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Generating Optimal Code The Problem with Combinatorial Approaches: The Search Effort

Large search spaces, and
unnecessarily explored
search nodes

‘ Optimal Solution

‘ Partial Assignment

compiler
X combinatorial optimization
= optimal code generation

Partial Assighments, detected
to be infeasible (failed nodes)

 Combinatorial approaches are often slower due to the large search effort
* For a constraint-based compiler, that would imply long compilation times

The Key to Speeding Up Solution Search | Base Constraints for Instruction Scheduling

 The Unison project [1] uses Constraint Programming (CP), a

combinatorial optimization approach, to implement a {1 .. 5) Precedence Constraint

constraint-based compiler
* |nCP, a problem is modeled with variables and relations Instruction [ p An instruction x may not start execution before

among these variables (that is, constraints) its predecessor p was issued and its latency has
A constraint may be a base constraint (modeling core passed:

problem), or an implied constraint (modeling logically Latency "3 | ce > ¢, + lat(p)

redundant relations)

with ¢, denoting the issue cycle

Potential issue lat(x) denoting the latency

Implied constraints may provide a different point-of-
cycle values

view on the problem, that may help to skip exploring
infeasible assignments at an early stage of search example on the left.

The precedence constraint holds for the

Looking at the bigger picture An implied constraint: The Predecessor Constraint

Insight: If we take several predecessors into consideration, we find out For each instruction 7, its predecessor set P” and a resource 7, add
that & can never start at issue cycle 4: all of its predecessors consume a predecessor constraint (extended from [2]):
the same unique resource.

lower(c;) > min{lower(c,) | p € P}

{1,..,5y {1,..,5} {1,..,5) B " > dur(p,r)«con(p,r)
pe P
T cap(r)
—max{dur(p,r) | j € P}
(3, 3) +min{lat(p) | p € P}
/ However, the precedence with cap(r) being the capacity of resource r
Resource consumption constraints do not detect con(p,r) denoting how many units of r are consumed by p
duration of a resource 4, .. 8 that £ may not start at dur(p,r) denoting the number of cycles in which p consumes r
7 and the instruction latency issue cycle 4! lower(x) being the lower bound of a domain
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