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versions of FMM and Anderson’s Method. A more detailed study is needed in order to assess the
advantages and disadvantages of the different methods. Such a study would also have to include
the recent algorithm of Hrycak and Rokhlin [14], which may give significant performance gains
over the other methods. An interesting question in the context of such a comparative study is how
to best optimize these methods for current CPUs and memory systems. While we have made an
effort to achieve efficiency in our codes, additional improvements are certainly possible, e.g., by
carefully tuning for the memory hierarchy.

Finally, it would be interesting to see how our techniques and implementations perform on a
real application domain.
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Source 1 2 4 8 16 32
Bodies before replication 128.0 130.7 130.3 129.4 129.8 131.7
Tree before replication 77.8 78.4 82.8 83.8 93.7 115.4
Replicated bodies 0,0 4.0 18.1 28.2 42.9 67.8
Replicated nodes 0.0 13.4 53.8 98.5 166.8 319.4

Total 205,8 226.5 285.0 339.9 433.2 634.3
Ratio to sequential case 1.00 1.10 1.38 1.65 2.10 3.08

Table 6.7: Memory usage in bytes as a function of the number of processors, for 256K particles

Source 64K 256K 1024K 2024K 4096K
Bodies before replication 130.4 129.8 129.8 132.1 132.5
Tree before replication 115.7 93.7 85.6 91.5 88.6
Replicated bodies 83.9 42.9 25.5 21.5 21.1
Replicated nodes 334.9 166.8 94.0 71.3 59.7

Total 664.9 433.2 334.9 316.4 301.9

Table 6.8: Memory usage in bytes as a function of the number of particles, for 16 processors

estimate as the precise ratio depends on the memory consumption of the sequential code on the
same number of particles, which we could not measure.)

Note that our numbers are based on a 1-separation criterium, and that they will get worse in the
case of 2-separation. We have also not included the numbers for Barnes-Hut, which are slightly
better then those for Anderson and FMM.

Finally, the amount of communication in the replication phase is roughly equivalent to the size
of the replicated bodies and nodes. However, we found the cost of transmitting the data over the
network to be quite small, even if we include the (usually slightly larger) computational cost of
inserting the received data into the tree structures.

7 Concluding Remarks
In this paper, we have described portable and efficient parallel implementations of several adaptive
N-body methods, including the adaptive FMM and the adaptive version of Anderson’s Method.
Our experimental results demonstrate that our codes achieve high performance and efficient speed-
up across several classes of parallel architectures. A downside of our implementations are the
significant memory overheads due to our replication scheme. We are currently working on reducing
these overheads, and are also looking at alternative communication schemes that do not suffer from
this problem.

Our experimental data only provides a very preliminary direct comparison between the adaptive
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relative performance of the different methods and accuracy settings is similar as in the sequential
case.

6.3 Memory and Communication Requirements

We now discuss the memory consumption and bandwidth requirements of our parallel schemes.
These two issues are actually closely related in our implementations, since the locally essential
trees that are transmitted have to be stored by the receiver for the entire interaction phase. As
pointed out by Singh [24], the size of these replicated data sets can be a significant fraction of the
total memory consumption, particularly for small memory and problem sizes and larger numbers
of processors.

We point out that the numbers we present in this subsection are based on our current partitioning
and replication schemes, and that some improvements will be possible by switching to a continuous
curve in the Cost Zones partitioning, and by additional pruning of the locally essential trees.
Nonetheless, the basic trends should stay the same. In our discussion, we distinguish among the
following sources of memory consumption:� the number of bodies assigned to a processor by the data partitioning,� the size of the tree before the sending of the locally essential trees,� the number of bodies replicated on a processor after receiving the locally essential trees, and� the increase in the size of the tree after receiving the locally essential trees.

In our measurements, a body assigned to a processor requires 128 bytes (including position, field,
speed, and previous acceleration, as used by a leap-frogging scheme), a node of the tree created
before the replication requires 2056 bytes (including 1536 bytes for the two expansions of length
32), a replicated body requires 32 bytes (only position and charge needed, except for a small number
of bodies located in shared leaves), and a node of the tree during replication requires 1288 bytes
(no local field needed, except for a few shared nodes). Not included in our numbers are some other
sources of memory consumption, including precomputed matrices that may be used to speed up
the interactions. While these sources are not completely negligible, they depend on a number of
specific design decisions that are mostly orthogonal to the issue of replication.

In Tables 6.7 and 6.8, we present two different views of the memory consumption of Anderson’s
Method with expansion order 9 and 1-separation. All memory consumption is in bytes per body,
The data was measured over a single iteration on a Plummer model, where for each of the four
sources of memory consumption, we took the maximum value over all processors.

Table 6.7 shows how the memory consumption increases as we fix the number of particles at
256K and vary the number of processors from 1 to 32. In the 32 processor case, the memory
consumption per body is about three times larger than in the single processor case, mainly due to
the large number of nodes in the replicated part of the tree.

