
N-Body Simulations – Background 
°Suppose the answer at each point depends on data at all 

the other points 
• Electrostatic, gravitational force 
• Solution of elliptic PDEs 
• Graph partitioning 

°Seems to require at least O(n2) work, communication 
°If the dependence on “distant” data can be compressed 

• Because it gets smaller, smoother, simpler… 

°Then by compressing data of groups of nearby points, 
can cut cost (work, communication) at distant points 

• Apply idea recursively: cost drops to O(n log n) or even O(n) 

°Examples:  
• Barnes-Hut or Fast Multipole Method (FMM) for electrostatics/gravity/… 
• Multigrid for elliptic PDE 
• … 
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Fast Multiple Method (FMM) 

°“A fast algorithm for particle simulation”, L. Greengard and V. 
Rokhlin, J. Comp. Phys. V.  73, 1987, many later papers 

• Many awards 

°Differences from Barnes-Hut 
• FMM computes the potential at every point, not just the force 
• FMM uses more information in each box than the CM and TM, so it is both  

more accurate and more expensive 
• In compensation, FMM accesses a fixed set of boxes at every level, 

independent of D/r 
• BH uses fixed information (CM and TM) in every box, but # boxes increases 

with accuracy. FMM uses a fixed # boxes, but the amount of information per 
box increase with accuracy. 

°FMM uses two kinds of expansions 
• Outer expansions represent potential outside node due to particles inside, 

analogous to (CM,TM) 
• Inner expansions represent potential inside node due to particles outside; 

Computing this for every leaf node is the computational goal of FMM 

°First review potential, then return to FMM 
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Gravitational/Electrostatic Potential 

°FMM will compute a compact expression  for potential φ(x,y,z) 
which can be evaluated and/or differentiated at any point 

°In 3D with x,y,z coordinates 
• Potential  =   φ(x,y,z) = -1/r = -1/(x2 + y2 + z2)1/2 

• Force = -grad φ(x,y,z) = - (dφ/dx , dφ/dy , dφ/dz) = -(x,y,z)/r3 

°In 2D with x,y coordinates 
• Potential  =   φ(x,y) = log r = log (x2 + y2)1/2 

• Force = -grad φ(x,y) = - (dφ/dx , dφ/dy ) = -(x,y)/r2 

°In 2D with z = x+iy coordinates,  i = sqrt(-1) 
• Potential  =   φ(z) = log  |z| = Real( log z ) 
     … because log z = log |z|eiθ = log |z| + iθ 
• Drop Real( ) from calculations, for simplicity 

• Force = -(x,y)/r2  =  -z / |z|2  
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2D Multipole Expansion (Taylor expansion in 1/z)  (1/2) 
φ(z) = potential due to zk, k=1,…,n-1 
       =  Σk mk * log |z - zk| 
       = Real( Σk mk * log (z - zk) )  
             … since log z = log |z|eiθ = log |z| + iθ 
              … drop Real() from now on 
       = Σk mk * [ log(z) + log (1 - zk/z) ] 
             … how logarithms work  
     = M * log(z) + Σk mk * log (1 - zk/z) 
             … where M = Σk mk  
       = M * log(z) - Σk mk * Σ s≥1 (zk/z)s/s 
             … Taylor expansion converges if |zk/z| < 1 
       = M * log(z) - Σ s≥1 z-s Σk mk zks/s 
             … swap order of summation 
       = M * log(z) - Σ s≥1 z-s αs 
             … where αs = Σk mk zks/s   …   called Multipole Expansion 
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2D Multipole Expansion (Taylor expansion in 1/z)  (2/2) 
φ(z) = potential due to zk, k=1,…,n-1 
       =  Σk mk * log |z - zk| 
       = Real( Σk mk * log (z - zk) )  
            … drop Real() from now on 
       = M * log(z) - Σ s≥1 z-s αs      …  Taylor Expansion in 1/z 
             … where M = Σk mk = Total Mass  and  
            …             αs = Σk mk zks /s 
             … This is called a Multipole Expansion in z 
       = M * log(z) - Σ r≥s≥1 z-s αs + error( r ) 
             … r = number of terms in Truncated Multipole Expansion 
             … and error( r ) = -Σ r<sz-s αs  
              
