
N-Body Simulations – Background
°Suppose the answer at each point depends on data at all

the other points
• Electrostatic, gravitational force
• Solution of elliptic PDEs
• Graph partitioning

°Seems to require at least O(n2) work, communication
°If the dependence on “distant” data can be compressed

• Because it gets smaller, smoother, simpler…

°Then by compressing data of groups of nearby points,
can cut cost (work, communication) at distant points

• Apply idea recursively: cost drops to O(n log n) or even O(n)

°Examples:
• Barnes-Hut or Fast Multipole Method (FMM) for electrostatics/gravity/…
• Multigrid for elliptic PDE
• …

 1

Fast Multiple Method (FMM)

°“A fast algorithm for particle simulation”, L. Greengard and V.
Rokhlin, J. Comp. Phys. V. 73, 1987, many later papers

• Many awards

°Differences from Barnes-Hut
• FMM computes the potential at every point, not just the force
• FMM uses more information in each box than the CM and TM, so it is both

more accurate and more expensive
• In compensation, FMM accesses a fixed set of boxes at every level,

independent of D/r
• BH uses fixed information (CM and TM) in every box, but # boxes increases

with accuracy. FMM uses a fixed # boxes, but the amount of information per
box increase with accuracy.

°FMM uses two kinds of expansions
• Outer expansions represent potential outside node due to particles inside,

analogous to (CM,TM)
• Inner expansions represent potential inside node due to particles outside;

Computing this for every leaf node is the computational goal of FMM

°First review potential, then return to FMM

2

Presenter
Presentation Notes
Greengard: 1987 ACM Dissertation Award, 2006 NAE&NAS; Rohklin: 1999 NAS, 2008 NAE

Gravitational/Electrostatic Potential

°FMM will compute a compact expression for potential φ(x,y,z)
which can be evaluated and/or differentiated at any point

°In 3D with x,y,z coordinates
• Potential = φ(x,y,z) = -1/r = -1/(x2 + y2 + z2)1/2

• Force = -grad φ(x,y,z) = - (dφ/dx , dφ/dy , dφ/dz) = -(x,y,z)/r3

°In 2D with x,y coordinates
• Potential = φ(x,y) = log r = log (x2 + y2)1/2

• Force = -grad φ(x,y) = - (dφ/dx , dφ/dy) = -(x,y)/r2

°In 2D with z = x+iy coordinates, i = sqrt(-1)
• Potential = φ(z) = log |z| = Real(log z)
 … because log z = log |z|eiθ = log |z| + iθ
• Drop Real() from calculations, for simplicity

• Force = -(x,y)/r2 = -z / |z|2

3

2D Multipole Expansion (Taylor expansion in 1/z) (1/2)
φ(z) = potential due to zk, k=1,…,n-1
 = Σk mk * log |z - zk|
 = Real(Σk mk * log (z - zk))
 … since log z = log |z|eiθ = log |z| + iθ
 … drop Real() from now on
 = Σk mk * [log(z) + log (1 - zk/z)]
 … how logarithms work
 = M * log(z) + Σk mk * log (1 - zk/z)
 … where M = Σk mk
 = M * log(z) - Σk mk * Σ s≥1 (zk/z)s/s
 … Taylor expansion converges if |zk/z| < 1
 = M * log(z) - Σ s≥1 z-s Σk mk zks/s
 … swap order of summation
 = M * log(z) - Σ s≥1 z-s αs
 … where αs = Σk mk zks/s … called Multipole Expansion

4

2D Multipole Expansion (Taylor expansion in 1/z) (2/2)
φ(z) = potential due to zk, k=1,…,n-1
 = Σk mk * log |z - zk|
 = Real(Σk mk * log (z - zk))
 … drop Real() from now on
 = M * log(z) - Σ s≥1 z-s αs … Taylor Expansion in 1/z
 … where M = Σk mk = Total Mass and
 … αs = Σk mk zks /s
 … This is called a Multipole Expansion in z
 = M * log(z) - Σ r≥s≥1 z-s αs + error(r)
 … r = number of terms in Truncated Multipole Expansion
 … and error(r) = -Σ r<sz-s αs

 Note that α1 = Σk mk zk = CM*M
 so that M and α1 terms have same info as Barnes-Hut

 error(r) = O({maxk |zk| /|z|}r+1)