A more optimistic scenario is given by Table 6.8, which shows the memory consumption for
16 processors as the input size increases from 16K to 4096K . While memory consumption is
very high for 16K , it drops to a ratio of less than 1:5 for 4096K bodies. (This is a conservative
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Platform Processors 16K 64K 256K 1024K
Cray T3E 1 24.3 99.7 . .

2 12.4 50.6 . .
4 6.4 27.0 95.6 .
16 1.9 7.5 28.5 103.5
32 . 4.3 14.8 51.7

SGI Challenge 1 97.1 412.2 . .
4 26.3 111.0 . .
8 14.0 57.4 . .
16 9.0 31.0 . .

PC Network 1 42.7 183.3 675.1 .
2 22.7 94.3 349.8 .
4 11.9 51.0 182.7 .
8 10.3 31.9 107.1 .

Table 6.5: Performance of FMM (potential calculation) with expansion order 4 and 1-separation
on a Plummer model.

Platform Processors 16K 64K 256K 1024K
Cray T3E 1 9.400 43.26 . .

2 4.587 21.10 . .
4 2.213 10.56 46.94 .
16 0.572 2.69 12.36 53.95
32 . . . 13.49

SGI Challenge 1 17.52 80.4 364.0 .
4 4.36 20.0 90.3 .
8 2.22 10.1 45.4 .
16 1.28 5.6 24.7 .

PC Network 1 7.75 34.21 163.8 .
2 3.98 17.86 82.4 .
4 2.16 10.06 43.1 .
8 1.78 7.48 24.5 .

Table 6.6: Performance of Barnes-Hut with separation constant 1:0 and quadpoles on a Plummer
model.
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Platform Processors 16K 64K 256K 1024K
Cray T3E 1 19.7 86.4 . .

2 7.8 35.6 . .
4 4.0 17.7 69.3 .
16 1.3 5.0 17.9 67.8
32 . 2.8 12.9 46.4

SGI Challenge 1 77.2 325.8 1251.8 .
4 21.0 86.7 330.1 .
8 11.6 44.9 167.4 .
16 6.7 24.1 87.0 .

PC Network 1 32.4 138.8 538.9 .
2 17.2 72.4 281.6 .
4 10.4 39.8 149.5 .
8 8.6 26.5 89.6 .

Table 6.4: Performance of Anderson’s Method (field calculation) with expansion order 9 and
1-separation on a Plummer model.

by a Synoptics 28115 Fast Ethernet switch. Only one processor per node was used in the
experiments.

The results of our runs are summarized in Tables 6.4, 6.5, and 6.6. In the runs, we used
Cost Zones partitioning for FMM and Anderson’s Method, and ORB partitioning for Barnes-Hut.
The main observation from the tables is that we obtain efficient parallelism across algorithms and
parallel platforms, with speed-up going towards linear as we increase the input size. The speed-up
is particularly good for the Barnes-Hut algorithm, which can be very accurately load-balanced
fairly easily. Some small improvements in certain cases of Anderson and FMM might be possible
by fine-tuning the cost functions associated with the interaction types for each platform. (Our
current cost functions were derived on a Sparc workstation.)

The speed-up on 8 processors of the network of PCs was limited to between 6 and 7 due
to inefficiencies in the communication phase. Note that these inefficiencies are not due to the
bandwidth or latency limitations of the underlying network, which in principle is powerful enough
to support nearly linear speed-up. We conjecture that the problem is primarily due to problems with
the network cards of the PCs, and maybe to a lesser extent due to the communication algorithm
used in the BSP library implementation.

The times spent in the different phases of the algorithm are nearly the same as in the sequential
case, which is to be expected given that the parallel code consists of the same basic components,
plus some additional communication steps that take only a small amount of time.

Finally, we have also performed parallel runs with other settings of the integration order, and
with 2-separation criterium and supernodes. The speed-up results that we observed are very similar
to the numbers we have reported here. This, together with the efficient speed-up, implies that the
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Accuracy Algorithm Particles Time RMS Error
Low FMM (N=4) 1000 .318 2.25e-4

5000 4.13 2.12e-4
10000 7.97 2.01e-4
20000 12.22 2.02e-4
50000 40.85 .

And (K=5) 1000 .171 5.15e-4
5000 1.41 4.78e-4

10000 3.62 4.71e-4
20000 10.08 4.57e-4
50000 17.13 .

Medium FMM (N=6) 1000 .726 3.19e-5
5000 9.90 2.44e-5

10000 15.81 2.06e-5
20000 19.33 1.90e-5
50000 103.0 .

And (K=9) 1000 .299 4.00e-5
5000 3.08 3.49e-5

10000 5.87 3.51e-5
20000 12.51 3.46e-5
50000 34.53 .

High FMM (N=8) 1000 1.74 8.49e-6
5000 22.64 6.77e-6

10000 31.73 5.76e-6
20000 36.31 5.41e-6
50000 252.5 .

And (K=11) 1000 .545 1.00e-5
5000 5.93 7.95e-6

10000 9.48 7.61e-6
20000 16.15 7.40e-6
50000 66.29 .

