Lecture 2

- An Example.
- A Model Linear in the Parameter.
- Least Squares Estimation.
- Numerical Techniques.
- Matrix Decompositions.
- Principal Component Analysis.
- Indirect Techniques.
QA

Programs: F4 students (4 year). (13 copies)

1. **Least Squares**: Intuition (60%). *Normal equations.*

2. **Eigenvalue Decomposition**: Sort of (30%). Linear algebra.

3. **Hypothesis testing**: No (10%). Statistical testing

4. **Kalman Filter**: Yes (60%). Observer for control. Basics.

5. **Stability of a dynamical system**: Sort of (40%). Automatic control, recap.

6. **PDE**: No (20%). In math courses.
Recipe

• Given a set \(\{x_1, \ldots, x_n\} = \{x_i\}_{i=1}^n \) with \(x_i \in \mathbb{D} \).

• Apply those to a static function \(f_0 : \mathbb{D} \rightarrow \mathbb{R} \), and add some disturbances.

• Observe outcomes \(\{y_1, \ldots, y_n\} = \{y_i\}_{i=1}^n \subset \mathbb{R} \) so that

\[
y_i = f_0(x_i) + v_i, \quad \forall i = 1, \ldots, n,
\]

with \(\{v_i\} \)'small'.

• We want to recover an as yet unknown parameter \(\theta \) such that \(f_0 \approx f_\theta \).

• ... or that \(f_\theta(x_i) \approx y_i \)

• Theory: converse
• Model class \(\{ f_\theta : \mathbb{D} \to \mathbb{R} \}_\theta \).

• Least Squares (LS) estimator:

\[
\theta_n = \arg\min_{\theta} \sum_{i=1}^{n} (y_i - f_\theta(x_i))^2
\]

• Tchebychev Approximation:

\[
\theta_n = \arg\min_{\theta} \max_{i=1,\ldots,n} |y_i - f_\theta(x_i)|
\]

• L1 Approximation:

\[
\theta_n = \arg\min_{\theta} \sum_{i=1}^{n} |y_i - f_\theta(x_i)|
\]

• L0 Approximation (where \(|z|_0 = 1 \) iff \(z \neq 0 \), and \(|z|_0 = 0 \) iff \(z = 0 \)):

\[
\theta_n = \arg\min_{\theta} \sum_{i=1}^{n} |y_i - f_\theta(x_i)|_0
\]
An Example

• Let \(\{y_1, \ldots, y_n\} = \{y_i\}_{i=1}^{n} \subset \mathbb{R} \) be a set of observed values. We want to find an as yet unknown parameter \(\theta_0 \in \mathbb{R} \) such that

\[
y_i = \theta_0 + v_i \approx \theta_0, \quad \forall i = 1, \ldots, n.
\]

• Best estimate?

\[
\theta_n = \arg\min_{\theta} V_n(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta)^2
\]

Least Squares Estimate.

• Optimum? Equate the derivative to zero

\[
\frac{dV_n(\theta)}{d\theta} = -\sum_{i=1}^{n} (y_i - \theta) = 0
\]
Hence
\[\theta_n = \frac{1}{n} \sum_{i=1}^{n} y_i \]

- Theory: is \(\theta_n \approx \theta_0 \)?

- Given observations \(\{(x_i, y_i)\}_{i=1}^{n} \subset \mathbb{R} \times \mathbb{R} \), find the best parameter \(\theta \in \mathbb{R} \) such that
\[y_i = x_i \theta + v_i \approx x_i \theta, \quad \forall i = 1, \ldots, n. \]

then LS
\[\theta_n = \arg\min_{\theta} V_n(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - x_i \theta)^2 \]

and equating the derivative to zero gives
\[\frac{dV_n(\theta)}{d\theta} = \sum_{i=1}^{n} -x_i (y_i - x_i \theta) = 0 \]
and hence

\[\theta_n = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} \]

But...
A Model Linear in the Parameters

This method applicable for many models of such class. Other examples of models which are Linear In the Parameters (LIP)

- Linear model

\[y_i = \sum_{j=1}^{d} x_{ij} \theta_j + v_i = \mathbf{x}_i^T \theta + v_i, \quad \forall i = 1, \ldots, n, \]

where \(\mathbf{x}_i = (x_{i1}, \ldots, x_{id})^T \in \mathbb{R}^d \) and \(\theta = (\theta_1, \ldots, \theta_d)^T \in \mathbb{R}^d \). Example ANOVA models.

