Column Cholesky Factorization

forj=1:n

L(:n,) = A(:n,));
fork=1:}-1
% cmod(j,k)
L(:n, j) = L(:n, j) — LG, k) * L(j:n, k);
end;
% cdiv(j)
L, J) = sart(L{, 1)
L(j+1:n,}) = L(+1:n,)) / L(,));

end:;

e Column j of Abecomes column j of L

Sparse Column Cholesky Factorization

forj=1:n

L(:n, j) = A(:n,));
for k < j with L(j, k) nonzero
% sparse cmod(j,k)

L(:n, j) = L(:n, j) — L(, K) * L(j:n, K);
end;

% sparse cdiv())
L{, 1) = sart(L(,)));
L(j+1:n,j) =L({+1:n,j) / L(,));

end:;

e Column j of Abecomes column j of L

Graphs and Sparse Matrices: Cholesky factorization

Fill: new nonzeros in factor

1 3 7 1 3 7
8 6 8 6
4 10 4 10
9 2 9 2
5 5
G(A) G*(A)

[chordal]

Symmetric Gaussian elimination:
forj=1ton
add edges between j’ s
higher-numbered neighbors

Cholesky Graph Game

Given an undirected graph G = G(A),
Repeat:
Choose a vertex v and mark it;
Add edges between unmarked neighbors of v;

Until every vertex is marked

Goal: End up with as few edges as possible.

Output: A labeling of the vertices with numbers 1 to n,
corresponding to a symmetric permutation of matrix A.

Path lemma [Davis Thm 4.1]

Let G = G(A) be the graph of a symmetric, positive definite
matrix, with vertices 1, 2, ..., n, and let G* = G+(A) be
the filled graph.

Then (v, w) is an edge of G if and only if G contains a

path from v to w of the form (v, X4, X5, ..., X,, w) with
X; < min(v, w) for each i.

(This includes the possibility k = 0, in which case (v, w) is an edge of
G and therefore of G+.)

Elimination Tree

1 7 .10
0
: 8 6 5
. 4
) * !
R 10 7
X3 oo\ : 3
o o0 [N N J 6
Cholesky factor G*(A T(A)

T(A): parent()=min{1>]:(i,)) In G*(A) }
parent(col J) = first nonzero row below diagonal in L

* T describes dependencies among columns of factor
 Can compute G*(A) easily from T
 Can compute T from G(A) in almost linear time

Complexity measures for sparse Cholesky

e Space:
« Measured by fill, which is nnz(G*(A))

 Number of off-diagonal nonzeros in Cholesky factor
(need to store about n + nnz(G*(A)) real numbers).

« Sum over vertices of G*(A) of (# of higher neighbors).

e Time:
* Measured by number of flops (multiplications, say)

« Sum over vertices of G*(A) of (# of higher neighbors)?

e Front size:
 Related to the amount of “fast memory” required

« Max over vertices of G*(A) of (# of higher neighbors).

Permutations for sparsity

“T observed that most of the

coefficients in our matrices were zero;
K i.c., the nonzeros were ‘sparse in the
matrix, and that typically the triangular
matrices associated with the forward
and back solution provided by

Gaussian elimination would remain

s

- Harry Markowitz, describing the 1950s
work on portfolio theory that won
the 1990 Nobel Prize for Economics & =

sparse if pivot elements were chosen
. 7y
with care

Cholesky Graph Game

Given an undirected graph G = G(A),
Repeat:
Choose a vertex v and mark it;
Add edges between unmarked neighbors of v;

Until every vertex is marked

Goal: End up with as few edges as possible.

Output: A labeling of the vertices with numbers 1 to n,
corresponding to a symmetric permutation of matrix A.

The (2-dimensional) model problem

n1/2

« Graph is a regular square grid with n = k? vertices.
« Corresponds to matrix for regular 2D finite difference mesh.

e Gives good intuition for behavior of sparse matrix
algorithms on many 2-dimensional physical problems.

« There’ s also a 3-dimensional model problem.

Permutations of the 2-D model problem

 Theorem 1: With the natural permutation, the n-vertex
model problem has exactly O(n3?) fill.

 Theorem 2: With a nested dissection permutation, the
n-vertex model problem has exactly O(n log n) fill.

 Theorem 3: With any permutation, the n-vertex model
problem has at least O(n log n) fill.

Nested dissection ordering

A separator in a graph G is a set S of vertices whose
removal leaves at least two connected components.

e A nested dissection ordering for an n-vertex graph G
numbers its vertices from 1 to n as follows:

* Find a separator S, whose removal leaves connected
components T4, To, ..., Ty

 Number the vertices of S from n-|S|+1 to n.

e Recursively, number the vertices of each component:
Tifrom1lto|T4, T,from|T|[+1to|T4[+|T,|, etc.

 If a component is small enough, number it arbitrarily.

It all boils down to finding good separators!

Separators in practice

« Graph partitioning heuristics have been an active
research area for many years, often motivated by
partitioning for parallel computation.

e Some techniques:

» Spectral partitioning (uses eigenvectors of Laplacian matrix of graph)
« Geometric partitioning (for meshes with specified vertex coordinates)
* |terative-swapping (Kernighan-Lin, Fiduccia-Matheysses)

» Breadth-first search (fast but dated)

« Many popular modern codes (e.g. Metis, Chaco) use
multilevel iterative swapping

Heuristic fill-reducing matrix permutations

Nested dissection:
* Find a separator, number it last, proceed recursively
* Theory: approx optimal separators => approx optimal fill and flop count
* Practice: often wins for very large problems

Minimum degree:
« Eliminate row/col with fewest nzs, add fill, repeat

* Hard to implement efficiently — current champion is
“Approximate Minimum Degree” [Amestoy, Davis, Duff]

e Theory: can be suboptimal even on 2D model problem
* Practice: often wins for medium-sized problems

Banded orderings (Reverse Cuthill-McKee, Sloan, . . .):
* Tryto keep all nonzeros close to the diagonal
« Theory, practice: often wins for “long, thin” problems

The best modern general-purpose orderings are ND/MD hybrids.