Table 6.3: Relative performance of Anderson’s Method and the Fast Multipole Method using
1-separation (potential computation only)
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Particles U-Int V-Int W-Int X-Int
1000 45.6 49.1 2.5 2.9
5000 21.3 45.8 11.8 19.0
10000 44.9 24.9 11.2 18.9
20000 77.1 17.3 2.3 3.3
50000 29.6 52.3 7.4 10.7

Table 6.1: Percentages of interaction time spent on the different interaction types (uniform distri-
bution)

Particles U-Int V-Int W-Int X-Int
1000 35.5 9.4 20.1 34.9
5000 30.9 9.9 21.5 37.6
10000 27.8 15.7 20.7 35.8
20000 29.4 17.8 19.4 33.4
50000 28.1 21.9 18.6 31.4

Table 6.2: Percentages of interaction time spent on the different interaction types (Plummer model)

FMM code is less optimized than the Anderson code, and a fully optimized version might actually
be slightly faster than Anderson’s Method, We plan to perform a detailed comparison in the near
future.

Finally, we repeated some of the sequential experiments on our other platforms. While the
absolute times vary significantly, we found the relative behavior between different algorithms and
settings to be similar on all platforms.

6.2 Parallel Performance Results

In this subsection, we present results on the parallel speed-up and scale-up achieved by our codes
on three different machines, which cover several interesting classes of parallel architectures. The
machines are:

(1) a Cray T3E, located at the National Energy Research Scientific Computing (NERSC) Center
in Berkeley. The machine has 152 DEC Alpha processors with 256 MB of main memory
each.

(2) an SGI Challenge shared-memory machine, located at the NEC Research Institute in Prince-
ton. The machine has 16 MIPS R4400 processors and 1 GB of main memory.

(3) a network of PCs, also located at NEC. Each machine has two 200 Mhz Pentium Pro
processors and 128 MB of main memory. The machines run the Linux OS and are connected
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node of the Cray T3E. In Subsection 6.2, we present parallel speed-up and scale-up results on three
machines representing different classes of parallel architectures, for a small set of problems sizes
and fixed precision settings. Finally, in Subsection 6.3 we discuss the memory and communication
requirements of the parallel codes.

Note that all running times in this section are for a single iteration of the algorithm. We do not
include the times spent on advancing the bodies (which is less than 1% of the total time), and the
time spent on load balancing. It is somewhat difficult to estimate the cost of load balancing as it
is only periodically performed. Both the frequency and the cost of the load balancing step depend
heavily on the particular input distribution and the chosen time step. However, even in the worst
case, (which is given by the initial partitioning step before the first iteration, and which is unlikely
to ever occur thereafter), the time for a load balancing step is small compared to the time for the
interactions.

Throughout this section, we choose the maximum number of bodies per leaf node as 100 for
FMM and Anderson’s Method, and 20 for Barnes-Hut. Note that the precise optimal value for
this parameter depends in a non-trivial way on many factors such as input size and distribution.
However, the values we have chosen come quite close to optimal in most cases we have encountered.

6.1 Sequential Performance Characteristics

We start out by presenting some basic sequential performance characteristics of the algorithms
we have implemented. These results were obtained by running our codes on a single node of
the Cray T3E. We emphasize that these sequential runs correspond to fairly generic sequential
implementations of the algorithms, and that they do not incur any of the overheads associated with
a parallel implementation.

One characteristic of the sequential algorithms that is not surprising is that the vast majority of
the computation time is spent in the interaction computation phase of the algorithm. In all of the
sample runs referred to in Tables 6.1 and 6.2, between 90 and 95 percent of the computation time
was spent in this phase. The remaining 5 to 10 percent were primarily spent in the upward and
downward passes, and only very little time was spent in building the tree.

Tables 6.1 and 6.2 show the percentages of time spent performing the various interactions during
the interaction phase for uniform and Plummer distributions. Note that the percentages for the W
and X interactions in the uniform case fluctuate in a complicated way with the average number of
bodies per leaf node and with the structure of the tree.

In Table 6.3 we compare the running time of FMM and Anderson’s Method for several accuracy
settings. The input data is a uniformly distributed set of particles. The measured times are for
the computation of the potentials, and do not include the time for the fields. The error (RMS)
is calculated as follows. For any particle xi, let Φc(xi) be the potential at xi calculated by the
algorithm, and let Φr(xi) be the potential computed by the direct method. Then the RMS error for
the calculation is defined as vuut 1N NXi=1

((Φc(xi)�Φr(xi))
Φr(xi) )2:

According to Table 6.3, Anderson’s Method outperformed FMM for similar levels of accuracy.
However, we point out that these results are still very preliminary, since our current version of the
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For each node of an oct-tree, we define its location with respect to the local partitioning domain.
A node is inside if it is completely inside the domain, outside if it is completely outside, and shared
otherwise. Using this notation, we define the work partitioning by the following rules: (1) If the
target node of an interaction is inside a partition, then the interaction is performed by the processor
owning that partition. (2) If the target node of an interaction is shared, then the interaction is
performed by the processor whose partition contains the unique point inside the target node that
is closest to the geometric center of the source node. Note that this means that if a target node is
shared, then the work associated with that node will usually be shared by several processors.

