
1

2009-08-17

More than 30 Years !
Parallel computing has been an every-day

tool for solving computational problems in
science and technology since the mid-
80´s

 Parallel algorithms
 Tools for parallel programming
 Parallel codes

 Message passing (MPI) in the 80´s
 Shared memory (OpenMP) in the 90´s
 Accelerators, many-core, exascale,…

 Parallel performance analysis
 Parallel computer systems

 For a long time: 10-1000 processors

2009-08-17

Parallel Computing Everywhere...

Today, all computers are parallel computers !

2

2009-08-17

Multi/manycore Processors
The Multi/manycore Era is here!

The introduction of multicore processors
and accelerators has a profound impact
on computing

Individual processor [core] costs will drop so quickly that
in the near future the world can view processors as a
nearly free commodity [IDC presentation on HPC at International
Supercomputing Conference, ICS07, Dresden, June 26-29 2007]

2009-08-17

Classical microprocessors: Whatever it
takes to run one program fast.

Exploring ILP (instruction-level parallelism):
 Faster clocks Deep pipelines
 Superscalar Pipelines
 Branch Prediction
 Out-of-Order Execution
 Trace Cache
 Speculation
 Predicate Execution
 Advanced Load Address Table
 Return Address Stack
 ….

3

2009-08-17

#2: Future Technology

2000 2005 2010 2015 År
Quantitative data and trends according to V. Agarwal et al., ISCA 2000
Based on SIA (Semiconductor Industry Association) prediction, 1999

390ps

170ps

830 ps
(1.2GHz)

70 ps (14 GHz)

cy
cl

e
ti

m
e

Bad News #2
Looong wire delay slow CPUs

2009-08-17

L1 cache

CPU

L2 Cache
L3
Ctrl

Bad News #3:
Memory latency/bandwidth is the bottleneck…

Slooow Memory

A = B + C:
Read B
Read C
Add B & C
WriteA

Latency
0.3 - 100 ns
0.3 - 100 ns

0.3 ns
0.3 - 100 ns

B

A+B

CC

4

2009-08-17

Bad News #4:
Power is the limit

 Power consumption is the bottleneck
 Cooling servers is hard
 Battery lifetime for mobile computers
 Energy is money

 Dynamic effect is proportional to
~ Frequency
~ Voltage2

2009-08-17

Why multiple cores?

 Instruction level parallelism is running out
 Feed the CPU with instructions from many threads

(Simultaneous MultiThreading, SMT)

 Wire delay is hurting now
 Use the chip for multiple smaller CPU cores (Chip

MultiProcessors, CMP)

 Power is a limit now
 Lower the frequency (which enables lower voltage)

 Memory latency/bandwidth bottleneck
 Access the memory from many threads

5

2009-08-17

Parallel ComputingTerminology

Node / CPU / Socket / Processor / Core

Task

Pipelining

Shared Memory (architecture and programming model)

SMP / UMA / NUMA (architecture and programming model)

Distributed Memory (architecture and programming model)

Communication

Synchronization

Granularity

Parallel Overhead

Massively Parallel

Embarrassingly Parallel

2009-08-17

Terminology/Concepts cont.

Observed Speedup: wall-clock time of serial execution/wall-
clock time of parallel execution

Amdahl's Law: max speedup = 1/(1 – P)

Complexity (Design/Coding/Debugging/Tuning/Maintenance)

Resource Requirements

Scalability (observed, strong, weak)

6

2009-08-17

Parallel Computer Architechtures
Shared Memory

Ability for all processors to access all memory as global
address space. Multiple processors can operate independently
but share the same memory resources. Changes in a
memory location effected by one processor are visible to all
other processors (caching systems!)

Uniform Memory Access (UMA): Equal access and access
times to memory. CC-UMA - Cache Coherent UMA.

Non-Uniform Memory Access (NUMA): Not all processors
have equal access time to all memories. If cache coherency is
maintained: CC-NUMA - Cache Coherent NUMA

Virtual Shared Memory Access: Use caching techniques and
software to create a VSM (Hagersten et al.)

2009-08-17

Parallel Computer Architechtures
Distributed Memory

Processors have their own local memory. Memory addresses
in one processor do not map to another processor. There is
no concept of global address space across all processors.
Distributed memory systems require a communication
network to connect inter-processor memory.

When a processor needs access to data in another processor,
it is usually the task of the programmer to explicitly define
how and when data is communicated. Synchronization
between tasks is likewise the programmer's responsibility.

The network "fabric" used for data transfer varies widely,
though it can be as simple as Ethernet and even “the
internet”

7

2009-08-17

Parallel Computer Architechtures
The “standard supercomputer” today: Hybrid!

2009-08-17

Parallel Computer Architechtures
Shared Memory

Global address space provides a user-friendly programming
perspective to memory. Potentially lacks of scalability
between memory and CPUs. Programmer is responsible for
synchronization constructs that ensure "correct" access of
global memory.

