System ID)

• MOESP (Multivariate Output Error State sPace)
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The Deterministic Case

(From T. Katayama, 2005) Matrix matching

 yt
...

yt+k−1

 =


C
CA
CA2

...
CAk−1

xt+


D
CB D

... . . .
CAk−2B . . . D


 ut

...
ut+k−1



In shorthand:
yk(t) = Okxt + Ψkuk(t)

This holds for any t = 1, 2, . . . , N , or

[
yk(0) yk(1) . . . yk(i− 1)

]
= Ok

[
x0 x1 . . . xi−1

]
+ Ψk

[
uk(0) uk(1) . . . uk(i− 1)

]
Or in even shorter hand

Yk,0 = OkX0 + ΨkUk,0
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Now the same trick for for data k, . . . , k + i− 1
Yk,s =

[
yk(s) yk(1) . . . yk(s+ i− 1)

]
Uk,s =

[
uk(s) uk(1) . . . uk(s+ i− 1)

]
Xs = (xs, . . . ,xs+i−1)

Hence one has for all s = 0, 1, . . . , N − i.

Yk,s = OkXs + ΨkUk,s.

We will use in our exposition{
Yk,0 = OkX0 + ΨkUk,0

Yk,k = OkXk + ΨkUk,k.

Which we will denote as the matrix input-output relations of
’past’ and ’future’.
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orUk,0 =


u0 u1 u2 . . . ui−1

u1 u2 u3 . . . ui
... ...

uk−1 uk . . . uk+i−2

 ∈ Rkp×i

Yk,0 =


y0 y1 y2 . . . yi−1

y1 y2 y3 . . . yi
... ...

yk−1 yk . . . yk+i−2

 ∈ Rkq×i

Uk,k =


uk uk+1 yk+2 . . . uk+i−1

uk+1 uk+2 yk+3 . . . uk+i

... ...

u2k−1 uk . . . uk+i−2

 ∈ Rkq×i

Yk,k =


yk yk+1 yk+2 . . . yk+i−1

yk+1 y2 y3 . . . yk+i

... ...

y2k−1 y2k . . . y2k+i−1

 ∈ Rkq×i
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Let

W− =

[
Uk,0

Yk,0

]
W+ =

[
Uk,k

Yk,k

]
Now we study the relation of W−,W+ and H. From above,

we have that

W− =

[
Uk,0

Yk,0

]
=

[
Ikp 0
ψk Ok

] [
Uk,0

X0

]
Or

W− =

[
Uk,0

Yk,0

]
=

[
Ikp 0
ψk OkCk

] [
Uk,0

Uk,0

]
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Relation - MOESP

Using a LQ (QR)-decomposition one can bring any W− into
this structure, from which we have the matrix Hk, and can apply
realization. This approach is taken in MOESP

1. Using LQ to recover matrix OkCk

2. Use realization to recover A,B, and then B,D.

3. Then use Kalman filter to obtain corresponding state
sequence.
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Relation - N4SID

A different road:

• Recover the order and the state subspace by relating W− to
W+,

• Then recover (A,B,C,D) by LS.

How does that work?

Thm. span(W−) ∩ span(W+) = span(Xk), or

Yk,0 = OkX0 + ΨUk,0

So find the subspace by oblique projection (SVD).

Π+
U = I −UT (UUT )−1U

Then Yk,0Π+
U = OkX0Π+

U.
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Stochastic Realization

Problem: Given E[YtY
T
t−τ ] = Λ(τ) for τ = 0, 1, 2, . . . , find a

realization (A,B) such that the outcome {Yt} of the system{
X ′t−1 = AX ′t + KDt

Yt = CX ′t +Dt

when driven by white noise {Dt} taking values in Rn has
properties {Λ(τ)}τ . Richer in history: Parzen, Akaike,Kalman,
Faurre, De moor/Van Overschee, but Messier in results

Build up the data matrices Yk,0 and Yk,k, and use those to
reconstruct the internal states. One common way to do that is
using Canonical Correlation Analysis, solving

max
a,b

aTYk,0Y
T
k,kb√

aTYk,0YT
k,0a

√
bTYk,kYT

k,kb

• Solutions given by generalized eigenvalue problem.
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• Detection of n by number of significant eigenvalues of

Σ
−1/2
−− Σ−+Σ

−1/2
++ where


Σ−− = 1

NYk,0Y
T
k,0

Σ−+ = 1
NYk,0Y

T
k,k

Σ−− = 1
NYk,kY

T
k,k

• Basis given by corresponding eigenvectors.

• Again, compute matrices Ok and Ck, and realize a (A,C).
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Combined Stochastic - Deterministic

System{
Xt+1 = AXt + But + Vt

Yt = CXt + Dut +Wt,
∀t = −∞, . . . ,∞.

with

• {xt}t ⊂ Rn the state process.

• {ut}t ⊂ Rp the input process.

• {Vt}t ⊂ Rn the process noise with covariance R.

• {yt}t ⊂ Rq the output process.

• {Vt}t ⊂ Rn the measurement noise with covariance Q.

• A ∈ Rn×n the system matrix.

• B ∈ Rn×p the input matrix.

• C ∈ Rq×n the output matrix.

• D ∈ Rq×p the feed-through matrix.

Problem: Given {ut}t ⊂ Rp and {yt}t ⊂ Rq, find
(A,B,C,D,P,Q) and {xt}t.
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Basic equation

Yk,0 = OkX0 + ΨUk,0 + V

• Razor away U by oblique projection.

• Razor away V using appropriate instruments.

Algorithm:

• Build data matrices.

• Estimate Ok, or {xt}t.

• Recover (Â, B̂, Ĉ, D̂).

• Estimate P,Q from sample covariance of residuals.
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Conclusions

• State-space systems for MIMO - distributed parameter
systems.

• Relation impulse response - state-space models.

• Controllability - Observability

• Kalman - Ho

• Stochastic Systems

• Subspace as extended realization.

• SVD and LQ.

• Stochastic.

• Combined Deterministic - Stochastic.
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