Considering the different types of interactions in FMM and Anderson’s Method, we observe
that in any interaction (s; t), the target node t must intersect a cube centered at the center of source
node s and with side length proportional to the side length of s. The constant of proportionality
depends on the separation parameter of the algorithm. Let us call this cube the interaction cube.

As before, to determine which parts of a local tree T in processor P1 have to be sent to another
processor P2, we perform a depth-first traversal of T . When we encounter a node s, we do the
following. If s is a leaf, then we simply send all of the bodies within s to P2. If s is not a leaf,
then we look at all of the interaction cubes for children of s. If any of these cubes intersect R, then
we recursively continue the depth-first search. If none of the cubes intersect the region R, then we
know that none of the descendents of s are going to be the source in an interaction that is assigned
to P2, and we simply send the expansion information for s to P2 and return to the next higher level.

It can again be shown that this procedure will transmit all information that is needed by P2 to
perform its interactions. Moreover, after the data has been appropriately inserted into the oct-tree
at the receiving end, and after the expansions have been updated accordingly, each locally held tree
will be consistent with the corresponding region of the (nonexistent) global tree.

Note that the above description refers to the data partition only indirectly via geometric terms
such as “inside a partition”, “outside a partition”, and “distance from a partition”, which can be
implemented based on the geometric representation of the particular partitioning scheme. This
allows a nice separation between the data partitioning and the replication scheme in our code.

The actual scheme that we use in our codes is slightly more complicated than the description
we have given here. In particular, we avoid the additional upward pass for updating the expansions
at the receiver side by transmitting the expansion of a node even if we also transmit the information
associated with all its children (or all its bodies if it is a leaf), thus trading off bandwidth versus
computation. We also use some other conditions for pruning the size of the locally essential trees.
These optimizations are motivated primarily not by bandwidth concerns, but by computation costs
and space concerns at the receiving side.

6 Experimental Results
In this section, we present and discuss the results of an extensive series of test runs of our codes.
We consider total work, parallel speed-up and scale-up, precision, and memory and communication
requirements. Given the vast space of parameter settings, we have to restrict ourselves to a few
interesting cases.

Our set of experiments is structured as follows. In the first subsection, we explore the basic
characteristics of FMM and Anderson’s Method through a sequence of sequential runs on a single
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locally essential tree with respect to P2, that is, all the information in T that is needed by P2 for its
interactions.

More precisely, when we visit a node s in T we do the following. If s is a leaf node, we simply
send all of the bodies within s to P2. Otherwise, if s is contained entirely within P1’s ORB region,
then we can calculate how far the center of mass is from the boundary of R. If this distance is large
enough relative to the side length of s, then we only need to send the center of mass (or higher
order approximation) of s to P2, and return to the next higher level. If the center of mass is too
close, then we recursively visit the children of s. If s is not contained entirely within P1’s ORB
region, then P1 does not know the true location of the center of mass of s in the global tree. We
therefore assume the worst case, that the center of mass is as close to R as possible.

It can be shown that this procedure will transmit all information that is needed by P2 to perform
its interactions. Moreover, after the data has been appropriately inserted into the oct-tree at the
receiving end, and after the centers of mass have been updated accordingly, each locally held tree
will be consistent with the corresponding region of the (nonexistent) global tree.

5.2 Problems in the Generalization

Before explaining the generalization of the replication scheme to FMM and Anderson’s Method, we
describe some of the new problems that arise, and that make it non-trivial to extend and implement
the replication scheme. The main challenges are as follows:

(1) In the Barnes-Hut method, the well-separatedness criterium depends only on the size of the
source box, and its distance from the particle. In FMM and Anderson’s Method, we have
cluster-cluster interactions whose criterium can depend on the size of either the source or the
object box (e.g., X and W interactions). This makes it more difficult to design a sender-driven
protocol, since the sender does not know the structure of the local tree inside the receiver.

(2) FMM and Anderson’s Method have four different types of interactions, each with its own set
of conditions about when the interaction is applicable.

(3) In FMM and Anderson’s Method, work is also associated with internal nodes, which can
overlap the domains of several processors. Thus we need a work partitioning scheme that
uniquely assigns these interactions to processors, and that is compatible with a simple sender-
driven approach.

5.3 The General Scheme

In the general scheme, we assume that each processor has complete knowledge of the data parti-
tioning. It is convenient to assume that the partitioning is represented in some simple geometric
form, e.g., boxes in ORB, or unions of cubes (each corresponding to an oct-tree node) in Cost
Zones.

First, we describe the method for assigning interactions to processors. As mentioned before,
there are four types of interactions that can occur during the force calculation phase of the FMM
algorithm. Each interaction involves a source node s and a target node t, and can be denoted by the
pair (s; t). All of these interactions involve taking field information from s and converting it into
field information for t.
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implemented.