 Note that α1 = Σk mk zk = CM*M 
   so that  M and α1 terms have same info as Barnes-Hut 

 error( r ) = O( {maxk |zk| /|z|}r+1 )   
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Error in Truncated 2D Multipole Expansion 

° error( r ) = O( {maxk |zk| /|z|}r+1 )     
° Suppose maxk |zk|/ |z| ≤ c < 1, so       
 error( r ) = O(cr+1) 
° Suppose all particles zk lie inside a D-by-
D  square centered at origin 
° Suppose z is outside a 3D-by-3D 
 square centered at the origin  
° c = (D/sqrt(2)) / (1.5*D)  ~ .47 < .5 

° each term in expansion adds           
 1 bit of accuracy  
°  24 terms enough for single precision, 
      53 terms for double precision 

 
° In 3D, can use spherical harmonics  
    or other expansions 

Error outside larger box is 
O( c^(-r) ) 
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Outer(n) and Outer Expansion 

   φ(z) ~ M * log(z - zn) - Σ r≥s≥1 (z-zn)-s αs 
   
° Outer(n) = (M, α1 , α2 , … , αr , zn ) 

° Stores data for evaluating potential φ(z) outside 
     node n due to particles inside n 
° zn = center of node n  
° Cost  of evaluating φ(z)  is O( r ), independent of  

             the number of particles inside n 
° Cost grows linearly with desired number of bits of 
      precision ~r 

° Will be computed for each node in QuadTree 
° Analogous to (TM,CM) in Barnes-Hut 

° M and α1 same information as Barnes-Hut 
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Inner(n) and Inner Expansion 

°Outer(n) used to evaluate potential outside node n 
due to particles inside n 

°Inner(n) will be used to evaluate potential inside  
node n due to particles outside n 
Σ 0≤s≤r βs * (z-zn)s 

°zn = center of node n, a D-by-D box 
°Inner(n) = ( β0 , β1 , … , βr , zn ) 
°Particles outside n  must lie outside 3D-by-3D box 

centered at zn 
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Top Level Description of FMM 

(1) Build the QuadTree 
(2) Call Build_Outer(root), to compute outer expansions 
      of each node n in the QuadTree 
             … Traverse QuadTree from bottom to top, 
             … combining outer expansions of children 
             …  to get out outer expansion of parent 
(3) Call Build_ Inner(root), to compute inner expansions 
      of each node n in the QuadTree 
 … Traverse QuadTree from top to bottom, 
             … converting outer to inner expansions 
             … and combining them 
(4) For each leaf node n, add contributions of nearest particles 
      directly into Inner(n) 
             … final Inner(n) is desired output: expansion for potential at 
                  each point due to all particles 
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Step 2 of FMM: Outer_shift: converting Outer(n1) to Outer(n2)   (1/3) 

°For step 2 of FMM (as in step 2 of BH) we want to compute 
Outer(n) cheaply from Outer( c ) for all children c of n 

°How to combine outer expansions around different points? 
• φk(z) ~ Mk * log(z-zk) - Σ r≥s≥1 (z-zk)-s αsk   expands around zk , k=1,2 
• First step: make them expansions around same point 

°n1 is a child (subsquare) of n2 
°zk = center(nk) for k=1,2 
°Outer(n1) expansion accurate outside  
     blue dashed square, so also accurate  
     outside black dashed square 
°So there is an Outer(n2) expansion 
    with different αk and center z2 which 
    represents the same potential as 
    Outer(n1) outside the black dashed box 
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Outer_shift: Details  (2/3) 

°Given 
 

°Solve for M2 and αs2  in 
 

°Get M2 = M1 and each αs2  is a linear combination of the αs1 
• multiply r-vector of  αs1 values by a fixed r-by-r matrix to get αs2 

°( M2 , α12 , …  , αr2  , z2 ) = Outer_shift( Outer(n1) , z2 ) 
                                                = desired Outer( n2 ) 

φ1(z) = M1 * log(z-z1) + Σ r≥s≥1 (z-z1)-s αs1 

φ1(z)  ~ φ2(z) = M2 * log(z-z2) + Σ r≥s≥1 (z-z2)-s αs2 
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Step 2 of FMM: compute Outer(n) for each node n in QuadTree (3/3) 