5

Presenter
Presentation Notes
Use log(z-zk) = log(z) + log(1 – (zk/z)) where z big = log(z) - sum_{e>=1} (zk/z)^k / k

Error in Truncated 2D Multipole Expansion

° error(r) = O({maxk |zk| /|z|}r+1)
° Suppose maxk |zk|/ |z| ≤ c < 1, so
 error(r) = O(cr+1)
° Suppose all particles zk lie inside a D-by-
D square centered at origin
° Suppose z is outside a 3D-by-3D
 square centered at the origin
° c = (D/sqrt(2)) / (1.5*D) ~ .47 < .5

° each term in expansion adds
 1 bit of accuracy
° 24 terms enough for single precision,
 53 terms for double precision

° In 3D, can use spherical harmonics
 or other expansions

Error outside larger box is
O(c^(-r))

6

Outer(n) and Outer Expansion

 φ(z) ~ M * log(z - zn) - Σ r≥s≥1 (z-zn)-s αs

° Outer(n) = (M, α1 , α2 , … , αr , zn)

° Stores data for evaluating potential φ(z) outside
 node n due to particles inside n
° zn = center of node n
° Cost of evaluating φ(z) is O(r), independent of

 the number of particles inside n
° Cost grows linearly with desired number of bits of
 precision ~r

° Will be computed for each node in QuadTree
° Analogous to (TM,CM) in Barnes-Hut

° M and α1 same information as Barnes-Hut

7

Inner(n) and Inner Expansion

°Outer(n) used to evaluate potential outside node n
due to particles inside n

°Inner(n) will be used to evaluate potential inside
node n due to particles outside n
Σ 0≤s≤r βs * (z-zn)s

°zn = center of node n, a D-by-D box
°Inner(n) = (β0 , β1 , … , βr , zn)
°Particles outside n must lie outside 3D-by-3D box

centered at zn

8

Top Level Description of FMM

(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions
 of each node n in the QuadTree
 … Traverse QuadTree from bottom to top,
 … combining outer expansions of children
 … to get out outer expansion of parent
(3) Call Build_ Inner(root), to compute inner expansions
 of each node n in the QuadTree
 … Traverse QuadTree from top to bottom,
 … converting outer to inner expansions
 … and combining them
(4) For each leaf node n, add contributions of nearest particles
 directly into Inner(n)
 … final Inner(n) is desired output: expansion for potential at
 each point due to all particles

9

Step 2 of FMM: Outer_shift: converting Outer(n1) to Outer(n2) (1/3)

°For step 2 of FMM (as in step 2 of BH) we want to compute
Outer(n) cheaply from Outer(c) for all children c of n

°How to combine outer expansions around different points?
• φk(z) ~ Mk * log(z-zk) - Σ r≥s≥1 (z-zk)-s αsk expands around zk , k=1,2
• First step: make them expansions around same point

°n1 is a child (subsquare) of n2
°zk = center(nk) for k=1,2
°Outer(n1) expansion accurate outside
 blue dashed square, so also accurate
 outside black dashed square
°So there is an Outer(n2) expansion
 with different αk and center z2 which
 represents the same potential as
 Outer(n1) outside the black dashed box

10

Outer_shift: Details (2/3)

°Given

°Solve for M2 and αs2 in

°Get M2 = M1 and each αs2 is a linear combination of the αs1
• multiply r-vector of αs1 values by a fixed r-by-r matrix to get αs2

°(M2 , α12 , … , αr2 , z2) = Outer_shift(Outer(n1) , z2)
 = desired Outer(n2)

φ1(z) = M1 * log(z-z1) + Σ r≥s≥1 (z-z1)-s αs1

φ1(z) ~ φ2(z) = M2 * log(z-z2) + Σ r≥s≥1 (z-z2)-s αs2

11

Step 2 of FMM: compute Outer(n) for each node n in QuadTree (3/3)

… Compute Outer(n) for each node of the QuadTree
outer = Build_Outer(root)

function (M, α1,…,αr , zn) = Build_Outer(n) … compute outer expansion of node n
 if n if a leaf … it contains 1 (or a few) particles
 compute and return Outer(n) = (M, α1,…,αr , zn) directly from
 its definition as a sum
 else … “post order traversal”: process parent after all children
 Outer(n) = 0
 for all children c(k) of n … k = 1,2,3,4
 Outer(c(k)) = Build_Outer(c(k))
 Outer(n) = Outer(n) +
 Outer_shift(Outer(c(k)) , center(n))
 … just add component by component
 endfor
 return Outer(n)
end if