4.4 Communication and Force Computation

As mentioned before, we use an extension of the locally essential trees approach in order to replicate
tree nodes that are needed by more than one processor. This scheme is described in detail in the next
section. Thus, at the beginning of the force computation phase, every processor already contains
all of the data that it has to access during this phase, and the computation is completely local and
can be done by the same code as in the sequential case.

Our implementation of the interactions in the FMM is based on the slight reformulation of
the original method of Greengard and Rokhlin provided by Singer [23]. For Anderson’s Method
we relied on the description in [1], with precomputed matrices used in the V interactions and the
upward and downward passes. Finally, our implementation of quadpole moments in Barnes-Hut
follows the description in [13].

5 Replication Scheme
In this section, we give a high-level and general description of the replication scheme that we use
in our codes. In the following, we assume that the bodies have already been partitioned among the
processors using ORB, Cost Zones, or some other data partitioning scheme.

In order to perform all the interactions, we require two additional ingredients. First, we need
a work partitioning that assigns every interaction to one of the processors. Such a scheme will be
partly induced by the data partitioning, but also needs to uniquely assign interactions that require
data from two or more processors. Second, we have to design an efficient communication and
replication scheme that ensures that every processor has all of the information necessary to perform
its interactions. The simplicity and efficiency of such a scheme depends of course on the data and
work partitioning scheme.

What we are describing in the following is basically a generalized version of the “locally
essential trees” scheme of Warren and Salmon, which was originally introduced for a Barnes-
Hut algorithm with ORB partitioning, to adaptive multipole methods and other classes of data
partitionings such as Cost Zones or the RRB scheme of Hu, Johnsson, and Teng [15].

5.1 Barnes-Hut and ORB

We first explain the scheme for the case of a Barnes-Hut implementation with ORB partitioning.
We point out that this scheme is very similar to those in [28] and [20]. Note that in the Barnes-Hut
algorithm, all interactions are between a particle and a node of the oct-tree. This makes the work
partitioning very simple: a processor is responsible for all interactions involving particles located
in its ORB region.

Thus, it remains to describe the replication scheme. During the Barnes-Hut algorithm, a particle
will interact with a node if the particle is far enough away from the center of mass of the node,
relative to the side length of the node.

Let P1 and P2 be two processors. Let P1 have a locally constructed oct-tree T , and let P2

have ORB region R. We can then perform a depth-first traversal of T in order to determine the
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are completely rebuilt in each iteration.

4.3 Data Partitioning and Load Balancing

We have implemented two different schemes for partitioning and load balancing. Following Liu and
Bhatt [20], load balancing is only performed when the load imbalance exceeds a certain threshold
(typically about 2%). The weight each body contributes to the load of its processor is determined
by the amount of work “caused” by the body in the previous superstep. In the case of Barnes-Hut,
this is just the number of interactions and quadpole evaluations, while for Anderson and FMM, all
costs incurred by internal nodes are propagated to the bodies in the downward pass of the algorithm.

Our first implementation was based on the Orthogonal Recursive Bisection (ORB) scheme
[28], where space is recursively partitioned along the longest dimension, such that each of the two
resulting rectangular regions receives a number of bodies equivalent to half of the remaining work.
We initially implemented a fully distributed version of ORB partitioning in which the space is
recursively halved by a parallel median finding algorithm. To increase the simplicity and flexibility
of our code, we later switched to a mainly sequential implementation, where each processor sends a
random sample of its body positions and weights to a single processor. This processor then locally
computes a partition based on the sample, and broadcasts the result. Afterwards, the quality of the
load balancing is checked and, if necessary, the process is repeated. We found this implementation
to be very efficient even for fairly small input sizes.

The ORB partitioning resulted in excellent speed-up for the Barnes-Hut algorithm. For the
FMM and Anderson’s Method, however, we experienced significant load imbalances that severely
limited the parallel speed-up (to about 6 on 16 processors for 64K bodies). The reason is that since
work is really associated with nodes rather then bodies, any repartitioning of the load only has an
effect if it changes the partitioning of the nodes. For example, in a simulation with 64K bodies and
up to 100 bodies per leaf, we end up with about 2000 leaf nodes, or about 13 leaves along each of
the three dimensions. This small set of possible partitionings along a single dimension results in a
load imbalance that is compounded over the number of processors and dimensions.

This effect was already described by Singh [24], who observed only a fairly moderate degree of
load imbalance in his two-dimensional runs. Our observation is that this problem is significantly
worse in three dimensions. While the problem (very) slowly decreases with larger input sizes, and
additional improvements might be possible by modifying the ORB scheme, we were not able to
come up with a simple and convincing scheme for three dimensions. Hence, we conclude that
ORB partitioning is probably not a good choice for adaptive multipole methods.

