
02/14/2007 CS267 Lecture 9 4

Matrix-vector multiply kernel: y(i) � y(i) + A(i,j)�x(j)Matrix-vector multiply kernel: y(i) � y(i) + A(i,j)�x(j)

for each row i
for k=ptr[i] to ptr[i+1] do

y[i] = y[i] + val[k]*x[ind[k]]

SpMV in Compressed Sparse Row (CSR) Format

Matrix-vector multiply kernel: y(i) � y(i) + A(i,j)�x(j)

for each row i
for k=ptr[i] to ptr[i+1] do

y[i] = y[i] + val[k]*x[ind[k]]

Ay

x Representation of A

CSR format is one of many possibilities

02/14/2007 CS267 Lecture 9 5

Parallel Sparse Matrix-vector multiplication
• y = A*x, where A is a sparse n x n matrix

• Questions
• which processors store

• y[i], x[i], and A[i,j]
• which processors compute

• y[i] = sum (from 1 to n) A[i,j] * x[j]
= (row i of A) * x … a sparse dot product

• Partitioning
• Partition index set {1,…,n} = N1 � N2 � … � Np.
• For all i in Nk, Processor k stores y[i], x[i], and row i of A
• For all i in Nk, Processor k computes y[i] = (row i of A) * x

• “owner computes” rule: Processor k compute the y[i]s it owns.

x

y
P1
P2
P3
P4

May require
communication

02/14/2007 CS267 Lecture 9 6

Matrix Reordering via Graph Partitioning
• “Ideal” matrix structure for parallelism: block diagonal

• p (number of processors) blocks, can all be computed locally.
• If no non-zeros outside these blocks, no communication needed

• Can we reorder the rows/columns to get close to this?
• Most nonzeros in diagonal blocks, few outside

P0

P1

P2

P3

P4

= *

P0 P1 P2 P3 P4

02/14/2007 CS267 Lecture 9 7

Goals of Reordering
• Performance goals

• balance load (how is load measured?).
• Approx equal number of nonzeros (not necessarily rows)

• balance storage (how much does each processor store?).
• Approx equal number of nonzeros

• minimize communication (how much is communicated?).
• Minimize nonzeros outside diagonal blocks
• Related optimization criterion is to move nonzeros near diagonal

• improve register and cache re-use
• Group nonzeros in small vertical blocks so source (x) elements

loaded into cache or registers may be reused (temporal locality)
• Group nonzeros in small horizontal blocks so nearby source (x)

elements in the cache may be used (spatial locality)

• Other algorithms reorder for other reasons
• Reduce # nonzeros in matrix after Gaussian elimination
• Improve numerical stability

02/14/2007 CS267 Lecture 9 8

Graph Partitioning and Sparse Matrices

1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

1 2 3 4 5 6

3

6

1

5

2

• Relationship between matrix and graph

• Edges in the graph are nonzero in the matrix: here the matrix is
symmetric (edges are unordered) and weights are equal (1)

• If divided over 3 procs, there are 14 nonzeros outside the diagonal
blocks, which represent the 7 (bidirectional) edges

4

02/14/2007 CS267 Lecture 9 9

Graph Partitioning and Sparse Matrices

1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

1 2 3 4 5 6

• Relationship between matrix and graph

• A “good” partition of the graph has
• equal (weighted) number of nodes in each part (load and storage balance).
• minimum number of edges crossing between (minimize communication).

• Reorder the rows/columns by putting all nodes in one partition together.

3

6

1

5

42

