Adapting the Polyhedral Model as a Framework
for Efficient Speculative Parallelization

Alexandra Jimborean

Luis Mastrangelo

Philippe Clauss
Vincent Loechner

Benoit Pradelle

CAMUS group, INRIA & LSIIT & University of Strasbourg
Strasbourg
France

first_name.last_nameQ@inria.fr

Abstract

In this paper, we present a Thread-Level Speculation (TLS) frame-
work whose main feature is to be able to speculatively parallelize a
sequential loop nest in various ways, by re-scheduling its iterations.
The transformation to be applied is selected at runtime with the
goal of minimizing the number of rollbacks and maximizing per-
formance. We perform code transformations by applying the poly-
hedral model that we adapted for speculative and runtime code par-
allelization. For this purpose, we designed a parallel code pattern
which is patched by our runtime system according to the profiling
information collected on some execution samples. Adaptability is
ensured by considering chunks of code of various sizes, that are
launched successively, each of which being parallelized in a dif-
ferent manner, or run sequentially, depending on the currently ob-
served behavior for accessing memory.

We show on several benchmarks that our framework yields good
performance on codes which could not be handled efficiently by
previously proposed TLS systems.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors — Run-time environments, Optimization

General Terms Performance

Keywords Speculative parallelization, dynamic system, polyhe-
dral model, dynamic code transformations

1. Overview

With the advent of multicore processors, automatically paralleliz-
ing sequential code became increasingly important. Particularly, it
is a challenging task to parallelize code at runtime, if the infor-
mation available at compile time is not sufficient. Runtime paral-
lelization techniques are usually based on thread-level speculation
(TLS) [2-4], where straightforward parallelization transformations
are optimistically applied on the original sequential code. In most
TLS proposals, modest performance gains were obtained, since
parallelization is attempted on unmodified code generated by the
compiler: when considering loop nests, the unique strategy usually

Copyright is held by the author/owner(s).

PPoPP’12, February 25-29, 2012, New Orleans, Louisiana, USA.
ACM 978-1-4503-1160-1/12/02.

verification verification
dependence + +
analysis validation rollback
A
parallel parallel verification
schedule schedule dependence +
1 1 analysis validation
parallel 2 . 2 parallel
= || |sequential | |=
schedule = & schedule
° schedule || ©
1 - 5 2

dependence
analysis

execution progress

Figure 1. Illustration of the chunking mechanism

applied is to cut the outermost loop into contiguous chunks and to
run these chunks separately in simultaneous threads, which yields
numerous rollbacks in case of a dependence carried by the out-
ermost loop. To be more efficient, TLS systems must handle more
complex code transformations that can be profitably selected at run-
time, depending on the current execution context. To our knowl-
edge, no attempt on applying various parallelizing transformations
using the TLS systems have been reported yet.

We propose performing advanced loop transformations pro-
vided by the polyhedral model [1] such as tiling, skewing, loop
interchange, etc., by speculating on the linearity of the loop bounds
and of the memory accesses. Not only that transforming code
shows benefits in boosting performance, but also it exhibits paral-
lelism in codes that cannot be otherwise parallelized in the original
form. Additionally, our framework allows several parallel sched-
ules, during one execution of the loop. We define a loop chunk as
a set of consecutive iterations of the outermost loop and apply one
parallel schedule per chunk.

Our goal is to parallelize the loop by chunks, by applying a suit-
able polyhedral transformation. We start by launching a profiling
chunk dedicated to capturing the behaviour of the loop, based on
which it can be decided whether a polyhedral transformation can be
applied for parallelizing the loop. If the dependence analysis vali-
dates such a transformation, the corresponding code is generated
and a new parallel chunk is launched. During the execution of the
speculative parallel code, the speculation is verified and the chunk
is validated, or a rollback is performed if a dependence violation
occurs. In this case, the code is re-executed in a smaller chunk that
completes its execution before the misprediction point, and another

instrumentation chunk is launched which overcomes the rollback
point and characterizes the new behavior of the loop. If the code
cannot be parallelized, a sequential chunk is executed, followed
again by an instrumented chunk. At some point, the loop might
exhibit a new behavior allowing parallelism, provided that another
polyhedral transformation is performed. On the other hand, if a par-
allel chunk is validated, execution continues with another parallel
chunk of a larger size. This process is described in figure 1.

2.

The framework consists of two parts: a static part, implemented
in the LLVM compiler, designed to prepare the loops for instru-
mentation and parallelization, and a dynamic part, in the form of a
runtime system whose role is to generate the parallel code and to
guide the execution.

Implementation details

Static component: Loops are marked for speculative paralleliza-
tion in the source code using a dedicated pragma. At compile time,
these loops are automatically identified and three versions are gen-
erated: original, instrumented and a parallel code pattern, together
with a mechanism for switching between the versions. Addition-
ally, support for chunking the outermost loop is included.

The instrumented version contains instrumentation instructions
which track the memory accesses performed inside the loop. The
goal is to compute linear functions of the surrounding loop indices,
used for performing the dependence analysis.

