Real-Time Workload Models with Efficient Analysis
Advanced Course, 3 Lectures, September 2014

Martin Stigge

Uppsala University, Sweden
Fahrplan

1 DRT Tasks in the Model Hierarchy
 - Liu and Layland and Sporadic Tasks
 - Frames and Branching
 - The Digraph Real-Time (DRT) Task Model
 - Adaptive Variable-Rate (AVR) Tasks

2 Feasibility Analysis of DRT
 - Feasibility Theorem
 - Demand Pairs
 - Test Termination
 - Evaluation

3 Static Priority Schedulability Analysis of DRT
 - Response-Time Analysis
 - Request Functions
 - Refinement Algorithm
 - Evaluation
Fahrplan

1. DRT Tasks in the Model Hierarchy
 - Liu and Layland and Sporadic Tasks
 - Frames and Branching
 - The Digraph Real-Time (DRT) Task Model
 - Adaptive Variable-Rate (AVR) Tasks

2. Feasibility Analysis of DRT
 - Feasibility Theorem
 - Demand Pairs
 - Test Termination
 - Evaluation

3. Static Priority Schedulability Analysis of DRT
 - Response-Time Analysis
 - Request Functions
 - Refinement Algorithm
 - Evaluation
Problem Overview

Workload Model

Task A

Task B

Task C

Scheduler Model

EDF/Static Prio/...

Feasible? Schedulable? Response times?

Our Setting:
• DRT tasks
• Static Priorities
• Precise Test
The Liu and Layland (L&L) Task Model
(Liu and Layland, 1973)

- Tasks are *periodic*
 - Job WCET e
 - Period p (implicit deadline)

- Advantages: Well-known model; *efficient* schedulability tests
- Disadvantage: Very *limited expressiveness*
A Hierarchy of Models

Schedulability Analysis

difficult

efficient

Expressiveness

high

low

Liu & Layland

\((e, d = p)\)
The Sporadic Task Model
(Mok, 1983)

- Deadlines ≠ periods; releases \textit{sporadic}
- Each tasks defined by:
 - Job WCET e
 - Relative deadline d
 - Minimum inter-release delay p

$$(e, d, p) \sim$$
The General Multiframe (GMF) Task Model

- Behavior is not always periodic

 ![Diagram showing frames 0 to 3 with execution times and deadlines]

- Task is split into *frames*, each with own
 - Execution time $e^{(i)}$
 - Inter-release separation $p^{(i)}$
 - Deadline $d^{(i)}$ for the job
The General Multiframe (GMF) Task Model

- Behavior is not always periodic

- Task is split into *frames*, each with own
 - Execution time $e^{(j)}$
 - Inter-release separation $p^{(j)}$
 - Deadline $d^{(j)}$ for the job
The General Multiframe (GMF) Task Model (cont.)
(Baruah et al., 1999)

- Tasks *cycle* through job types
 - Vector for WCET \((e^{(1)}, \ldots, e^{(n)})\)
 - Vector for deadlines \((d^{(1)}, \ldots, d^{(n)})\)
 - Vector for minimum inter-release delays \((p^{(1)}, \ldots, p^{(n)})\)
A Hierarchy of Models

- **generalized multiframe (GMF)**: \((e_i, d_i, p_i)\)
- **multiframe**: \((e_i, d = p)\)
- **sporadic**: \((e, d, p)\)
- **Liu & Layland**: \((e, d = p)\)

Schedulability Analysis
- **difficult**
- **efficient**

Expressiveness
- **high**
- **low**
The Non-Cyclic GMF Task Model
(Moyo et al., 2010)

- Frame order unknown \(a \text{ priori} \)
- Syntax similar to GMF:
 - Vector for WCET \((e^{(1)}, \ldots, e^{(n)})\)
 - Vector for deadlines \((d^{(1)}, \ldots, d^{(n)})\)
 - Vector for minimum inter-release delays \((p^{(1)}, \ldots, p^{(n)})\)
The Recurring Branching (RB) Task Model
(Baruah, 1998)

- Introduces branching structures
- Tree for tasks
 - Vertices J: jobs to be released (with WCET and deadline)
 - Edges (J_i, J_j): minimum inter-release delays $p(J_i, J_j)$
 - General period parameter P

\[P = 57 \]
The Recurring Branching (RB) Task Model
(Baruah, 1998)

