
Department	of	Informa-on	Technology,	Uppsala	University	 h9p://it.uu.se/	

UART	
Uppsala	Architecture	

Research	Team	

How	Can	We	Improve	DAE?	

	DAE	=	Decoupling	Uses	from	Loads	

							Selec-ng	Loads:	Crea-ng	Alterna-ve	Access	Phases	

Why	DAE?	DAE	+	Frequency	Scaling	Saves	Energy	

Evalua-ng	Versions	at	Run-me	and	Selec-ng	the	Best	Performing	One	

					Overcoming	Address	Recomputa-on:	Hois-ng	Loads	to	Access	Phases		 Info	

Problem:	
Hois-ng	all	loads	
Into	an	Access	Phase	
Is	infeasible:	address	
computa-on	overhead	
diminishes	benefits!	

So)ware	Decoupled	Access-Execute	
Kim-Anh	Tran,	Konstan-nos	Koukos,		
Stefanos	Kaxiras,	Alexandra	Jimborean	

Which	loads	
to	select	for	
prefetching? 	

How	to	avoid	
address	

recomputa-on?	

1	

2	

1	

2	

Run>me	Evalua>on	Phase:	
evaluate	each	combina-on!	

Pick	best	combina-on	
for	remaining	itera-ons	

A0 E E EA1 EA1 EA1A1 A2 EOrig ...

R
u
n
-t

im
e

Iteration0 10 20 30 40 50 60
slice 0 slice 1 slice 2 slice 3 slice 4 slice 5 ...Loop 

Slice

Original

DAE

CPU	frequency fopt

CPU	frequency
fmax

fmin
Execu�on

Memory-bound:
run	on low	frequency

Compute-bound:	
run	on	high	frequency

Original	code:	
compromise	frequency
to	balance	between	
energy	and	performance.

DAE	helps	to	save	energy	by	adjus�ng	the	frequency.	

vs.

Problem:	
Address	recomputa3on	
in	the	Execute	Phase	is	
expensive.	

Create	one	Access	Phase	for	each	level	of	indirec-on:	

Orig Original	Code

Legend

n-th	Access	Version

Execute	Phase	(same	for	all	An)

An

E

Run	each	version	(Original	and	
alterna-ve	Access-Execute	
versions)	for	a	couple	of	
itera>ons	

																					
was	iden-fied	as	the		
best	performing	version:	se9le	
on	this	combina-on!	

for	(...)	{

}

unroll	*	2
L1=ld	x[i]
L2=ld	y[i]
L1	+	L2

for	(...)	{
in-place
DAE

L1=ld	x[i]
L2=ld	y[i]
L1	+	L2

}

L3=ld	x[i+1]
L4=ld	y[i+1]
L3	+	L4

for	(...)	{

L1=ld	x[i]
L2=ld	y[i]

L1	+	L2

}

L3=ld	x[i+1]
L4=ld	y[i+1]

L3	+	L4

Register

Transfer	of	data
from	Access	to	Execute

via	registers

Access
Phase

Execute
Phase

for	(...)	{

}

for (...) {

x[i]

for (...) { for (...) {

Version	1:
1-indirec�on

a[x[i]]
b[a[x[i]]]

y[i]

Indirec�on

Legend

Access
Phase

Execute
Phase

or or

Version	2:
2-indirec�on

Version	3:
3-indirec�on

x[i]
y[i]

x[i]
a[x[i]]

y[i]

}

x[i]
a[x[i]]

y[i]

x[i]
a[x[i]]

b[a[x[i]]]
y[i]

} }
for (...) {

}

for (...) {

}

for (...) {

}

for	(...)	{

}

for	(...)	{

}

Access
Phase

Execute
Phase

Memory	Access
Computa�on

Cache

prefetch	into	
cache

use	data

for	(...)	{

}
Legend

Why	DAE	within	one	loop?	
By	applying	DAE	within	one	
loop,	we	may	transfer	data	
via	registers:	Access	phase	
loads	data	into	a	register,	
Execute	phase	directly	uses	

register.	

Why	unrolling?	
Unrolling	is	required	as	
we	now	apply	DAE	
within	the	loop	

	

Reference:		
A.	Jimborean,	K.	Koukos,	V.	
Spiliopoulos,	D.	Black-Schaffer,	
S.	Kaxiras.	Fix	the	code.	Don’t	
tweak	the	hardware:	A	new	
compiler	approach	to	Voltage-
Frequency	scaling.	In	Proc.	of	
CGO’14	

Contact:	
kim-anh.tran@it.uu.se	