Instead of statically generating several parallel code versions,
we build a generic code pattern from which these versions can
be generated at runtime, by patching predefined code areas. The
advantage is that the code size is significantly reduced and more
parallel code versions can be build dynamically, guided by the
results of the instrumentation. Also, patching a parallel code pattern
is considerably faster than fully dynamic code generation. The
limitation of the pattern is that it can only support a subset of
the possible polyhedral transformations, which preserve the loop
structure and do not reorder the statements.

In the parallel code pattern, the original loop is transformed
into a for-loop with affine bounds and the original loop conditions
are inserted as guarding code. Additionally, initialization code is
inserted to assign the correct starting values for the variables at the
beginning of each thread, using the linear functions obtained from
instrumentation and a new polyhedral schedule. Correctness of the
code is ensured by the verification code, which, for each memory
access, compares the speculations against the actual values, at each
iteration. The loop bounds, the initialization and the verification
code, all use the linear functions computed during the profiling
phase. Since they are not known at compile time, the coefficients
are statically inserted as global variables, whose values will be
assigned at runtime. Different values of these coefficients represent
different schedules and will generate distinct parallel code versions.

A set of polyhedral transformations is proposed statically and is
encoded in the binary file as matrices. Their computation follows
a static dependence analysis, which ensures that the dependences
which can be statically identified will not invalidate the schedules,
minimizing the number of rollbacks.

Dynamic component: The runtime system collaborates tightly
with the static component. During the instrumentation phase, it re-
trieves the memory locations being accessed and computes inter-
polating linear functions of the surrounding loop indices. Instru-
mentation is performed on loop samples, to limit the overhead,
consequently the computed linear functions speculatively charac-
terize the behavior of the loop. Instrumentation is followed by a
dependence analysis which evaluates whether any of the proposed
polyhedral transformations can be efficiently applied. If successful,

296

the runtime system assigns values to the coefficients of the linear
functions in the code pattern.

To limit the synchronization overhead, the validation system
makes use of one flag per thread, which is set when a misprediction
occurs. Each thread polls its own flag. As soon as a thread detects
that a speculation is invalidated, it sets the flags of all threads. A
misspeculation is followed by a rollback which restores the mem-
ory to a correct state. For this purpose, the runtime system creates
a copy of the memory area that will be modified by the next par-
allel chunk, since it can be predicted using the interpolating linear
functions. When a rollback is performed, the memory is overwrit-
ten with the content of the copy, and the rollbacked iterations are
re-executed.

Results: We carried out experiments on synthetic benchmarks
aimed to emphasize different characteristics of the framework. The
“linked list” processes list elements allocated following either reg-
ular or irregular memory patterns. The “banded matrix™ accesses
elements of a matrix through indirect references whose linearity
is discovered by our framework which then applies a parallelizing
polyhedral transformation. The “cherry cake” performs different
computations depending on properties of the elements of a linked
list. It shows our system handling successively different parallel
schedules. The “NO to overhead” evaluates the overhead of the in-
strumentation when no parallelization is possible.

Measurements were obtained by executing the benchmarks on
24 cores of two AMD Opteron 12 core-processors running Linux
2.6.35. Super-linear speed-up is obtained on the “banded matrix”
thanks to the polyhdral transformation and loop tiling. Addition-
ally, the memory accessing behavior remains unchanged and no
rollbacks occur. In contrast, on the “linked list” and on the “cherry
cake” examples, a number of rollbacks are performed, but their
overhead is amorthized by polyhedral transformations and paral-
lelization.

Benchmark Sequential Spec. par. Speed-Up
exec. time (s) | exec. time (s)

linked list 26.65 3.78 7.04

banded matrix 219 8.4 26.07

cherry cake 516.23 57.15 9.03

NO to overhead | 173.33 173.34 1

3. Conclusion

We propose a TLS system, using the polyhedral model at runtime,
thus adapting to the current context, on chunks of the targeted loop
nests, to perform speculative parallelization. The chunking strategy
allows us to identify partial parallelism in loops and to apply the
most suitable polyhedral transformation for each chunk.

References

[1] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral parallelizer and locality optimizer. In
PLDI ’08, pages 101-113, 2008.

W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Torrellas.
POSH: a TLS compiler that exploits program structure. In Procs of
the eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming, PPoPP ’06, pages 158—167, New York, USA.

E. Raman, N. Va hharajani, R. Rangan, and D. I. August. Spice:
speculative parallel iteration chunk execution. In Procs of the 6th
annual IEEE/ACM international symposium on Code generation and
optimization, CGO °08, pages 175-184, New York, USA, 2008. ACM.
L. Rauchwerger and D. Padua. The LRPD test: speculative run-time
parallelization of loops with privatization and reduction parallelization.
In Procs of the ACM SIGPLAN 1995 conference on Programming
language design and implementation, PLDI ’95, pages 218-232, 1995.

(2]

