N-Body Simulations - Background

- Suppose the answer at each point depends on data at all the other points
- Electrostatic, gravitational force
- Solution of elliptic PDEs
- Graph partitioning
- Seems to require at least $O\left(n^{2}\right)$ work, communication
- If the dependence on "distant" data can be compressed
- Because it gets smaller, smoother, simpler...
- Then by compressing data of groups of nearby points, can cut cost (work, communication) at distant points
- Apply idea recursively: cost drops to $O(n \log n$) or even $O(n)$
- Examples:
- Barnes-Hut or Fast Multipole Method (FMM) for electrostatics/gravityl...
- Multigrid for elliptic PDE
- ...

Fast Multiple Method (FMM)

- "A fast algorithm for particle simulation", L. Greengard and V. Rokhlin, J. Comp. Phys. V. 73, 1987, many later papers
- Many awards
- Differences from Barnes-Hut
- FMM computes the potential at every point, not just the force
- FMM uses more information in each box than the CM and TM, so it is both more accurate and more expensive
- In compensation, FMM accesses a fixed set of boxes at every level, independent of D/r
- BH uses fixed information (CM and TM) in every box, but \# boxes increases with accuracy. FMM uses a fixed \# boxes, but the amount of information per box increase with accuracy.
- FMM uses two kinds of expansions
- Outer expansions represent potential outside node due to particles inside, analogous to (CM,TM)
- Inner expansions represent potential inside node due to particles outside; Computing this for every leaf node is the computational goal of FMM
- First review potential, then return to FMM

Gravitational/Electrostatic Potential

- FMM will compute a compact expression for potential $\phi(x, y, z)$ which can be evaluated and/or differentiated at any point

In 3D with x, y, z coordinates

- Potential $=\phi(x, y, z)=-1 / r=-1 /\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$
- Force $=-\operatorname{grad} \phi(x, y, z)=-(d \phi / d x, d \phi / d y, d \phi / d z)=-(x, y, z) / r^{3}$ In 2D with x, y coordinates
- Potential $=\phi(x, y)=\log r=\log \left(x^{2}+y^{2}\right)^{1 / 2}$
- Force $=-\operatorname{grad} \phi(x, y)=-(d \phi / d x, d \phi / d y)=-(x, y) / r^{2}$
${ }^{\circ}$ In 2D with $z=x+i y$ coordinates, $i=\operatorname{sqrt}(-1)$
- Potential $=\phi(z)=\log |z|=\operatorname{Real}(\log z)$
\ldots because $\log z=\log |z| e^{i \theta}=\log |z|+i \theta$
- Drop Real() from calculations, for simplicity
- Force $=-(x, y) / r^{2}=-\left.z| | z\right|^{2}$

2D Multipole Expansion (Taylor expansion in 1/z) (1/2)

$\phi(z)=$ potential due to $z_{k}, k=1, \ldots, n-1$
$=\Sigma_{k} m_{k} * \log \left|z-z_{k}\right|$
$=\operatorname{Real}\left(\Sigma_{k} m_{k} * \log \left(z-z_{k}\right)\right)$
... since $\log z=\log |z| e^{i \theta}=\log |z|+i \theta$
... drop Real() from now on
$=\Sigma_{k} m_{k} *\left[\log (z)+\log \left(1-z_{k} / z\right)\right]$
... how logarithms work
$=M * \log (z)+\Sigma_{k} m_{k}{ }^{*} \log \left(1-z_{k} / z\right)$
\ldots where $M=\Sigma_{k} m_{k}$
$=M * \log (z)-\Sigma_{k} m_{k}{ }^{*} \Sigma_{s \geq 1}\left(z_{k} / z\right)^{s} / s$
... Taylor expansion converges if $\left|z_{k}\right| z \mid<1$
$=M * \log (z)-\Sigma s \geq 1 z^{-s} \Sigma_{k} m_{k} z_{k}{ }^{\mathbf{s}} / s$
... swap order of summation
$=M^{*} \log (z)-\Sigma_{s \geq 1} z^{-s} \alpha_{s}$
\ldots where $\alpha_{s}=\Sigma_{k} m_{k} \mathbf{z}_{k} / \mathrm{s} / \mathrm{s}$... called Multipole Expansion

2D Multipole Expansion (Taylor expansion in 1/z)