To solve these problems, we implemented the Cost Zones partitioning scheme described in
[24]. Our implementation is again based on sending a random sample to a single processor, who
then builds an oct-tree based on the bodies in the sample. Informally speaking, the overall shape
of the resulting “sample tree” is very similar to that of the global oct-tree on all bodies. The
processor then applies Cost Zones partitioning to this tree. By choosing the maximum number of
bodies per leaf somewhat smaller than in the global tree, we can reduce the required sample size.
The implementation runs very efficiently, and obtains good load balance. The size of the locally
essential trees is only slightly larger than in the case of ORB, and could be somewhat reduced
by using a continuous space-filling curve instead of the simpler non-continuous curve we have
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4.1 Programming Environment

The programs were written in C using an SPMD programming style. Communication is performed
through a small library of message-passing functions, called Green BSP and described in [8],
which implements a set of bulk-synchronous communication primitives as prescribed by Valiant’s
Bulk-Synchronous (BSP) model of parallel computation [25]. The library offers simple functions
for sending, synchronization, and receiving that partition the program execution into a sequence
of computation phases called supersteps such that messages sent in one phase are received by the
receiver only at the beginning of the next phase. This allows for a very efficient implementation
of very-coarse grained parallel programs that are especially suitable for high-latency parallel
machines. Thus, the library provides a very natural match for the communication schemes arising
in our implementations. Versions of the library have been implemented on a number of different
platforms.

On the other hand, our implementation techniques are not dependent on a particular library, but
can be used on any reasonable message-passing library (e.g., MPI [11]), assuming that appropriate
buffering is used to avoid software overheads due to the large number of fairly small messages sent
by the program. In fact, one of the versions of the library used in our experiments is basically a
thin layer on top of MPI that enforces certain buffering policies.

One slight disadvantage of the very large supersteps in our algorithms is that they require
significant amounts of buffer space at both sender and receiver. (This problem is due to the nature
of buffered message-passing in BSP, and the fact that the library version we used allocates a fixed
amount of buffer space at the beginning of the program run.) To avoid this problem, we decided
to split the largest supersteps into several smaller supersteps, resulting in a slight increase in code
complexity.

4.2 Tree Construction

One problem faced by any implementer of tree-based parallel N-body methods is how to represent
and efficiently build the tree structure used for the force calculation. A convenient way of doing
this on shared-memory machines is to have all processors jointly build the tree, and use locks for
consistency. However, such a scheme would be inefficient on high-latency distributed-memory
platforms, and hence we decided on a scheme in which no global tree structure is built, but each
processors constructs a separate tree structure that contains all its particles, and that is “consistent”
with the (nonexisting) global tree.

The construction of these trees is very simple. Each processor starts by building a tree on
its own particles, starting out with the entire extension of space in the root node, but essentially
pretending that there are no other particles apart from its own. This results in a tree structure that
is not fully consistent with the global one at nodes that are not completely within the boundaries
of the local partition. However, as it turns out, these inconsistencies can be easily removed during
the transmission of the locally essential trees described further below.

Thus, to built the trees in our parallel code, we just use the same tree insertion routine as in the
sequential case, perform an upwards pass to compute the expansions, and then wait for the locally
essential trees scheme to correct any inconsistencies. (Note that some of the expansions need to be
updated after the locally essential trees have been received and inserted into the local tree.) Trees
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is used in the shared-memory implementation by Singh [24], who also performs a comparative
study of several partitioning and load-balancing schemes.

3.2 FMM and Anderson’s Method

There have also been a number of parallel implementations of the non-adaptive versions of the
FMM and Anderson’s Method, some examples are [4, 6, 17, 22, 27, 29]. Due to the regular
structure of these methods, parallel implementations can usually employ fairly simple schemes for
partitioning, load-balancing, and replication. In contrast to the non-adaptive case, there have been
only very few parallel implementations of the adaptive versions of FMM and Anderson. We are
aware of the implementations in [9, 16, 18, 21, 24].

The earliest implementation we know of is the two-dimensional FMM code of Greenbaum [9]
for the shared-memory NYU Ultracomputer. Another two-dimensional implementation for shared
memory was done by Singh [24], who performed a detailed performance and scalability study for
shared-memory machines. However, both approaches do not seem to be appropriate for distributed
memory.

Parallel implementations of the three-dimensional FMM have been designed by Nyland, Prins,
and Reif [21] and Krishnan and Kale [18]. The code in [21] is written in the high-level Proteus
programming language. However, no performance numbers are given, and in fact no compiler
for PROTEUS appears to be available yet. The code in [18] is written in the CHARM++ object-
oriented programming language, and implements a slightly simplified variant of the adaptive FMM
where the higher levels of the tree structure coincide with the ORB partitioning. However, the
running times reported in [18] appear to be by about one order of magnitude too high.

Very recently, and while our work was in progress, Hu, Johnsson, and Teng [15, 16] have
reported an implementation of the three-dimensional adaptive version of Anderson’s Method in
High-Performance Fortran (HPF). Their implementation appears to be the only adaptive three-
dimensional code that achieves good performance on distributed-memory machines. The work in
[15, 16] is also important because it provides techniques for the efficient implementation of adaptive
algorithms in data-parallel languages such as HPF, which were mainly designed with more regular
applications in mind. (An alternative way to overcome these problems would be to allow nested
data parallelism, as provided, e.g., by the NESL language [5].)