- Introduces \textit{branching} structures
- \textit{Tree} for tasks
 - Vertices J: jobs to be released (with WCET and deadline)
 - Edges (J_i, J_j): minimum inter-release delays $p(J_i, J_j)$
 - General period parameter P

\[
\begin{align*}
J_1 & \rightarrow J_2 \\
J_2 & \rightarrow J_3 \\
J_3 & \rightarrow J_5 \\
J_2 & \rightarrow J_4 \\
J_4 & \rightarrow J_6 \\
J_5 & \\
\end{align*}
\]

Period $P = 57$
The Recurring Real-Time (RRT) Task Model
(Baruah, 1998)

- Compact Branching representation
- *Directed acyclic graph* (DAG) for tasks
 - Vertices J: jobs to be released (with WCET and deadline)
 - Edges (J_i, J_j): minimum inter-release delays $p(J_i, J_j)$
 - General period parameter P

![Diagram of DAG with jobs J_1 to J_5 and arrows indicating dependencies. The period $P = 57$.]
A Hierarchy of Models

- **sporadic** \((e, d, p)\)
- **multiframe** \((e_i, d = p)\)
- **generalized multiframe (GMF)** \((e_i, d_i, p_i)\)
- **recurring branching (RB)** \((\text{tree}, p)\)
- **recurring RT (RRT)** \((\text{DAG}, p)\)
- **non-cyclic RRT** \((\text{DAG}, p_i)\)
- **non-cyclic GMF** \((\text{order arbitrary})\)
- **Liu & Layland** \((e, d = p)\)

Schedulability Analysis

- **difficult**
- **efficient**

Expressiveness

- **high**
- **low**
Restrictions of RRT

- Tasks are still *recurrent*
 - Always revisit source J_1
 - *No cycles allowed!*

Consequences:

- *No local loops*

- Not *compositional* (for modes etc.)
Restrictions of RRT

• Tasks are still *recurrent*
 • Always revisit source J_1
 • *No cycles allowed!*

• Consequences:
 • *No local loops*

• Not *compositional* (for modes etc.)
Restrictions of RRT

- Tasks are still *recurrent*
 - Always revisit source J_1
 - *No cycles allowed!*

- Consequences:
 - No *local loops*

- Not *compositional* (for modes etc.)
The Digraph Real-Time (DRT) Task Model
(S. et al., 2011)

- Generalizes periodic, sporadic, GMF, RRT, ...
- Directed graph for each task
 - Vertices v: jobs to be released (with WCET and deadline)
 - Edges (u, v): minimum inter-release delays $p(u, v)$
DRT: Semantics

Path $\pi = (v_4)$
Path $\pi = (v_4, v_2)$
Path $\pi = (v_4, v_2, v_3)$
Path $\pi = (v_4)$
DRT: Semantics

Path $\pi = (v_4, v_2)$
Path $\pi = (v_4, v_2, v_3)$
A Hierarchy of Models

- **Schedulability Analysis**
 - **difficult**
 - **efficient**

- **Expressiveness**
 - **low**
 - **high**

1. **Liu & Layland**
 - $(e, d = p)$

2. **Sporadic**
 - (e, d, p)

3. **Multiframe**
 - $(e_i, d = p)$

4. **Generalized Multiframe (GMF)**
 - (e_i, d_i, p_i)

5. **Recurring Branching (RB)**
 - $(\text{tree, } p)$

6. **Recurring RT (RRT)**
 - $(\text{DAG, } p)$

7. **Non-cyclic RRT**
 - $(\text{DAG, } p_i)$

8. **Non-cyclic GMF**
 - (order arbitrary)

9. **Digraph (DRT)**
 - (arbitrary graph)

The diagram illustrates the hierarchy and expressiveness of workload models, with Liu & Layland at the top and sporadic at the bottom, indicating a spectrum from efficient to difficult analysis.
A Hierarchy of Models

- **Schedulability Analysis**
 - **efficient**
 - **difficult**
 - Strongly (co)NP-hard
 - Pseudo-Polynomial