Cost = O(# nodes in QuadTree) = O(N)
 same as for Barnes-Hut

12

Top Level Description of FMM

(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions
 of each node n in the QuadTree
 … Traverse QuadTree from bottom to top,
 … combining outer expansions of children
 … to get out outer expansion of parent
(3) Call Build_ Inner(root), to compute inner expansions
 of each node n in the QuadTree
 … Traverse QuadTree from top to bottom,
 … converting outer to inner expansions
 … and combining them
(4) For each leaf node n, add contributions of nearest particles
 directly into Inner(n)
 … final Inner(n) is desired output: expansion for potential at
 each point due to all particles

13

Step 3 of FMM: Computing Inner(n) from other expansions

°Which other expansions?
• As few as necessary to compute the potential accurately
• Inner expansion of parent(n) will account for potential from

particles far enough away from parent (red nodes below)
• Outer expansions will account for potential from particles in boxes

at same level in Interaction Set (nodes labeled i below)

14

Step 3 of FMM: Compute Inner(n) for each n in QuadTree

°Need Inner(n1) =
Inner_shift(Inner(n2), n1)

°Need Inner(n4) =
Convert(Outer(n3), n4)

Converting Inner(n2) to Inner(n1)

15

n2 = parent(n1)
n3 in Interaction_set(n4)

Step 3 of FMM: Inner(n1) = Inner_shift(Inner(n2), n1)

°Inner(nk) =
 (β0k , β1k , … , βrk , zk)

°Inner expansion = Σ 0≤s≤r βsk * (z-zk)s

° Solve Σ 0≤s≤r βs1 * (z-z1)s = Σ 0≤s≤r βs2 * (z-z2)s

 for βs1 given z1, βs2 , and z2
°(r+1) x (r+1) matrix-vector multiply

Converting Inner(n2) to Inner(n1)

16

Presenter
Presentation Notes
n2 = parent(n1)

Step 3 of FMM: Inner(n4) = Convert(Outer(n3), n4)

°Inner(n4) =
 (β0 , β1 , … , βr , z4)
°Outer(n3) =
 (M, α1 , α2 , … , αr , z3)

° Solve Σ 0≤s≤r βs * (z-z4)s = M*log (z-z3) + Σ 0≤s≤r αs * (z-z3)-s

 for βs given z4 , αe , and z3
°(r+1) x (r+1) matrix-vector multiply

17

Presenter
Presentation Notes
n3 in Interaction_set(n4)

Step 3 of FMM: Computing Inner(n) from other expansions

°We will use Inner_shift and Convert to build each
Inner(n) by combing expansions from other nodes

°Which other nodes?
• As few as necessary to compute the potential accurately
• Inner_shift(Inner(parent(n)), center(n)) will account for potential

from particles far enough away from parent (red nodes below)
• Convert(Outer(i), center(n)) will account for potential from particles

in boxes at same level in Interaction Set (nodes labeled i below)

18

Step 3 of FMM: Interaction Set

• Interaction Set = { nodes i that are children of a neighbor of
parent(n), such that i is not itself a neighbor of n}

• For each i in Interaction Set , Outer(i) is available, so that
Convert(Outer(i),center(n)) gives contribution to Inner(n) due to
particles in i

• Number of i in Interaction Set is at most 62 - 32 = 27 in 2D
• Number of i in Interaction Set is at most 63 - 33 = 189 in 3D

19

Step 3 of FMM: Compute Inner(n) for each n in QuadTree

… Compute Inner(n) for each node of the QuadTree
outer = Build_ Inner(root)

function (β1,…,βr , zn) = Build_ Inner(n) … compute inner expansion of node n
 p = parent(n) … p=nil if n = root
 Inner(n) = Inner_shift(Inner(p), center(n)) … Inner(n) = 0 if n = root
 for all i in Interaction_Set(n) … Interaction_Set(root) is empty
 Inner(n) = Inner(n) + Convert(Outer(i), center(n))
 … add component by component
 end for
 for all children c of n … complete preorder traversal of QuadTree
 Build_Inner(c)
 end for

Cost = O(# nodes in QuadTree)
 = O(N)