Distributed Memory

Memory is scalable with the number of processors. Increase
the number of processors and the size of memory increases
proportionately. Each processor can rapidly access its own
memory without interference and without the overhead
incurred with trying to maintain global cache coherency.

The programmer is responsible for many of the details
associated with data communication between processors. It
may be difficult to map existing data structures, based on
global memory, to this memory organization.

8

2009-08-17

Parallel Programming Models
Examples

 Shared Memory (with or without threads)

 Data Parallel (“PGAS” or “SIMD”)

 Distributed Memory / Message Passing

 Task Parallel (Function Parallelism) – “tightly coupled”
(Chunks and Tasks) or “loosely coupled” (Hadoop,
MapReduce)

 Hybrids …

Abstraction above hardware and memory architectures!

Models are NOT specific to a particular type of machine or
memory architecture!

Virtual Shared Memory – SM model on DM architecture

Message Passing on UMA/NUMA – DM model on SM arch.

No "best" model, although there certainly are better
implementations of some models over others.

2009-08-17

Thread Programming Models
A type of shared memory programming. A single "heavy
weight" process can have multiple "light weight", concurrent
execution paths.

The main program a.out is scheduled to run by the native
operating system. a.out loads and acquires all of the
necessary system and user resources to run. This is the
"heavy weight" process.

a.out performs some serial work, and then creates a number
of tasks (threads) that can be scheduled and run by the
operating system concurrently.

Each thread has local data, but also, shares the entire
resources of a.out. This saves the overhead associated with
replicating a program's resources for each thread ("light
weight"). Each thread also benefits from a global memory
view because it shares the memory space of a.out.

9

2009-08-17

Thread Programming Models
Threads communicate with each other through global
memory (updating address locations). This requires
synchronization constructs to ensure that more than one
thread is not updating the same global address at any time.

Threads can come and go, but a.out remains present to
provide the necessary shared resources until the application
has completed.

Implementations:

A library of subroutines

A set of compiler directives imbedded in the source code

The programmer is responsible for determining the
parallelism (although compilers can sometimes help).

POSIX Threads

2009-08-17

Thread Programming Models
 POSIX Threads. Part of Unix/Linux operating systems

 OpenMP. Industry standard, jointly defined and endorsed
by a group of major computer hardware and software
vendors, organizations and individuals. Compiler directive
based. Can be very easy and simple to use - provides for
"incremental parallelism". Can begin with serial code.

 Microsoft threads

 Java, Python threads

 CUDA threads for GPUs

10

2009-08-17

Data Parallel Models (PGAS)
Address space is treated globally. Most of the parallel work
focuses on performing operations on a data set. The data set
is typically organized into a common structure, such as an
array or cube. A set of tasks work collectively on the same
data structure, however, each task works on a different
partition of the same data structure.

On shared memory architectures, all tasks may have access
to the data structure through global memory.

On distributed memory architectures, the global data
structure can be split up logically and/or physically across
tasks.

 Unified Parallel C (UPC): an extension to the C
programming language for SPMD parallel programming.

 Global Arrays: provides a shared memory style
programming environment in the context of distributed
array data structures.

 Chapel: Open source parallel programming language
project.

2009-08-17

Distributed Memory Models
Distributed Memory / Message Passing Model

A set of tasks that use their own local memory during
computation. Multiple tasks can reside on the same physical
machine and/or across an arbitrary number of machines.
Tasks exchange data through communications by sending
and receiving messages.

Data transfer usually requires cooperative operations to be
performed by each process. For example, a send operation
must have a matching receive operation.

Implementations:

A library of subroutines. Calls to these subroutines are
imbedded in source code. The programmer is responsible for
determining all parallelism.

MPI is the "de facto" industry standard for message passing.
Not all implementations include everything in MPI-1, MPI-2 or
MPI-3.

11

2009-08-17

Task Parallelism
Each processor executes a different thread (or process) on
the same or different data. The threads may execute the
same or different code. In the general case, different
execution threads communicate with one another as they
work. Communication usually takes place by passing data
from one thread to the next as part of a workflow.

Task parallelism emphasizes the distributed (parallelized)
nature of the processing (i.e. threads), as opposed to the
data (data parallelism).

 Ada: Tasks (built-in)

 C++ (Intel): Threading Building Blocks

 C++ (Intel): Cilk Plus

 Java: Java concurrency

2009-08-17

Task Parallelism
Hadoop - Framework that allows for the distributed
processing of large data sets across clusters of computers
using simple programming models. Designed to detect and
handle failures at the application layer. Can be used on top of
a cluster of computers, each of which may be prone to
failures.

Hadoop MapReduce - Software framework for processing of
(large) data sets in-parallel on clusters of computers.

Splits the input data-set into independent chunks which are
processed by the map tasks in a completely parallel manner.
The framework sorts the outputs of the maps, which are then
input to the reduce tasks. Typically both the input and the
output of the job are stored in a file-system. The framework
takes care of scheduling tasks, monitoring them and re-
executes the failed tasks.