- **Expressiveness**
 - low
 - high

- **Liu & Layland**
 - recurring RT (RRT) (DAG, \(p \))
 - recurring branching (RB) (tree, \(p \))
 - generalized multiframe (GMF) \((e_i, d_i, p_i)\)
 - multiframe \((e_i, d = p)\)
 - sporadic \((e, d, p)\)
 - non-cyclic GMF (order arbitrary)
 - non-cyclic RRT (DAG, \(p_i \))
 - Digraph (DRT) (arbitrary graph)

- **Efficiency & Expressiveness trade-off**
Extended DRT (EDRT)

- Extends DRT with *global delay constraints*
- Directed graph for each task
 - Vertices v: jobs to be released (with WCET and deadline)
 - Edges (u, v): minimum inter-release delays $p(u, v)$
 - k global constraints (u, v, γ)

![Directed graph diagram]

Theorem (S. et al., 2011)

For k-EDRT task systems with bounded utilization, feasibility is

1. **decidable in pseudo-polynomial time** if k is constant, and
2. **strongly coNP-hard** in general.
Extended DRT (EDRT)

- Extends DRT with *global delay constraints*
- Directed graph for each task
 - Vertices v: jobs to be released (with WCET and deadline)
 - Edges (u, v): minimum inter-release delays $p(u, v)$
 - k global constraints (u, v, γ)

![Graph Diagram]

Theorem (S. et al., 2011)

For k-EDRT task systems with bounded utilization, feasibility is

1. **decidable in pseudo-polynomial time** if k is constant, and
2. **strongly coNP-hard** in general.
A Hierarchy of Models

Schedulability Analysis

- **efficient**
 - Liu & Layland
 - sporadic
 - (e, d = p)
 - generalized multiframe (GMF)
 - (e_i, d_i, p_i)
 - recurring branching (RB)
 - (tree, p)
 - recurring RT (RRT)
 - (DAG, p)
 - multiframe
 - (e_i, d = p)
 - non-cyclic GMF
 - digraph (DRT)
 - non-cyclic RRT
 - (DAG, p_i)
 - k-EDRT
 - (k constraints)
 - Extended DRT (EDRT)
 - (constraints)

Expressiveness

- **difficult**
 - Strongly (co)NP-hard
 - Pseudo-Polynomial
- **low**
DRT Examples

\[(e, d) \]

Sporadic Task

\[\text{Sporadic Task with 2 modes} \]

\[v_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5 \]

Branching Task

\[\text{GMF Task} \]
DRT Examples

\(\langle e, d \rangle \)

Sporadic Task

\(\langle e, p \rangle \)

Sporadic Task (implicit deadline)
DRT Examples

Sporadic Task

\langle e, d \rangle

\langle e, p \rangle

Sporadic Task (implicit deadline)

Sporadic Task with 2 modes

\langle e_1, d_1 \rangle

\langle e_2, p_2 \rangle
DRT Examples

Sporadic Task

\[\langle e, d \rangle \]

Sporadic Task (implicit deadline)

\[\langle e, p \rangle \]

Sporadic Task with 2 modes

\[\langle e_1, d_1 \rangle \]

GMF Task

\[\langle e_2, p_2 \rangle \]
DRT Examples

Sporadic Task

\[(e, d) \]

\[(e, p) \]

Sporadic Task (implicit deadline)

\[(e_1, d_1) \]

\[(e_2, p_2) \]

Sporadic Task with 2 modes

GMF Task

Branching Task
Adaptive Variable-Rate (AVR) Tasks

- *Rate-Adaptive Tasks* (Buttazzo et al., DATE 2014)
- *Variable Rate-dependent Behaviour (VRB)* (Davis et al., RTAS 2014)
- *Adaptive Variable-Rate (AVR) Tasks* (Biondi et al., ECRTS 2014)
- ...
AVR Tasks: Execution Modes

(Biondi, ECRTS 2014)
AVR Business

(This morning in Pisa)
Fahrplan

1 DRT Tasks in the Model Hierarchy
 - Liu and Layland and Sporadic Tasks
 - Frames and Branching
 - The Digraph Real-Time (DRT) Task Model
 - Adaptive Variable-Rate (AVR) Tasks

2 Feasibility Analysis of DRT
 - Feasibility Theorem
 - Demand Pairs
 - Test Termination
 - Evaluation

3 Static Priority Schedulability Analysis of DRT
 - Response-Time Analysis
 - Request Functions
 - Refinement Algorithm
 - Evaluation
Fahrplan

1 DRT Tasks in the Model Hierarchy
 - Liu and Layland and Sporadic Tasks
 - Frames and Branching
 - The Digraph Real-Time (DRT) Task Model
 - Adaptive Variable-Rate (AVR) Tasks

2 Feasibility Analysis of DRT
 - Feasibility Theorem
 - Demand Pairs
 - Test Termination
 - Evaluation

3 Static Priority Schedulability Analysis of DRT
 - Response-Time Analysis
 - Request Functions
 - Refinement Algorithm
 - Evaluation
Theorem

For a task set \(\tau \), the following three properties are equivalent.