20

Top Level Description of FMM

(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions
 of each node n in the QuadTree
 … Traverse QuadTree from bottom to top,
 … combining outer expansions of children
 … to get out outer expansion of parent
(3) Call Build_ Inner(root), to compute inner expansions
 of each node n in the QuadTree
 … Traverse QuadTree from top to bottom,
 … converting outer to inner expansions
 … and combining them
(4) For each leaf node n, add contributions of
 nearest particles directly into Inner(n)
 … if 1 node/leaf, then each particles accessed once,
 … so cost = O(N)
 … final Inner(n) is desired output: expansion for potential at
 each point due to all particles

21

Parallelizing Hierachical N-Body codes
°Barnes-Hut, FMM and related algorithm have similar computational

structure:
1) Build the QuadTree
2) Traverse QuadTree from leaves to root and build outer expansions
 (just (TM,CM) for Barnes-Hut)
3) Traverse QuadTree from root to leaves and build any inner expansions
4) Traverse QuadTree to accumulate forces for each particle

°One parallelization scheme will work for them all
• Based on D. Blackston and T. Suel, Supercomputing 97

- UCB PhD Thesis, David Blackston, “Pbody”
- Autotuner for N-body codes

• Assign regions of space to each processor
• Regions may have different shapes, to get load balance

- Each region will have about N/p particles
• Each processor will store part of Quadtree containing all particles (=leaves) in its

region, and their ancestors in Quadtree
- Top of tree stored by all processors, lower nodes may also be shared

• Each processor will also store adjoining parts of Quadtree needed to compute forces
for particles it owns

- Subset of Quadtree needed by a processor called the Locally Essential Tree (LET)
• Given the LET, all force accumulations (step 4)) are done in parallel, without

communication
22

Optimizing and Tuning the
Fast Multipole Method for Multicore
and Accelerator Systems
Georgia Tech
– Aparna Chandramowlishwaran, Aashay Shringarpure, Ilya Lashuk;
 George Biros, Richard Vuduc

Lawrence Berkeley National Laboratory
– Sam Williams, Lenny Oliker

°Presented at IPDPS 2010

Performance Results

23

Summary

First cross-platform single-node multicore study of
tuning the fast multipole method (FMM)

Explores data structures, SIMD, multithreading, mixed-precision, and
tuning
Show

25x speedups on Intel Nehalem –
2-sockets x 4-cores/socket x 2-thr/core = 16 threads

9.4x on AMD Barcelona
2-sockets x 4-cores/socket x 1-thr/core = 8 threads

37.6x on Sun Victoria Falls
2-sockets x 8-cores/socket x 8-thr/core = 128 threads

Surprise? Multicore ~ GPU in performance & energy
efficiency for the FMM

Source: Richard Vuduc 24

Algorithmic Tuning of q = Max pts / box - Nehalem

Shape of curve changes as we introduce optimizations.

Source: Richard Vuduc 25

	N-Body Simulations – Background
	Fast Multiple Method (FMM)
	Gravitational/Electrostatic Potential
	2D Multipole Expansion (Taylor expansion in 1/z) (1/2)
	2D Multipole Expansion (Taylor expansion in 1/z) (2/2)
	Error in Truncated 2D Multipole Expansion
	Outer(n) and Outer Expansion
	Inner(n) and Inner Expansion
	Top Level Description of FMM
	Step 2 of FMM: Outer_shift: converting Outer(n1) to Outer(n2) (1/3)
	Outer_shift: Details (2/3)
	Step 2 of FMM: compute Outer(n) for each node n in QuadTree (3/3)
	Top Level Description of FMM
	Step 3 of FMM: Computing Inner(n) from other expansions
	Step 3 of FMM: Compute Inner(n) for each n in QuadTree
	Step 3 of FMM: Inner(n1) = Inner_shift(Inner(n2), n1)
	Step 3 of FMM: Inner(n4) = Convert(Outer(n3), n4)
	Step 3 of FMM: Computing Inner(n) from other expansions
	Step 3 of FMM: Interaction Set
	Step 3 of FMM: Compute Inner(n) for each n in QuadTree
	Top Level Description of FMM
	Parallelizing Hierachical N-Body codes
	Optimizing and Tuning the �Fast Multipole Method for Multicore �and Accelerator Systems �Georgia Tech�– Aparna Chandramowlishwaran, Aashay Shringarpure, Ilya Lashuk;� George Biros, Richard Vuduc��Lawrence Berkeley National Laboratory�– Sam Williams, Lenny Oliker�
	Summary
	Slide Number 25

