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In this miniproject you will implement the Metropolis MCMC method to
sample the posterior distribution of the parameters of an SDE-model. The
idea is to give a feeling for the steps required to form such an MCMC method
and how it can be expected to behave. You are to submit the (draft) report
on the mandatory part before the next seminar.

If you wish to also take the extended part you are to present your results
towards the end of the course (but feel invited to actively help me schedule
this presentation on a suitable occasion where the material still feels fresh!).

Note: to pass the course you need to take one extended part from one of
the three miniprojects during the course.

Mandatory part

Reading For this project I suggest to read and implement at the same
time. Refine your understanding and formulations when preparing the writ-
ten report.

e [ have based the present project to some extent on [Press et al., 2007,
§15.8].

e From the course web-page I can recommend taking a look at the draft
textbook by Zwanzig & Mahjani.

Bayesian setup We are given a set of data D and wishes to estimate
the parameters x used to generate D. The Bayesian understanding is to
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investigate the posterior distribution P(z|D), for example, by producing
independent samples (z;) ~ P(z|D).

We shall suppose that the likelihood P(D|z) is available, either in closed
form, or via some kind of numerical approximation. Try to explain to yourself
why P(D|x) is easier to handle than P(z|D)!

According to Baye’s theorem, P(z|D) o« P(D|z)P(x), where P(z) is
the prior distribution on the parameters. The constant of proportionality is
generally unknown.

Ignoring the prior P(z) for now, at Boltzmann temperature 1 and defining
a Hamiltonian H(z) = —log P(D|z), the Metropolis algorithm will produce
samples (z;) ~ exp(—H (z)) = P(D|z) < P(x|D).

Implementation

e Firstly, you should implement a log-likelihood L(z) = log P(D|x) for
your model of the data.

e Secondly, decide on a suitable set of proposal moves from the current
state x to some new state y.

e Thirdly, given a proposed transition z — y (and L(z) — L(y)), formu-
late the Metropolis-Hastings acceptance criterion.

Some pieces of advice.

e Test your log-likelihood and your data by finding the maximum likeli-
hood estimator & = arg max, L(z). This is usually very fast and should
give sane answers. If you increase data D, does the ML estimator gets
closer to the true parameters?

e The proposal moves can be pretty much anything you want as long
as a series of steps in principle can reach any region of relevance in
parameter space.

e If your factored proposal distribution is P(z — y) = g(x — y)A(x —
y), then the Metropolis-Hastings acceptance probability is

A(z — y) = min (1, exp(AL(x — y))gg—:g) ,

where AL(x — y) = L(y) — L(x). For symmetric proposals which
depend only on the absolute difference |y — x|, we have g(y — x) =
g(x — y). For example, such proposals are generated in a Brown-
ian walk in parameter space. Another useful proposal is a log-normal
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proposal, say y = gz, where ¢ ~ exp(N(0,0?)). For this proposal
gy = x)/g(xr — y) = q. Log-normal proposals have the benefit that
they will not change the sign of the states.

Start your Markov chain from some suitable initial value zy and then
walk. Try to select scaling parameters such that about 10-40% of the pro-
posals are accepted. Inspect data, parameter samples, and also monitor the
autocorrelation. Increase the data and run again: compare the results.

Task 1: identify a GBM Create a couple of trajectories from the geomet-
ric Brownian motion model, dX; = pX; dt + 0 X;dW;, with X(0) = 1. Note
that you can produce ezact samples from this model. With (i, o) given, try
to reason about a suitable sampling rate At and a suitable sampling time in-
terval [0, 7]. With At too large and/or T' too small, it might be very difficult
to identify the model.

Present the ingredients of your MCMC implementation and how you ar-
rived at them.

Test your implementation by exploring the posterior density over (u, o).
Try to produce solid estimators with error bounds. -How does the estimators
respond to eg. a 4-fold increase of data?

Task 2: the GBM challenge On the course web-page you will find data
from a GBM model. -What is the best you can say about the parameters for
this model?

Task 3: identify your favorite SDE Instead of the basic GBM, pick
your own favorite SDE-model and try to identify the parameters given ob-
servations. For a one-dimensional SDE, a closed-form solution of the like-
lihood L(x) is not necessary, a numerical solution should work just as fine.
For two dimensions and higher, numerical likelihoods are going to be more
challenging (see Task 7).

Extended part

For the extended part, perform and report on at least one of the tasks below.

The tasks are very openly described and the intent here is that you un-
dertake a bit of research and take the role of a critical reviewer. Take your
job seriously!



Task 4: adaptive MCMOC There are many different ideas for how to
form an adaptive MCMC, which typically adapts the proposal in some clever
way as the Markov walk progresses. For several examples, see the draft book
by Zwanzig & Mahjani (there are others). Implement an adaptive MCMC
algorithm and test on an example of interest. -How much efficiency is gained?

Task 5: hidden observations The examples above assumed that you di-
rectly observe the process over which you are performing inference. Depend-
ing on the application, other indirect setups are more suitable. Investigate
such a situation and try it out! There might be reasons the MCMC-approach
does not work at all and other ideas must be pursued. Ezplain this situation!
Or maybe some parts of the MCMC-methodology is in fact re-used (perhaps
in disguise), while others must be abandoned?

This track should preferably start with an application relevant to yourself.

Task 6: identify a non-trivial stochastic model The above discussion
circled mainly around Wiener SDEs. -What about models with jumps? Try
to identify a model driven by Poissonian processes! Or a Lévy-flight!

Task 7: numerical likelihoods Try a setup with a numerical likelihood.
-Do some research: what is the impact of the numerical errors in the likeli-
hood? How does the approach scale to higher dimensional state variables?
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