$\phi(z)=$ potential due to $z_{k}, k=1, \ldots, n-1$
$=\Sigma_{k} m_{k}{ }^{*} \log \left|z-z_{k}\right|$
$=\operatorname{Real}\left(\Sigma_{k} m_{k} * \log \left(z-z_{k}\right)\right)$
... drop Real() from now on
$=M^{*} \log (z)-\Sigma_{\mathbf{s} \geq 1} \mathbf{z}^{-\mathbf{s}} \alpha_{\mathbf{s}} \quad$... Taylor Expansion in $1 / z$
... where $M=\Sigma_{k} m_{k}=$ Total Mass and

$$
\alpha_{s}=\Sigma_{k} m_{k} z_{k}^{s} / s
$$

... This is called a Multipole Expansion in z
$=M^{*} \log (z)-\Sigma_{r \geq s \geq 1} z^{-s} \alpha_{s}+\operatorname{error}(r)$
... $r=$ number of terms in Truncated Multipole Expansion
\ldots and error (r) $=-\Sigma_{r<s} z^{-S} \alpha_{s}$

- Note that $\alpha_{1}=\Sigma_{k} m_{k} z_{k}=C M^{*} M$ so that M and α_{1} terms have same info as Barnes-Hut
- $\operatorname{error}(r)=O\left(\left\{\max _{k}\left|z_{k}\right| /|z|\right\}^{r+1}\right)$

Error in Truncated 2D Multipole Expansion

-

$\operatorname{error}(r)=O\left(\left\{\max _{k}\left|z_{k}\right| /|z|\right\}^{r+1}\right)$

- Suppose $\max _{k}\left|z_{k}\right| /|z| \leq c<1$, so error(r) $=\mathbf{O}\left(c^{r+1}\right)$
Suppose all particles z_{k} lie inside a D-by-
D square centered at origin
\circ
Suppose z is outside a 3D-by-3D
square centered at the origin
$\mathrm{c}=(\mathrm{D} / \mathrm{sqrt}(2)$) / (1.5*D) $\sim .47<.5$
- each term in expansion adds

1 bit of accuracy

- 24 terms enough for single precision, 53 terms for double precision
- In 3D, can use spherical harmonics or other expansions

Error outside larger box is O($c^{\wedge(-r)) ~}$

$+=$ origin

Outer(n) and Outer Expansion

$\phi(z) \sim M * \log \left(z-z_{n}\right)-\Sigma_{r \geq s \geq 1}\left(z-z_{n}\right)^{-s} \alpha_{s}$
${ }^{\circ} \operatorname{Outer}(\mathrm{n})=\left(\mathrm{M}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}, z_{n}\right)$

- Stores data for evaluating potential $\phi(z)$ outside node n due to particles inside n
- $z_{n}=$ center of node n
- Cost of evaluating $\phi(z)$ is $O(r)$, independent of the number of particles inside n
- Cost grows linearly with desired number of bits of precision ~r
- Will be computed for each node in QuadTree
- Analogous to (TM,CM) in Barnes-Hut
- M and α_{1} same information as Barnes-Hut

Inner(n) and Inner Expansion

- Outer(n) used to evaluate potential outside node n due to particles inside n

Inner(n) will be used to evaluate potential inside node n due to particles outside n
$\square \Sigma_{0 \leq s \leq r} \beta_{s} *\left(z-z_{n}\right)^{s}$
${ }^{\circ} Z_{n}=$ center of node $n, a \operatorname{D-by-D}$ box
${ }^{\circ} \operatorname{Inner}(n)=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{r}, z_{n}\right)$

- Particles outside n must lie outside 3D-by-3D box centered at z_{n}

Top Level Description of FMM

(1) Build the QuadTree
\Rightarrow (2) Call Build_Outer(root), to compute outer expansions of each node n in the QuadTree
... Traverse QuadTree from bottom to top,
... combining outer expansions of children
... to get out outer expansion of parent
(3) Call Build_Inner(root), to compute inner expansions of each node n in the QuadTree
... Traverse QuadTree from top to bottom,
... converting outer to inner expansions
... and combining them
(4) For each leaf node n, add contributions of nearest particles directly into Inner(n)
... final Inner(n) is desired output: expansion for potential at each point due to all particles