However, a data-parallel implementation does not appear suitable for low-cost parallel systems,
such as Ethernet-connected PCs or workstations, which typically have much higher latency and
much lower bandwidth than their high-cost MPP counterparts. Our goal is to achieve high efficiency
even on such low-cost systems. At the same time, we want to achieve very high performance on
more powerful MPP systems; an interesting question is to what degree our “raw C” implementation
can improve on HPF with its associated overheads.

4 Description of Our Codes
In the following, we describe the structure and implementation of our parallel codes. The basic
structure of the codes is similar to that of the sequential algorithms outlined in Section 2, Our
implementations share a significant amount of code between them. Hence, unless explicitly stated
otherwise, the following descriptions apply to all algorithms that we have implemented.
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2.2 Adaptive FMM and Anderson

In the Barnes-Hut algorithm, interactions between bodies and sufficiently far away clusters are
used to reduce the number of interactions from O(N 2) to O(N logN) in the uniform case. The
FMM and Anderson’s Method go one step further, by also allowing interactions between two
clusters. Thus, the force exerted on a body by a distant cluster is usually determined not by a direct
interaction between body and cluster, but by an interaction between the distant cluster and a cluster
containing the body. The force exerted on the cluster is then propagated to all the bodies contained
in it; this is done in an additional downward pass through the oct-tree after the interaction phase in
Step (3) of the algorithm. Apart from this extra step, the high-level structure of the algorithms is
the same as in the case of Barnes-Hut, while the total number of interactions is reduced to O(N),
under some assumptions about the distribution of the bodies.

However, as a consequence, the internal structure of the interaction phase becomes somewhat
more complicated. The adaptive FMM and Anderson’s Method have four different types of
interactions, which are executed depending on certain conditions about the relative size and location
of the two interacting nodes in the tree. For example, in order for two clusters to interact (such an
interaction is called a V interaction), they have to be of the same size and well separated, that is,
have a sufficient distance from each other. Other rules govern the possible interactions between
clusters and bodies (W and X interactions) and between bodies (U interactions). The accuracy of
the method depends on the distance required for nodes to be well separated, but more importantly
on the number of terms used in the approximation of the clusters.

The only difference between the FMM and Anderson’s Method is in the way they approximate
the force field of a cluster of bodies. While the FMM uses Taylor and Laurent expansions in 2D
and expansions based on spherical harmonics in 3D, Anderson’s Method is based on Poisson’s
formula. This makes Anderson’s Method slightly easier to implement, while it appears to be still
unclear which method gives the better accuracy/performance trade-off.

3 Other Parallel Implementations
In this section we describe some previous parallel implementations of tree-based N-body algorithms,
and discuss their relation to our work. Due to the large amount of previous work, we can only
discuss the most closely related work.

3.1 Barnes-Hut Algorithm

Over the last decade, there have been a large number of parallel implementations of the Barnes-Hut
algorithm; a few examples are [20, 4, 24, 28, 26]. In [28], Warren and Salmon describe a fast
message-passing implementation of the Barnes-Hut algorithm. They propose the use of locally
essential trees to obtain a purely sender-driven protocol for replicating nodes that are accessed by
several processors during the force computation phase. This approach was later refined by Liu and
Bhatt [20] in their optimized Barnes-Hut implementation on the CM-5.

In a later implementation [26, 27], Warren and Salmon use a partitioning scheme based on
space-filling curves and a distributed tree structure in order to achieve more flexibility in terms of
application domains and separation criteria (MACs). A similar scheme based on space-filling curves

4



2 Basic N-Body Algorithms
In this section we describe the basic structure of the N-body algorithms used in our implementations.
We first explain the Barnes-Hut algorithm, which has a fairly simple structure, and then outline the
more complicated structure of the adaptive FMM and Anderson’s Method.

All algorithms considered in this paper use an oct-tree data structure to partition three-
dimensional space and to group bodies that are close to each other. The tree structure for a
given input distribution is obtained by recursively partitioning a box into eight smaller boxes of
equal size until each box contains at most d particles (where d is experimentally determined for
maximum performance).

2.1 Barnes-Hut Algorithm

The basic idea behind the Barnes-Hut [3] algorithm (and many other methods) is to approximate
the force exerted on a body by a sufficiently far away cluster of bodies by computing an interaction
between the body and the center of mass (or some other approximation) of the cluster. Bodies are
grouped into clusters by the tree data structure, and a separation condition (which typically depends
on the distance between the body and the cluster and on the size of the cluster) determines whether
a cluster is sufficiently far away. The basic steps of one iteration of the (sequential) Barnes-Hut
algorithm are as follows:

(1) Build the oct-tree data structure. This can be done by a simple tree insertion algorithm.

(2) Compute the center of mass (or some higher-order approximation) of the bodies in each box
of the oct-tree. This is done in a upward traversal of the tree, starting with the centers of
mass of the leaf boxes.

(3) For each body, perform a depth-first traversal of the oct-tree in order to compute the force
exerted on the body. The traversal starts at the root.

(3a) At each visited node, if the cluster defined by all bodies inside this node is suffi-
ciently far away, compute an interaction with its center of mass (or some higher-order
approximation of the cluster). Otherwise visit all its child nodes.

