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ABSTRACT

Generating optimal code is a challenging problem. Traditional compilers break down the problem
complexity by solving the main interdependent compilation tasks (that is, instruction selection,
register allocation and instruction scheduling) in stages, and optimizing each stage individually
using heuristics. While this approach achieves good results, it clearly compromises on the gen-
erated code quality. In the last decades, combinatorial optimization approaches for code gener-
ators have emerged that open up the potential for optimal code generation. One such approach
is the Unison code generator. It captures the tasks of register allocation and instruction schedul-
ing in one combinatorial model, and hence allowing for task-interdependent code optimizations,
achieving performance improvements of up to 40%2 for generated codes. However, combinatorial
approaches suffer from slow compilation times due to the exponentially growing search effort.

This paper investigates refinements of Unison’s combinatorial model, aiming at cutting down
the search effort for faster compilation times.
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1 Introduction

The compilation process can be separated into two steps: the compiler front-end first trans-
lates the original source code into a more general intermediate representation (IR), after
which the compiler back-end generates machine code from the created IR. The code genera-
tion process in a compiler back-end has to perform three main tasks: selecting the appropri-
ate machine instructions (instruction selection), determining in which register each variable
resides (register allocation) and finally scheduling the order of instructions to execute (in-
struction scheduling). The Unison code generator [LCBS14] captures the latter two tasks
in a constraint model and uses Constraint Programming as the combinatorial optimization
technique to solve the problem.
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2compared to code generated by the LLVM compiler



A constraint model is a collection of variables and relations (that is, constraints) between
those variables. Each variable has a range of potential values it can be assigned to (that is,
domain). A solution to a constraint problem is an assignment to every variable that satisfies
all constraints.

Example Unison constraint: Precedence Constraints. A data dependency of an instruction i
on an instruction j is captured by the following constraint:

ci ≥ cj + lat(j)

with c∗ denoting the issue cycle of an instruction
lat(∗) denoting the latency of an instruction

(1)

Constraint 1 expresses that instruction i may not be issued until its immediate predecessor j
was issued, and its operation latency has passed. For variable domains ci = cj = {1, . . . , 5},
and a latency of two cycles lat(j) = 2, one solution to this problem is the assignment ci = 3
and cj = 1.

2 Contributions: Implied Constraints for Unison
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Figure 1: The impact of predecessor con-
straints. Dependency graph of an in-
struction i and its three predecessors
p1, p2, p3 ∈ P , including the issue cy-
cle domain {a, . . . , b}, and the instruc-
tion duration and latency (dur, lat) for
a shared resource r. The domain of i
shrinks when enforcing the predecessor
constraints for cap(p, r) = con(p, r) =
1 ∀p ∈ P .

The precedence constraint 1 is one out of many
constraints that ensure the correctness of a gen-
erated solution. Apart from constraints that are
logically unique, a constraint model may also
include logically redundant constraints (that is,
implied constraints). Implied constraints do not
change the set of solutions if included. How-
ever, they provide more insight into the nature
of the problem by expressing relations among
variables that are not apparent for the constraint
solver. Adding implied constraints may thus
help to detect infeasible assignments at an early
stage of search, so that whole branches of unex-
plored nodes in a search tree can be skipped.

Consider the example dependency graph in
Figure 1. The instructions p1, p2 and p3 are im-
mediate predecessors of an instruction i. Each of
them has an issue cycle domain that denotes the
earliest and latest starting times of that instruc-
tion, written as {a, . . . , b}. The outgoing edges
from each predecessor to i are labeled with two
values: the first one is the predecessor’s dura-
tion, the second one the predecessor’s latency.
The duration specifies the number of cycles in which an instruction consumes a specific
resource, for example a processor unit or a data bus.



Initially, the issue cycle domain of i contains the values {4, . . . , 8}. For each predecessor-
successor pair (pj, ci), j ∈ {1, 2, 3} and the initial issue cycle domains, the precedence con-
straint is satisfied: for any value in the domain of cpj , a value in ci exists, for which the con-
straint holds, and vice versa. The values are said to support each other. However, by taking
the duration into consideration, we can shrink the domains even more. If all predecessors
in this graph were to share the same limited resource, the predecessors would conflict in their
usage of the resource. In that case, these three predecessors could not be issued one after
another (even though they are not dependent on each other), but would have to wait for the
resource to be freed before they can be issued. Given this intuition, we can add a predecessor
constraint for each instruction i, its predecessor set P and a resource r:

lower(ci) ≥ min{lower(cp) | p ∈ P}

+

⌈ ∑
p∈P

dur(p,r)∗con(p,r)

cap(r)

⌉
−max{dur(p, r) | j ∈ P}
+min{lat(p) |p ∈ P}

with cap(r) being the capacity of resource r
con(p, r) denoting how many units of r are consumed by p
dur(p, r) denoting the number of cycles in which p consumes r
lower(∗) being the lower bound of a domain

(2)

Constraint 2 captures three main factors that influence the earliest issue cycle of an instruc-
tion i. First, the earliest issue cycle of i is bound to the earliest start of its predecessors (first
term of equation). Second, all predecessors need to share a limited resource r, which might
lead to conflicts and thus require additional cycles (second term). Third, i may start as soon
as the last finishing predecessor has produced its result, that is directly after its latency (last
term). As the latency of an instruction is longer than its duration, there is no need to consider
the last predecessor’s duration (third term), which was added previously in term two. The
resulting domain of i after including the predecessor constraints in our example in Figure 1
will then be {6, 7, 8}. The predecessor constraint is an implied constraint, as it is logically
implied by the precedence constraint and a resource constraint of the base model [LCDS12].

The predecessor constraints are an extension of the homonymous constraint in Malik et
al. [MMvB08]. More implied constraints addressing both register allocation and instruction
scheduling within this context are presented in [Tra13].

3 Results

We evaluate the implied constraints by comparing two configurations. The first configura-
tion is the base model, the second one is the base model with predecessor constraints. In
total, we compile 1176 basic blocks of SPEC CPU2006’s [Hen06] bzip2 benchmark for varia-
tions of the MIPS32 benchmark. If a solution was found within the time limit of 30 seconds,
it will be the optimal3 one. The comparison measure is the number of unnecessarily explored

3optimal in the number of cycles statically required to execute the program



Figure 2: Encountered failed nodes with
(y-axis) and without (x-axis) predecessor
constraints

nodes (that is, failed nodes) encountered in the
search tree, as well as the total number of found
optimal solutions within the time limit. Figure 2
plots the number of failed nodes for the two con-
figurations. Every dot represents a basic block.
Dots below the line are instances for which the
extended model encounters fewer failed nodes
during search. In total, the extended model cuts
down the search effort for 291 instances. Most
instances that could previously be solved while
exploring around 100 failed nodes, can now be
solved without encountering any failed node, i.e.
no wrong decisions were taken during search.
Furthermore, the extended model finds four
more optimal solutions within the given time
limit.

4 Conclusion

This paper presented implied constraints for a constraint-based compiler back-end as one
way of cutting down the search effort. For basic blocks, the results show an encouraging
reduction of the search effort. Future work could thus concentrate on implied constraints on
function-level, or on an investigation of a search heuristic tailored for implied constraints.
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