- For step 2 of FMM (as in step 2 of BH) we want to compute Outer(n) cheaply from Outer(\mathbf{c}) for all children c of \mathbf{n}
${ }^{\circ}$ How to combine outer expansions around different points?
- $\phi_{k}(z) \sim M_{k} * \log \left(z_{-} z_{k}\right)-\Sigma_{r \geq s \geq 1}\left(z-z_{k}\right)^{-s} \alpha_{s k}$ expands around $z_{k}, k=1,2$
- First step: make them expansions around same point

Using Outer_Shift to convert Outer(nL) to Cuterini2)
${ }^{\circ} \mathrm{n}_{1}$ is a child (subsquare) of $\mathbf{n}_{\mathbf{2}}$
${ }^{\circ} z_{k}=\operatorname{center}\left(n_{k}\right)$ for $k=1,2$

- Outer $\left(\mathrm{n}_{1}\right)$ expansion accurate outside blue dashed square, so also accurate outside black dashed square
- So there is an Outer $\left(\mathrm{n}_{2}\right)$ expansion with different α_{k} and center z_{2} which represents the same potential as

Outer $\left(\mathrm{n}_{1}\right)$ outside the black dashed box

Outer_shift: Details (2/3)

- Given

$$
\phi_{1}(z)=M_{1} * \log \left(z-z_{1}\right)+\Sigma_{r \geq s \geq 1}\left(z-z_{1}\right)^{-s} \alpha_{s 1}
$$

${ }^{\circ}$ Solve for M_{2} and $\alpha_{s 2}$ in

$$
\phi_{1}(z) \sim \phi_{2}(z)=M_{2} * \log \left(z-z_{2}\right)+\Sigma_{r \geq s \geq 1}\left(z-z_{2}\right)^{-s} \alpha_{s 2}
$$

${ }^{\circ}$ Get $M_{2}=M_{1}$ and each $\alpha_{s 2}$ is a linear combination of the $\alpha_{s 1}$

- multiply r-vector of $\alpha_{s 1}$ values by a fixed r-by-r matrix to get $\alpha_{s 2}$
${ }^{\circ}\left(M_{2}, \alpha_{12}, \ldots, \alpha_{r 2}, z_{2}\right)=$ Outer_shift(Outer $\left.\left(n_{1}\right), z_{2}\right)$ $=$ desired Outer(n_{2})

Step 2 of FMM: compute Outer(n) for each node \mathbf{n} in QuadTree (3/3)

... Compute Outer(n) for each node of the QuadTree outer = Build_Outer(root)		
```function (M, \alpha1,\ldots,\mp@subsup{\alpha}{r}{},\mp@subsup{Z}{n}{\prime})=\mathrm{ Build_Outer( n ) ... compute outer expansion of node n} if }\mathbf{n}\mathrm{ if a leaf ... it contains 1 (or a few) particles compute and return Outer(n) = (M, \alpha1,\ldots,\mp@subsup{\alpha}{r}{},\mp@subsup{z}{n}{\prime})\mathrm{ directly from} its definition as a sum else ..."post order traversal": process parent after all children Outer(n) = 0 for all children c(k) of n ... k= 1,2,3,4 Inner Loop of Build_Outer```		
```Outer( c(k) ) = Build_Outer( c(k) ) Outer(n) = Outer(n) + Outer_shift( Outer(c(k)), center(n)) ... just add component by component endfor return Outer(n) end if```	$\begin{array}{\|lll} \hline \mathbf{e}(\mathbf{4}) & & \\ & & n \\ & \text { Outer(e(4)) } \\ & \text { Outer-Shift } & \\ \hline \end{array}$	Outer(e(3))   Outer-Shift
$\begin{gathered} \text { Cost = O(\# nodes in QuadTree) }=0(N) \\ \text { same as for Barnes-Hut } \\ \hline \end{gathered}$	Outer-Shift \quad Outer $(\mathrm{e}(1))$ $\mathrm{e}(1)$	Outer-Shift Outer(e(2))

Top Level Description of FMM

(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions of each node \mathbf{n} in the QuadTree
... Traverse QuadTree from bottom to top,
... combining outer expansions of children
... to get out outer expansion of parent
\Rightarrow (3) Call Build_ Inner(root), to compute inner expansions of each node n in the QuadTree
... Traverse QuadTree from top to bottom,
... converting outer to inner expansions
... and combining them
(4) For each leaf node n, add contributions of nearest particles directly into Inner(n)
... final Inner(n) is desired output: expansion for potential at each point due to all particles

Step 3 of FMM: Computing Inner(n) from other expansions

- Which other expansions?