1. Task set \(\tau \) is feasible.
2. Task set \(\tau \) is EDF schedulable.
3. The following condition holds: \(\forall t \geq 0 : \sum_{T \in \tau} dbf_T(t) \leq t \)

What is \(dbf_T(t) \)? How to compute it?
Feasibility Theorem

Theorem

For a task set τ, the following three properties are equivalent.

1. Task set τ is feasible.
2. Task set τ is EDF schedulable.
3. The following condition holds: $\forall t \geq 0 : \sum_{T \in \tau} \text{dbf}_T(t) \leq t$

What is $\text{dbf}_T(t)$? How to compute it?
Demand-Bound Functions

\[\text{dbf}_T(t): \text{Maximal demand in any window of size } t \]

Demand: \(5 + 1 + 3 = 9 \)
Feasibility Test

Theorem (Feasibility Theorem)

For a task set τ, the following three properties are equivalent.

1. Task set τ is feasible.
2. Task set τ is EDF schedulable.
3. The following condition holds: $\forall t \geq 0 : \sum_{T \in \tau} dbf_T(t) \leq t$

\[\sum_{T \in \tau} dbf_T(t) \]

\[\rightarrow t \]
Feasibility Test

Theorem (Feasibility Theorem)

For a task set τ, the following three properties are equivalent.

1. Task set τ is feasible.
2. Task set τ is EDF schedulable.
3. The following condition holds: $\forall t \geq 0 : \sum_{T \in \tau} dbf_T(t) \leq t$

How to calculate $dbf_T(t)$?

How to check existence of violating t?
Feasibility Test

Theorem (Feasibility Theorem)

For a task set τ, the following three properties are equivalent.

1. Task set τ is feasible.
2. Task set τ is EDF schedulable.
3. The following condition holds: $\forall t \geq 0 : \sum_{T \in \tau} \text{dbf}_T(t) \leq t$

How to calculate $\text{dbf}_T(t)$?

How to check existence of violating t?
Feasibility Test

Theorem (Feasibility Theorem)

For a task set τ, the following three properties are equivalent.

1. Task set τ is feasible.
2. Task set τ is EDF schedulable.
3. The following condition holds: $\forall t \geq 0 : \sum_{T \in \tau} dbf_T(t) \leq t$

How to calculate $dbf_T(t)$?

How to check existence of violating t?
dbf for Sporadic Tasks

Sporadic task $T = (e, d, p)$

$$\sum \text{dbf}_T(t)$$

![Graph showing dbf for Sporadic Tasks]

$T = (e, d, p)$

e, d, p
Sporadic task $T = (e, d, p)$

$$\sum \text{dbf}_T(t) = \max \left\{ 0, \left\lfloor \frac{t - d}{p} + 1 \right\rfloor \cdot e \right\}$$
dbf for DRT: From $G(T)$ to dbf_T

Path Abstraction: Demand Pair

$\langle 2, 5 \rangle \\ 10 \\ 11$

$\langle 1, 8 \rangle \\ 20 \\ 15$

$\langle 1, 5 \rangle \\ 20 \\ 10$

$\langle 3, 8 \rangle \\ 20 \\ 20$

$dbf_T(t)$

Martin Stigge

Workload Models + Analysis
dbf for DRT: From $G(T)$ to dbf_T

Path Abstraction: Demand Pair

\[\text{dbf}_T(t) \]

\[\langle 9, 43 \rangle \]

Martin Stigge
Workload Models + Analysis

29
dbf for DRT: From $G(T)$ to dbf_T

Path Abstraction: Demand Pair

$\text{dbf}_T(t)$
dbf for DRT: From $G(T)$ to dbf_T

Path Abstraction: Demand Pair

$\langle 2, 5 \rangle$
$\langle 1, 5 \rangle$
$\langle 1, 8 \rangle$
$\langle 3, 8 \rangle$
$\langle 5, 10 \rangle$
$\langle 9, 43 \rangle$
dbf for DRT: From $G(T)$ to dbf_T

