Compile-time Optimization of a
U A RT Constraint-based Compiler Back-end

Uppsala Architecture Kim-Anh Tran?, Mats Carlsson?, UPPSALA

Research Team UNIVERSITET

Roberto Castafieda Lozano?, Christian Schulte??3
lUppsala University, Sweden 2SICS, Sweden 3KTH, Sweden

Generating Optimal Code The Problem with Combinatorial Approaches: The Search Effort

Large search spaces, and
unnecessarily explored
search nodes

‘ Optimal Solution

‘ Partial Assignment

compiler
X combinatorial optimization
= optimal code generation

Partial Assighments, detected
to be infeasible (failed nodes)

 Combinatorial approaches are often slower due to the large search effort
* For a constraint-based compiler, that would imply long compilation times

The Key to Speeding Up Solution Search | Base Constraints for Instruction Scheduling

 The Unison project [1] uses Constraint Programming (CP), a

combinatorial optimization approach, to implement a {1 .. 5) Precedence Constraint

constraint-based compiler
* |nCP, a problem is modeled with variables and relations Instruction [p An instruction x may not start execution before

among these variables (that is, constraints) its predecessor p was issued and its latency has
A constraint may be a base constraint (modeling core passed:

problem), or an implied constraint (modeling logically Latency "3 | ce > ¢, + lat(p)

redundant relations)

with ¢, denoting the issue cycle

Potential issue lat(x) denoting the latency

Implied constraints may provide a different point-of-
cycle values

view on the problem, that may help to skip exploring
infeasible assignments at an early stage of search example on the left.

The precedence constraint holds for the

Looking at the bigger picture An implied constraint: The Predecessor Constraint

Insight: If we take several predecessors into consideration, we find out For each instruction 7, its predecessor set P” and a resource 7, add
that & can never start at issue cycle 4: all of its predecessors consume a predecessor constraint (extended from [2]):
the same unique resource.

lower(c;) > min{lower(c,) | p € P}

{1,..,5y {1,..,5} {1,..,5) B " > dur(p,r)«con(p,r)
pe P
T cap(r)
—max{dur(p,r) | j € P}
(3, 3) +min{lat(p) | p € P}
/ However, the precedence with cap(r) being the capacity of resource r
Resource consumption constraints do not detect con(p,r) denoting how many units of r are consumed by p
duration of a resource 4, .. 8 that £ may not start at dur(p,r) denoting the number of cycles in which p consumes r
7 and the instruction latency issue cycle 4! lower(x) being the lower bound of a domain

References

[1] R. Castaneda Lozano, M.
10° ~Failed nodes encountered * Figure shows encountered failed nodes | | Carlsson, G. Hjort Blindell, and C.
¢ 1o for base and extended model during Schulte. Combinatorial spill code
: solution search for a basic block optimization and ultimate
(2, 2) (1, 2) 107 | * Extended model with predecessor coalescing. In Proc. of LCTES'14
(3, 3) § 107 constraints significantly cuts down the [2] A. M. Malik, J. Mclnnes, and P.
' = number of failed nodes (in total for van Beek. Optimal basic block
@ E o 291 basic blocks) instruction scheduling for multiple-
Predecessor = 0 | * Achieves to find optimal solutions for issue processors using constraint
{4, .., 8} ppp—— {6, 7, 8} e four more basic blocks within a time programming. In International
Base model limit of 30 seconds Journal on Artificial Intelligence
Assuming cap(r) = con(p,,r) = 1 Tools 2008

Department of Information Technology, Uppsala University http://it.uu.se/