- Basis functions \(\{\phi_j : \mathbb{R}^d \rightarrow \mathbb{R}\}_{j=1}^{m} \) and

\[y_i = \sum_{j=1}^{d} \phi_j(\mathbf{x}_i) \theta_j + v_i \]

Example Splines, Wavelets,
• Nonlinear model

\[y_i = f(x_i) + v_i, \quad \forall i = 1, \ldots, n, \]

with unknown \(f : \mathbb{R}^d \rightarrow \mathbb{R} \). Dictionaries of candidate solutions \(\mathcal{F} = \{ f_j : \mathbb{R}^m \rightarrow \mathbb{R} \} \) where \(f \in \mathcal{F} \). Then useful model

\[y_i = \sum_{j=1}^{m} f_j(x_i)\theta_j + v_i, \quad \forall i = 1, \ldots, n. \]

In matrix notation (linear model):

\[y_i = \mathbf{x}_i^T \theta + v_i, \quad \forall i = 1, \ldots, n, \]

equals

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix} =
\begin{bmatrix}
 x_{11} & \cdots & x_{1d} \\
 \vdots & \ddots & \vdots \\
 x_{n1} & \cdots & x_{nd}
\end{bmatrix}
\begin{bmatrix}
 \theta_1 \\
 \vdots \\
 \theta_d
\end{bmatrix} +
\begin{bmatrix}
 v_1 \\
 \vdots \\
 v_n
\end{bmatrix}
\]

denoted as

\[\mathbf{y} = \Phi \theta + \mathbf{v} \]
Least Squares Estimation

- Least Squares Objective:

\[\theta_n = \arg\min_{\theta \in \mathbb{R}^d} V_n(\theta) = \frac{1}{2} (\Phi \theta - y)^T (\Phi \theta - y) \]

- Or

\[V_n(\theta) = \frac{1}{2} (y^T y - 2(y^T \Phi \theta) + \theta^T (\Phi^T \Phi) \theta) \]

- Solution by equating derivative to zero:

\[\frac{dV_n(\theta)}{d\theta} = -(\Phi^T y) + (\Phi^T \Phi) \theta = 0 \]

- or solve for \(\theta_n \) (Normal Equations)

\[(\Phi^T \Phi) \theta_n = \Phi^T y \]
or in vector notation

$$\sum_{i=1}^{n} x_i (y_i - x_i^T \theta) = 0_d.$$

- If the inverse $(\Phi^T \Phi)^{-1}$ exists.

$$\theta_n = (\Phi^T \Phi)^{-1} \Phi^T y$$

Figure 1: Orthogonal Projection
Least Squares Estimation, Ct’d

• Suppose 2 inputs exactly the same.

• Suppose an input can be written as a linear combination of the other inputs.

• Suppose inputs ’almost’ equal.

• $m \rightarrow n$.

Φ contains $d(m)$ linear independent vectors.
Numerical Techniques

Given an invertible matrix $A = A^T \in \mathbb{R}^{m \times m}$ and $b \in \mathbb{R}^m$ in the column space of A, find a solution $x \in \mathbb{R}^m$ such that

$$Ax = b$$

- Gauss and Gauss-Jordan elimination.

- Conjugate Gradient Methods.

- Triangular Structure. Try to rephrase as $A'x = b'$ with A' diagonal. Therefore we use the matrix result that any positive definite matrix $A = A^T$ can be written as

$$A = \begin{bmatrix} u_{11} & \cdots & u_{1m} \\ \vdots & \ddots & \vdots \\ u_{m1} & \cdots & u_{mm} \end{bmatrix}^T \begin{bmatrix} q_{11} & q_{12} & \cdots & q_{1m} \\ 0 & q_{22} & \cdots & q_{2m} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & q_{mm} \end{bmatrix}$$
or \(A = U^T Q \) with \(U^T U = I_n \). Then

\[
Ax = b \iff UAx =Ub \iff Qx = Ub
\]

and solve by backwards elimination.
Matrix Decompositions

Let $A \in \mathbb{C}^{n \times n}$ be a matrix.

EVD:

- Define an eigenpair $(x, \lambda) \in \mathbb{R}^n \times \mathbb{R}$ as

 $$Ax = \lambda x$$

 and $\|x\|_2 = 1$.