Path Abstraction: Demand Pair

$\langle 2, 5 \rangle$ v_1 $\langle 1, 8 \rangle$ v_2 $\langle 3, 8 \rangle$ v_3

$\langle 1, 5 \rangle$ v_5 $\langle 5, 10 \rangle$ v_4

$\langle 9, 43 \rangle$ $\text{dbf}_T(t)$
Demand Pairs

Formally:
- Given path $\pi = (\pi_0, \ldots, \pi_l)$
- **Execution demand**: $e(\pi) := \sum_{i=0}^{l} e(\pi_i)$
- **Deadline**: $d(\pi) := \sum_{i=0}^{l-1} p(\pi_i, \pi_{i+1}) + d(\pi_l)$
- $\langle e(\pi), d(\pi) \rangle$ is a demand pair for π

$$\text{dbf}_T(t) = \max \{ e \mid \langle e, d \rangle \text{ demand pair with } d \leq t \}$$

How to compute all demand pairs?
- Enumerate paths: Too expensive! (Exponential..)
- Better: Iteration using abstraction
Demand Pairs

Formally:

- **Given path** \(\pi = (\pi_0, \ldots, \pi_l) \)
- **Execution demand:** \(e(\pi) := \sum_{i=0}^{l} e(\pi_i) \)
- **Deadline:** \(d(\pi) := \sum_{i=0}^{l-1} p(\pi_i, \pi_{i+1}) + d(\pi_l) \)
- \(\langle e(\pi), d(\pi) \rangle \) is a **demand pair** for \(\pi \)

\[
\text{dbf}_T(t) = \max \{ e \mid \langle e, d \rangle \text{ demand pair with } d \leq t \}
\]

How to compute all demand pairs?

- **Enumerate paths**: Too expensive! (Exponential..)
- **Better**: Iteration using **abstraction**
Demand Triples

- Idea: Start with 0-paths (one vertex), extend stepwise
- We need: Abstraction which
 1. allows to extend paths,
 2. contains demand pair information,
 3. without visiting/storing all paths
- Idea: *Demand triples*
 - Execution demand $e(\pi)$
 - Deadline $d(\pi)$
 - Last vertex π_l
- Demand triple $\langle e(\pi), d(\pi), \pi_l \rangle$ is another abstraction!
Demand Triples

• Idea: Start with 0-paths (one vertex), extend stepwise
• We need: Abstraction which
 1. allows to extend paths,
 2. contains demand pair information,
 3. without visiting/storing all paths
• Idea: *Demand triples*
 • Execution demand $e(\pi)$
 • Deadline $d(\pi)$
 • Last vertex π_l
• Demand triple $\langle e(\pi), d(\pi), \pi_l \rangle$ is another abstraction!

![Diagram of a graph with vertices and edges labeled with values and demand triple notations.](image-url)
Demand Triples

- Idea: Start with 0-paths (one vertex), extend stepwise
- We need: Abstraction which
 1. allows to *extend* paths,
 2. contains demand pair information,
 3. without visiting/storing all paths
- Idea: *Demand triples*
 - Execution demand $e(\pi)$
 - Deadline $d(\pi)$
 - Last vertex π_l
- Demand triple $\langle e(\pi), d(\pi), \pi_l \rangle$ is another abstraction!
Demand Triples

- Idea: Start with 0-paths (one vertex), extend stepwise
- We need: Abstraction which
 1. allows to extend paths,
 2. contains demand pair information,
 3. without visiting/storing all paths
- Idea: Demand triples
 - Execution demand $e(\pi)$
 - Deadline $d(\pi)$
 - Last vertex π_l
- Demand triple $\langle e(\pi), d(\pi), \pi_l \rangle$ is another abstraction!

```
10 20 20 15
(2,5) <---- (1,8) <---- (1,5) ----< (3,8)
   11

10 20 20
(1,5) ----< (1,8) ----< (3,8)
   15

20
(5,10)
   10

Path ($v_4$) 
$\leadsto$ $\langle 5, 10, v_4 \rangle$

Path ($v_4, v_2$) 
$\leadsto$ $\langle 6, 28, v_2 \rangle$

Path ($v_4, v_2, v_3$) 
$\leadsto$ $\langle 9, 43, v_3 \rangle$
```
Iterative Procedure