… Compute Outer(n) for each node of the QuadTree 
outer = Build_Outer( root ) 
 
function ( M, α1,…,αr , zn) = Build_Outer( n )    … compute outer expansion of node n 
      if n if a leaf  … it contains 1 (or a few) particles 
           compute and return Outer(n) = ( M, α1,…,αr , zn) directly from 
                its definition as a sum 
      else       … “post order traversal”: process parent after all children 
           Outer(n) = 0 
           for all children c(k) of n  … k = 1,2,3,4 
                 Outer( c(k) ) = Build_Outer( c(k) ) 
                 Outer(n) = Outer(n) +  
                        Outer_shift( Outer(c(k)) , center(n)) 
                        … just add component by component  
           endfor 
           return Outer(n) 
end if 

Cost = O(# nodes in QuadTree)  = O( N ) 
         same as for Barnes-Hut 
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Top Level Description of FMM 

(1) Build the QuadTree 
(2) Call Build_Outer(root), to compute outer expansions 
      of each node n in the QuadTree 
             … Traverse QuadTree from bottom to top, 
             … combining outer expansions of children 
             …  to get out outer expansion of parent 
(3) Call Build_ Inner(root), to compute inner expansions 
      of each node n in the QuadTree 
 … Traverse QuadTree from top to bottom, 
             … converting  outer to inner expansions 
             … and combining them 
(4) For each leaf node n, add contributions of nearest particles 
      directly into Inner(n) 
             … final Inner(n) is desired output: expansion for potential at 
                  each point due to all particles 

13 



Step 3 of FMM:  Computing Inner(n) from other expansions 

°Which other expansions?  
• As few as necessary to compute the potential accurately 
• Inner expansion of parent(n) will account for potential from 

particles far enough away from parent (red nodes below) 
• Outer expansions will account for potential from particles in boxes 

at same level in Interaction Set (nodes labeled i below)  
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Step 3 of FMM: Compute Inner(n) for each n in QuadTree  

°Need Inner(n1) = 
Inner_shift(Inner(n2), n1) 

°Need Inner(n4) = 
Convert(Outer(n3), n4)  

Converting Inner(n2) to Inner(n1) 
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Step 3 of FMM:     Inner(n1) = Inner_shift(Inner(n2), n1) 

°Inner(nk) =  
     ( β0k , β1k , … , βrk , zk ) 

°Inner expansion = Σ 0≤s≤r βsk * (z-zk)s 

° Solve Σ 0≤s≤r βs1 * (z-z1)s = Σ 0≤s≤r βs2 * (z-z2)s  

      for βs1  given z1, βs2 , and z2 
°(r+1) x (r+1) matrix-vector multiply 

 

Converting Inner(n2) to Inner(n1) 
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Step 3 of FMM:     Inner(n4) = Convert(Outer(n3), n4)  

°Inner(n4) =  
     ( β0 , β1 , … , βr , z4 ) 
°Outer(n3) =  
     (M, α1 , α2 , … , αr , z3 ) 
  

° Solve Σ 0≤s≤r βs * (z-z4)s = M*log (z-z3) + Σ 0≤s≤r αs * (z-z3)-s  

      for βs  given z4 , αe , and z3 
°(r+1) x (r+1) matrix-vector multiply 
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Step 3 of FMM:  Computing Inner(n) from other expansions 

°We will use Inner_shift and Convert to build each 
Inner(n) by combing expansions from other nodes 

°Which other nodes?  
• As few as necessary to compute the potential accurately 
• Inner_shift(Inner(parent(n)), center(n)) will account for potential 

from particles far enough away from parent (red nodes below) 
• Convert(Outer(i), center(n)) will account for  potential from particles 

in boxes at same level in Interaction Set (nodes labeled i below)  
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Step 3 of FMM: Interaction Set 

• Interaction Set  = { nodes i that are children of a neighbor of 
parent(n), such that i is not itself a neighbor of n} 

• For each i in Interaction Set , Outer(i) is available, so that 
Convert(Outer(i),center(n)) gives contribution to Inner(n) due to 
particles in i 