- n different eigenpairs $\{(x_i, \lambda_i)\}_{i=1}^n$

 $$AX = X\Lambda$$

 where $X = (x_1, \ldots, x_n) \in \mathbb{C}^{n \times n}$ and

 $$\Lambda = \text{diag} \begin{bmatrix} \lambda_1 & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$
• If $A = A^*$, then

 (i) All eigenvalues real.
 (ii) $\{x_i\}$ orthogonal, or $X^T X = XX^T = I_n$.

• If $A = A^*$, then (Rayleigh coefficient)

$$\lambda_i = \frac{x_i^T A x_i}{x_i^T x_i}$$

Moreover if $\lambda_1 \geq \cdots \geq \lambda_n$

$$\lambda_1 = \max_x \frac{x^T A x}{x^T x}$$

and

$$\lambda_n = \min_x \frac{x^T A x}{x^T x}$$
• Eigen Value Decomposition (EVD) for matrix $A = A^*$ is unique when all eigenvalues are distinct:

$$AU = U\Lambda$$

• Matrix operations, what is A^{-1} when $A = A^T$? Formally,

$$A^{-1} = \sum_{k=1}^{\infty} (I_n - A)^k$$

Let $A = U^T \Lambda U$ then

$$A^{-1} = \sum_{k=1}^{\infty} U^T (I_n - \Lambda)^k U = U^T \text{diag}(1/\lambda^1, \ldots, 1/\lambda^n) U$$

using the geometric expansion $\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}$ if $|a| < 1$ (Geometric Series).
SVD:

- For any $A \in \mathbb{C}^{m \times n}$, there exist orthonormal matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ and a 'diagonal' matrix $\Sigma = \mathbb{R}^{m \times n}$ such that

$$A = U \Sigma V^*$$

where $U^*U = UU^* = I_m$ and $VV^* = V^*V = I_n$. The columns of U are the left singular vectors, the columns of V the right singular vectors. The diagonal elements of Σ denoted as $\{\sigma_1, \ldots, \sigma_n\}$ are the singular values.

- If the matrix $A \in \mathbb{R}^{m \times n}$ is rank r, then

$$A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & & 0 \\ & \ddots & \vdots \\ 0 & \cdots & \sigma_r \end{bmatrix} \begin{bmatrix} V_1^* \\ V_2^* \end{bmatrix}$$

- Optimal rank $s \leq r$ approximation:

$$\hat{B} = \arg\min_{B \in \mathbb{R}^{m \times n}} \|A - B\|_F \quad \text{s.t.} \quad \text{rank}(B) = s$$
with $\|A\|_F = \text{tr} A^T A$ the Frobenius norm, is given by

$$\hat{B} = \sum_{j=1}^{s} \sigma_j u_i v_j^T = U \Sigma (s) V^T$$
Principal Component Analysis

Try to find 'hidden structure' in the data.

- Given \(\{x_1, \ldots, x_n\} \subset \mathbb{R}^d \).

- Try to find \(\{v_1, \ldots, v_n\} \subset \mathbb{R}^m \) such that \(v_i \) contains the same 'information' as \(x_i \).

- Optimization problem

\[
\mathbf{w} = \arg\max_{\mathbf{w} \in \mathbb{R}^n} \| \mathbf{w}^T \Phi \|_2 \quad \text{s.t.} \quad \mathbf{w}^T \mathbf{w} = 1
\]

or

\[
\hat{V} = \arg\min_{\{V_j, w_j\}} \left\| \mathbf{X} - \sum_{j=1}^{m} V_j w_j \right\|_F.
\]
Figure 2: Examples of Principal Component Analysis.
Indirect Techniques

- Solve normal equations.

- Via SVD.
 \[
 \theta_n = (\Phi^T \Phi)^{-1} (\Phi^T y)
 \]
 or
 \[
 (V \Sigma^T U^T U \Sigma V^T)^{-1} (V \Sigma^T U^T y) = V \Sigma^{-2} V^T V \Sigma U^T y = V \Sigma^{-1} U^T y
 \]

- Via Pseudo-inverse.

- Via QR Decomposition

- In MATLAB

 1. `>> theta = inv(X'*X) * (X'*Y)`
 2. `>> theta = pinv(X) * Y`
 3. `>> theta = X \ Y`
Conclusions

• LS \rightarrow Normal equations!

• Example (LS=average).

• Regression (linear in the parameters) models describe a large class of dynamical models.

• The LS estimator is fundamental in SI and can be derived from various perspectives.

• We have assumed that Φ is deterministic. We run into problems when this matrix is a function of stochastic variables (ARX).