- Create all demand triples up to some D:
 1. Start with all 0-paths, i.e., $\langle e(v), d(v), v \rangle$ for all vertices v
 2. Pick some stored demand triple $\langle e, d, u \rangle$
 3. Create new demand triple:
 - Choose successor vertex v of u
 - $e' = e + e(v)$
 - $d' = d - d(u) + p(u, v) + d(v)$
 - $\langle e', d', v \rangle$ is new demand triple!
 4. Store $\langle e', d', v \rangle$ if
 - not stored yet, and
 - $d' \leq D$
 5. Repeat from 2 until no change

- Efficient procedure!
 - Note: Actual paths never stored
 - Optimizations: Discard non-critical triples along the way

- Exercise: What’s $\text{dbf}_{\tau_i}(26)$ for graph on previous slide?
Example

\[
dbf_{\tau}(t)
\]

Optimization: Discard dominated triples \((e, d, v) \succeq (e', d', v') \iff e \geq e' \land d \leq d'\)

Martin Stigge

Workload Models + Analysis
Example

Optimization: Discard dominated triples \((e, d, v) \succeq (e', d', v')\) ⇔ \(e \geq e' \land d \leq d'\)

\[\begin{align*}
\langle v_1, 20 \rangle & \rightarrow \langle v_2, 11 \rangle \\
\langle v_2, 11 \rangle & \rightarrow \langle v_3, 15 \rangle \\
\langle v_3, 15 \rangle & \rightarrow \langle v_4, 20 \rangle \\
\langle v_4, 20 \rangle & \rightarrow \langle v_5, 10 \rangle \\
\langle v_5, 10 \rangle & \rightarrow \langle v_1, 20 \rangle
\end{align*}\]
Optimization: Discard dominated triples \((e, d, v) \succeq (e', d', v') \iff e \geq e' \land d \leq d'

\[\text{dbf}_T(t) \]

\[\begin{align*}
\langle 1, 5 \rangle & \rightarrow \langle 2, 5 \rangle \\
\langle 3, 8 \rangle & \rightarrow \langle 1, 8 \rangle \\
\langle 5, 10 \rangle & \rightarrow \langle 1, 5 \rangle \\
\end{align*} \]
Example

\[\text{dbf}_T(t) \]

\[\langle 6, 20, v_4 \rangle \quad \langle 6, 30, v_4 \rangle \]

Optimization: Discard dominated triples \((e, d, v) \succeq (e', d', v') \iff e \geq e' \land d \leq d'\).
Example

Optimization: Discard *dominated* triples

\((e, d, v) \succ (e', d', v) \iff e \geq e' \land d \leq d'\)
Example

Optimization: Discard *dominated* triples

\((e, d, v) \succ (e', d', v) \iff e \geq e' \land d \leq d'\)
Example

Optimization: Discard *dominated* triples

\[(e, d, v) \succeq (e', d', v) \iff e \geq e' \land d \leq d'\]
Example

Optimization: Discard *dominated* triples

\[(e, d, v) \succ (e', d', v) \iff e \geq e' \land d \leq d'\]
Example

Optimization: Discard *dominated* triples

\[(e, d, v) \succeq (e', d', v) \iff e \geq e' \land d \leq d'\]
Example

Optimization: Discard *dominated* triples

\[(e, d, v) \succeq (e', d', v) \iff e \geq e' \land d \leq d'\]
Example

Optimization: Discard *dominated* triples

\[(e, d, v) \succ (e', d', v) \iff e \geq e' \land d \leq d'\]
Example

Optimization: Discard \textit{dominated} triples

\[(e, d, v) \succ (e', d', v) \iff e \geq e' \land d \leq d'\]
Feasibility Test Revisited

Theorem (Feasibility Theorem)

For a task set τ, the following three properties are equivalent.

1. Task set τ is feasible.
2. Task set τ is EDF schedulable.
3. The following condition holds: $\forall t \geq 0 : \sum_{T \in \tau} \text{dbf}_T(t) \leq t$

How to calculate $\text{dbf}_T(t)$?
How to check existence of violating t?
Feasibility Test Revisited

Theorem (Feasibility Theorem)

For a task set τ, the following three properties are equivalent.