- As few as necessary to compute the potential accurately
- Inner expansion of parent(n) will account for potential from particles far enough away from parent (red nodes below)
- Outer expansions will account for potential from particles in boxes at same level in Interaction Set (nodes labeled i below)

Interaction_Set(n) for the Fast Multipole Method

i		i	i	i	i
i		i	i	i	i
i				i	i
i		n		i	i
i				i	i
i		i	i	i	i

$$
\mathrm{p}=\text { parent }(\mathrm{n})
$$

Step 3 of FMM: Compute Inner(n) for each n in QuadTree

- Need Inner $\left(\mathrm{n}_{1}\right)=$ Inner_shift(lnner(n_{2}), n_{1})

Converting Inner(n2) to Inner(n1)

n2 = parent(n1)

- Need Inner $\left(\mathrm{n}_{4}\right)=$ Convert(Outer($\left.\mathrm{n}_{3}\right), \mathrm{n}_{4}$)

Converting Outer(n3) to Inner(n4)

n3 in Interaction_set(n4)

Step 3 of FMM: $\quad \operatorname{Inner}\left(\mathrm{n}_{1}\right)=\operatorname{Inner} _$shift $\left(\operatorname{Inner}\left(\mathrm{n}_{2}\right), \mathrm{n}_{1}\right)$

- $\operatorname{lnner}\left(\mathrm{n}_{\mathrm{k}}\right)=$

$\left(\beta_{0 k}, \beta_{1 k}, \ldots, \beta_{r k}, z_{k}\right)$

Inner expansion $=\Sigma_{0 \leq s \leq r} \beta_{\text {sk }} *\left(\mathrm{z}-\mathbf{z}_{\mathbf{k}}\right)^{\mathrm{s}}$
。
Solve $\Sigma_{0 \leq s \leq r} \beta_{s 1} *\left(z-z_{1}\right)^{s}=\Sigma_{0 \leq s \leq r} \beta_{s 2} *\left(z-z_{2}\right)^{s}$
for $\beta_{\mathrm{s} 1}$ given $\mathrm{z}_{1}, \beta_{\mathrm{s} 2}$, and z_{2}

- $(\mathrm{r}+1) \times(\mathrm{r}+1)$ matrix-vector multiply

Step 3 of FMM: $\quad \operatorname{Inner}\left(\mathrm{n}_{4}\right)=$ Convert(Outer $\left.\left(\mathrm{n}_{3}\right), \mathrm{n}_{4}\right)$

- Inner $\left(n_{4}\right)=\quad$ Converting Outer(n3) to Inner(n4)
$\left(\beta_{0}, \beta_{1}, \ldots, \beta_{r}, z_{4}\right)$
- Outer $\left(\mathrm{n}_{3}\right)=$
(M, $\left.\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}, z_{3}\right)$

Solve $\boldsymbol{\Sigma}_{0 \leq \mathrm{s} \leq \mathrm{r}} \beta_{\mathrm{s}} *\left(\mathrm{z}-\mathrm{z}_{4}\right)^{\mathrm{s}}=\mathbf{M}^{*} \log \left(\mathrm{z}-\mathrm{z}_{3}\right)+\boldsymbol{\Sigma}_{0 \leq \mathrm{s} \leq \mathrm{r}} \alpha_{\mathrm{s}} *\left(\mathrm{z}-\mathrm{z}_{3}\right)^{-\mathrm{s}}$ for β_{s} given $\mathrm{z}_{4}, \alpha_{\mathrm{e}}$, and z_{3}

- $(\mathrm{r}+1) \mathrm{x}(\mathrm{r}+1)$ matrix-vector multiply

Step 3 of FMM: Computing Inner(n) from other expansions

- We will use Inner_shift and Convert to build each Inner(n) by combing expansions from other nodes
Which other nodes?
- As few as necessary to compute the potential accurately
- Inner_shift(Inner(parent(n)), center(n)) will account for potential from particles far enough away from parent (red nodes below)
- Convert(Outer(i), center(n)) will account for potential from particles in boxes at same level in Interaction Set (nodes labeled i below)

$$
\mathrm{p}=\text { parent }(\mathrm{n})
$$

Step 3 of FMM: Interaction Set

- Interaction Set = \{ nodes i that are children of a neighbor of parent(n), such that i is not itself a neighbor of $n\}$
- For each i in Interaction Set, Outer(i) is available, so that Convert(Outer(i),center(n)) gives contribution to Inner(n) due to particles in i
- Number of i in Interaction Set is at most 62-32 = $\mathbf{2 7}$ in 2D
- Number of \mathbf{i} in Interaction Set is at most 63-33 $=189$ in 3D