Complexity of direct methods

Time and
space to solve
any problem
on any well-
shaped finite
element mesh

n1/2

2D

n1/3

3D

Space (fill):

O(n log n)

O(n 4/3)

Time (flops):

O(n 3/2)

O(n 2)

Sparse Cholesky factorization to solve Ax=0D0

1. Preorder: replace A by PAPT and b by Pb

* Independent of numerics

2. Symbolic Factorization: build static data structure

e Elimination tree
 Nonzero counts

e Supernodes

* Nonzero structure of L

3. Numeric Factorization: A= LLT

« Static data structure
« Supernodes use BLASS3 to reduce memory traffic

4. Triangular Solves: solve Ly = b, then LT™X =y

Symmetric supernodes for Cholesky

e Supernode = group of °
adjacent columns of L with ‘:\ -
same nonzero structure coe o

(N N J .| @

* Related to clique structure i .

of filled graph G*(A) oee .
(N N J [

* Supernode-column update: k sparse vector ops become
1 dense triangular solve
+ 1 dense matrix * vector
+ 1 sparse vector add

o« Sparse BLAS 1 => Dense BLAS 2

* Only need row numbers for first column in each supernode
 For model problem, integer storage for L is O(n) not O(n log n)

Supernode-Panel Updates

for each panel do

o Symbolic factorization:
which supernodes update the panel;

e Supernode-panel update:
for each updating supernode do

for each panel column do
supernode-column update;

 Factorization withinpanel: | | b= 2

N

2

use supernode-column algorithm &

+: “BLAS-2.5" replaces BLAS-1
-: Very big supernodes don’ t fit in cache
=> 2D blocking of supernode-column updates

Symmetric-pattern multifrontal factorization

1 2 3 4 5 6 7 8 9
® ® ®

o o ®
® 06 0 ®

© © N O O~ W NP
o
®
[o

Symmetric-pattern multifrontal factorization

For each node of T from leaves to root:
« Sum own row/col of A with children’ s
Update matrices into Frontal matrix
« Eliminate current variable from Frontal
matrix, to get Update matrix

* Pass Update matrix to parent

Symmetric-pattern multifrontal factorization

G(A ' For each node of T from leaves to root:
() 3 ‘ 6 « Sum own row/col of A with children’s
.. Update matrices into Frontal matrix
2 ° « Eliminate current variable from Frontal

matrix, to get Update matrix
* Pass Update matrix to parent

Symmetric-pattern multifrontal factorization

For each node of T from leaves to root:

Sum own row/col of A with children’s
Update matrices into Frontal matrix
Eliminate current variable from Frontal
matrix, to get Update matrix

Pass Update matrix to parent

1 3 7 3 7 2 3 9 3 9
oo 0 P oo 0 P
® OO PP ® OO 9@ @
® OO ® OO

=A; =U; || F=A, =>U,

Symmetric-pattern multifrontal factorization

Symmetric-pattern multifrontal factorization

e N

1 2 3 4 5 6 7 8 9

Nﬂ A
T IR
3 6 L +U

Symmetric-pattern multifrontal factorization

Really uses supernodes, not nodes

All arithmetic happens on

dense square matrices.

Needs extra memory for a stack of

pending update matrices

Potential parallelism:

1. between independent tree branches

2. parallel dense ops on frontal matrix

MUMPS: distributed-memory multifrontal

[Amestoy, Duff, L” Excellent, Koster, Tuma]

Symmetric-pattern multifrontal factorization
Parallelism both from tree and by sharing dense ops
Dynamic scheduling of dense op sharing

Symmetric preordering

For nonsymmetric matrices:
 optional weighted matching for heavy diagonal
* expand nonzero pattern to be symmetric

* numerical pivoting only within supernodes if possible
(doesn’ t change pattern)

« failed pivots are passed up the tree in the update matrix

	Column Cholesky Factorization
	Sparse Column Cholesky Factorization
	Graphs and Sparse Matrices: Cholesky factorization
	Cholesky Graph Game
	Path lemma [Davis Thm 4.1]
	Elimination Tree
	Complexity measures for sparse Cholesky
	Permutations for sparsity
	Cholesky Graph Game
	The (2-dimensional) model problem
	Permutations of the 2-D model problem
	Nested dissection ordering
	Separators in practice
	Heuristic fill-reducing matrix permutations
	Complexity of direct methods
	Sparse Cholesky factorization to solve Ax = b
	Symmetric supernodes for Cholesky
	Supernode-Panel Updates
	Symmetric-pattern multifrontal factorization
	Symmetric-pattern multifrontal factorization
	Symmetric-pattern multifrontal factorization
	Symmetric-pattern multifrontal factorization
	Symmetric-pattern multifrontal factorization
	Symmetric-pattern multifrontal factorization
	Symmetric-pattern multifrontal factorization
	MUMPS: distributed-memory multifrontal�[Amestoy, Duff, L’Excellent, Koster, Tuma]