• Number of i in Interaction Set  is at most 62 - 32 = 27 in 2D 
• Number of i in Interaction Set  is at most 63 - 33 = 189 in 3D 
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Step 3 of FMM: Compute Inner(n) for each n in QuadTree 

… Compute Inner(n) for each node of the QuadTree 
outer = Build_ Inner( root ) 
 
 
function (  β1,…,βr , zn) = Build_ Inner( n )    … compute inner expansion of node n 
     p = parent(n)    … p=nil if n = root 
     Inner(n) = Inner_shift( Inner(p), center(n) )      … Inner(n) = 0 if n = root  
     for all i in Interaction_Set(n)     …  Interaction_Set(root) is empty 
           Inner(n) = Inner(n) + Convert( Outer(i), center(n) )    
                         … add component by component 
     end for 
     for all children c of n   … complete preorder traversal of QuadTree 
           Build_Inner( c ) 
     end for 

Cost = O(# nodes in QuadTree)  
         = O( N ) 
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Top Level Description of FMM 

(1) Build the QuadTree 
(2) Call Build_Outer(root), to compute outer expansions 
      of each node n in the QuadTree 
             … Traverse QuadTree from bottom to top, 
             … combining outer expansions of children 
             …  to get out outer expansion of parent 
(3) Call Build_ Inner(root), to compute inner expansions 
      of each node n in the QuadTree 
 … Traverse QuadTree from top to bottom, 
             … converting outer to inner expansions 
             … and combining them 
(4) For each leaf node n, add contributions of 
      nearest particles directly into Inner(n) 
          … if 1 node/leaf, then each particles accessed once,  
            … so cost = O( N ) 
            … final Inner(n) is desired output: expansion for potential at 
                  each point due to all particles 
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Parallelizing Hierachical N-Body codes 
°Barnes-Hut, FMM and related algorithm have similar computational 

structure: 
1) Build the QuadTree 
2) Traverse QuadTree from leaves to root and build outer expansions   
 (just (TM,CM) for Barnes-Hut) 
3) Traverse QuadTree from root to leaves and build any inner expansions 
4) Traverse QuadTree  to accumulate forces for each particle 

°One parallelization scheme will work for them all 
• Based on D. Blackston and T. Suel, Supercomputing 97 

- UCB PhD Thesis, David Blackston, “Pbody”  
- Autotuner for N-body codes 

• Assign regions of space to each processor 
• Regions may have different shapes, to get load balance 

- Each region will have about N/p particles 
• Each processor will store part of Quadtree containing all  particles (=leaves) in its 

region, and their ancestors in Quadtree 
- Top of tree stored by all processors, lower nodes may also be shared 

• Each processor  will also store adjoining parts of Quadtree needed to compute forces 
for particles it owns 

- Subset of Quadtree needed by a processor called the Locally Essential Tree (LET) 
• Given the LET, all force accumulations (step 4)) are done in parallel, without 

communication 
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Optimizing and Tuning the  
Fast Multipole Method for Multicore  
and Accelerator Systems  
Georgia Tech 
– Aparna Chandramowlishwaran,  Aashay Shringarpure, Ilya Lashuk; 
 George Biros, Richard Vuduc 
 
Lawrence Berkeley National Laboratory 
– Sam Williams, Lenny Oliker 
 

 

°Presented at IPDPS 2010 
 

 

Performance Results 
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Summary 

First cross-platform single-node multicore study of 
tuning the fast multipole method (FMM) 

Explores data structures, SIMD, multithreading, mixed-precision, and 
tuning 
Show  

25x speedups on Intel Nehalem –  
2-sockets x 4-cores/socket x 2-thr/core  =    16 threads 

9.4x on AMD Barcelona   
2-sockets x 4-cores/socket x 1-thr/core  =      8 threads                                                                         

37.6x on Sun Victoria Falls 
2-sockets x 8-cores/socket x 8-thr/core  =  128 threads 
 

Surprise? Multicore ~ GPU in performance & energy 
efficiency for the FMM 

Source: Richard Vuduc  24 



Algorithmic Tuning of q = Max pts / box  -  Nehalem 

Shape of curve changes as we introduce optimizations. 

Source: Richard Vuduc  25 
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