Interaction Set.(n) for the Fast Multipole Method

Step 3 of FMM: Compute Inner(n) for each n in QuadTree

... Compute Inner(n) for each node of the QuadTree outer = Build_ Inner(root)

```
function ( }\mp@subsup{\beta}{1}{\prime},\ldots,\mp@subsup{\beta}{r}{\prime},\mp@subsup{z}{n}{\prime})=\mathrm{ Build_ Inner( n ) ... compute inner expansion of node n
    p = parent(n) ...p=nil if n= root
    Inner(n) = Inner_shift( Inner(p), center(n) ) ... Inner(n) = 0 if n = root
    for all i in Interaction_Set(n) ... Interaction_Set(root) is empty
        Inner(n) = Inner(n) + Convert( Outer(i), center(n) )
        ... add component by component
    end for
    for all children c of n ... complete preorder traversal of QuadTree
        Build_Inner( c )
    end for
```

$$
\begin{aligned}
\text { Cost } & =0(\# \text { nodes in QuadTree) } \\
& =O(N)
\end{aligned}
$$

(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions of each node \mathbf{n} in the QuadTree
... Traverse QuadTree from bottom to top,
... combining outer expansions of children
... to get out outer expansion of parent
(3) Call Build_Inner(root), to compute inner expansions of each node n in the QuadTree
... Traverse QuadTree from top to bottom,
... converting outer to inner expansions
... and combining them
(4) For each leaf node n, add contributions of nearest particles directly into Inner(n)
... if 1 node/leaf, then each particles accessed once,
... so cost $=\mathrm{O}(\mathrm{N})$
... final Inner(n) is desired output: expansion for potential at each point due to all particles

Parallelizing Hierachical N-Body codes

- Barnes-Hut, FMM and related algorithm have similar computational structure:

1) Build the QuadTree
2) Traverse QuadTree from leaves to root and build outer expansions (just (TM,CM) for Barnes-Hut)
3) Traverse QuadTree from root to leaves and build any inner expansions
4) Traverse QuadTree to accumulate forces for each particle

- One parallelization scheme will work for them all
- Based on D. Blackston and T. Suel, Supercomputing 97
- UCB PhD Thesis, David Blackston, "Pbody"
- Autotuner for N-body codes
- Assign regions of space to each processor
- Regions may have different shapes, to get load balance
- Each region will have about N/p particles
- Each processor will store part of Quadtree containing all particles (=leaves) in its region, and their ancestors in Quadtree
- Top of tree stored by all processors, lower nodes may also be shared
- Each processor will also store adjoining parts of Quadtree needed to compute forces for particles it owns
- \quad Subset of Quadtree needed by a processor called the Locally Essential Tree (LET)
- Given the LET, all force accumulations (step 4)) are done in parallel, without communication

Optimizing and Tuning the Fast Multipole Method for Multicore and Accelerator Systems

 Georgia Tech

 Georgia Tech
 - Aparna Chandramowlishwaran, Aashay Shringarpure, Ilya Lashuk; George Biros, Richard Vuduc

Lawrence Berkeley National Laboratory

- Sam Williams, Lenny Oliker
- Presented at IPDPS 2010

Summary

- First cross-platform single-node multicore study of tuning the fast multipole method (FMM)
- Explores data structures, SIMD, multithreading, mixed-precision, and tuning
- Show
- 25x speedups on Intel Nehalem -
- 2-sockets x 4-cores/socket x 2-thr/core = 16 threads
- 9.4x on AMD Barcelona
- 2-sockets x 4-cores/socket \times 1-thr/core $=8$ threads
- 37.6x on Sun Victoria Falls
- 2-sockets x 8-cores/socket x 8-thr/core = 128 threads
-Surprise? Multicore ~ GPU in performance \& energy efficiency for the FMM

Algorithmic Tuning of $q=$ Max pts $/$ box - Nehalem

Shape of curve changes as we introduce optimizations.