(4) Compute the acceleration and speed of each body in the current time step, and advance it
accordingly.

A common separation condition is that a cluster is sufficiently far away from a body if the ratio
of the side length of the box containing the cluster to the distance between body and cluster is
smaller than some �. The precision of the force calculation can be improved by choosing a small �
or, usually more efficiently, by using a higher order approximation of the cluster such as quadpoles
[13] or hexadecapoles [19] instead of the center of mass monopole.
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tuned for high performance. As a result, while there have been many parallel implementations
of non-adaptive O(N) methods (e.g., see [4, 6, 17, 22, 27, 29]) and of the O(N logN) adaptive
Barnes-Hut algorithm (e.g., see [20, 4, 24, 28, 26]), there are only very few parallel implementations
of the O(N) adaptive methods.

In this paper, we focus on the efficient parallel implementation of O(N) adaptive tree codes,
and in particular on the adaptive Fast Multipole Method [7] and the closely related adaptive version
of Anderson’s Method [1]. In the following, we refer to these algorithms, plus the also closely
related method of Hrycak and Rokhlin [14], simply as adaptive multipole methods. Our goal is to
design techniques that allow highly efficient implementations that are portable over a wide range
of parallel architectures. We believe that highly optimized parallel implementations of adaptive
multipole methods will eventually outperform the more commonly used methods as computation
power and problem sizes continue to increase.

We have completed implementations of the adaptive versions of FMM and Anderson’s Method.
Some of the techniques that we derived are generalizations of ideas used in a highly portable
implementation of the Barnes-Hut algorithm, which we include in our presentation for comparison,
and for a simple illustration of some of the ideas. We believe that the main contributions of our
work are as follows:

(1) We describe techniques that allow an efficient implementation of adaptive multipole methods
on machines with very high latency and fairly low bandwidth.

(2) We provide portable and highly efficient parallel implementations of these methods.

(3) We compare the performance of several adaptive N-body methods on several different plat-
forms.

Before continuing, let us briefly describe the approach taken in our work, and its goals and
limitation. As the reader will notice, we focus on the basic algorithmic aspects of the N-body
problem, a perspective taken by much of the N-body work from the computer science community.
Our goal is to show how the basic structures of adaptive multipole methods can be efficiently
implemented on parallel machines. We have tested our codes on several types of input distributions
commonly used in the literature, but we have not (yet) applied our codes towards real problems
arising, say, in astrophysics or molecular dynamics. Such applications will place additional
application-dependent demands and constraints on the basic N-body algorithms, which need to be
resolved before making any stronger claims of practicality. We hope to test our codes on a real
application in a later phase of this project.

The remainder of this paper is organized as follows. The next section gives a brief description
of the N-body algorithms used in our implementations. Section 3 discusses some related work.
Section 4 contains a description of our implementations. Section 5 describes our scheme for
data replication and work partitioning, and Section 6 contains some experimental results. Finally,
Section 7 offers some concluding remarks.
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Highly Portable and Efficient Implementations
of Parallel Adaptive N-Body Methods

David Blackston 1 Torsten Suel 2

Abstract

We describe the design of several portable and efficient parallel implementations of adaptive
N-body methods, including the adaptive Fast Multipole Method, the adaptive version of
Anderson’s Method, and the Barnes-Hut algorithm. Our codes are based on a communication
and work partitioning scheme that allows an efficient implementation of adaptive multipole
methods even on high-latency systems. Our test runs demonstrate high performance and speed-
up on several parallel architectures, including traditional MPPs, shared-memory machines, and
networks of workstations connected by Ethernet.

1 Introduction
The N-body problem is the problem of simulating the movement of a set of bodies (or particles)
under the influence of gravitational, electrostatic, or other type of force. Algorithms for N-body
simulations have a number of important applications in fields such as astrophysics, molecular
dynamics, fluid dynamics, and even computer graphics [12]. A large number of algorithms for
N-body simulations have been proposed; a basic approach taken by most of these algorithms is to
simulate the system by advancing the bodies in discrete time steps. In each time step, the algorithm
computes (or approximates) the force exerted on each body due to all other bodies; this determines
the acceleration and speed of that body during the next time step. Computing the forces among a
set of N bodies can be done in a straightforward way by computing all N 2 pairwise interactions.
However, a number of more efficient algorithms have been proposed that can approximate the
forces among N bodies in close to linear time.

An important class of such algorithms are the tree-based methods, which use a tree data structure
to hierarchically group the bodies into clusters, that is, groups of bodies that are fairly close to
each other (see, e.g., [1, 2, 3, 7, 10, 14, 30]). These methods can calculate the forces betweenN bodies in time proportional to O(N logN) or even O(N), under certain assumptions about the
input distributions.

Most of the O(N) methods [1, 7, 10, 14, 30] have non-adaptive versions, which partition the
space into boxes of a fixed size, and adaptive versions, which partition the space according to
the particular input distribution, and which are more efficient for nonuniform distributions. On
the other hand, the non-adaptive methods have a much simpler structure and can be more easily
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