1. Task set τ is feasible.
2. Task set τ is EDF schedulable.
3. The following condition holds: $\forall t \geq 0 : \sum_{T \in \tau} dbf_T(t) \leq t$

How to calculate $dbf_T(t)$?

How to check existence of violating t?
Calculating the Bound

\[\sum \text{dbf}_T(t) \]

- Linear bound for \(\text{dbf}(t) \)
- Slope: Less than 1
- Intersection with \(t \) gives bound \(D \)
- Check only up to \(D \)

\(\text{dbf}(t) \leq t \cdot U(\tau) + e^{\text{sum}} \)

“Most dense” cycle
Calculating the Bound

\[\sum \text{dbf}_T(t) \]

- Linear bound for \(\text{dbf}(t) \)
 - Slope: Less than 1
- Intersection with \(t \) gives bound \(D \)
- Check only up to \(D \)

\[\text{dbf}(t) \leq t \cdot U(\tau) + e^{\text{sum}} \]
Calculating the Bound

\[\sum \text{dbf}_T(t) \]

- Linear bound for \(\text{dbf}(t) \)
 - Slope: Less than 1
 - Intersection with \(t \) gives bound \(D \)
 - Check only up to \(D \)

\[\text{dbf}(t) \leq t \cdot U(\tau) + e^{sum} \]
Theorem (S. et al., 2011)

For DRT task systems τ with a utilization bounded by any $c < 1$, feasibility can be decided in pseudo-polynomial time.

Pseudo-polynomial time $=$ Tractable/efficient
Evaluation: Runtime vs. Utilization

Setting:
- Randomly generated task sets
- 1-30 tasks, 5-10 vertices per task, branching degree 1-3, ...
Fahrplan

1 DRT Tasks in the Model Hierarchy
 - Liu and Layland and Sporadic Tasks
 - Frames and Branching
 - The Digraph Real-Time (DRT) Task Model
 - Adaptive Variable-Rate (AVR) Tasks

2 Feasibility Analysis of DRT
 - Feasibility Theorem
 - Demand Pairs
 - Test Termination
 - Evaluation

3 Static Priority Schedulability Analysis of DRT
 - Response-Time Analysis
 - Request Functions
 - Refinement Algorithm
 - Evaluation
Fahrplan

1. DRT Tasks in the Model Hierarchy
 - Liu and Layland and Sporadic Tasks
 - Frames and Branching
 - The Digraph Real-Time (DRT) Task Model
 - Adaptive Variable-Rate (AVR) Tasks

2. Feasibility Analysis of DRT
 - Feasibility Theorem
 - Demand Pairs
 - Test Termination
 - Evaluation

3. Static Priority Schedulability Analysis of DRT
 - Response-Time Analysis
 - Request Functions
 - Refinement Algorithm
 - Evaluation
Complexity of Schedulability Tests

- Pseudo-polynomial schedulability tests possible?

<table>
<thead>
<tr>
<th></th>
<th>EDF</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>L&L</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>GMF</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DRT</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>EDRT</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Flawed!

Replaced by:
Theorem (S. et al., 2012)

For GMF task systems, the schedulability problem for static priority schedulers is strongly coNP-hard.
Complexity of Schedulability Tests

- Pseudo-polynomial schedulability tests possible?

<table>
<thead>
<tr>
<th></th>
<th>EDF</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>L&L</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GMF</td>
<td>Yes</td>
<td>Yes*</td>
</tr>
<tr>
<td>DRT</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>EDRT</td>
<td>No</td>
<td>?</td>
</tr>
</tbody>
</table>

- * = Takada & Sakamura, 1997

For GMF task systems, the schedulability problem for static priority schedulers is strongly coNP-hard.
Complexity of Schedulability Tests

- Pseudo-polynomial schedulability tests possible?

<table>
<thead>
<tr>
<th></th>
<th>EDF</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>L&L</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GMF</td>
<td>Yes</td>
<td>Yes* No!</td>
</tr>
<tr>
<td>DRT</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>EDRT</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

* = Takada & Sakamura, 1997

- Flawed!

- Replaced by:

Theorem (S. et al., 2012)

For GMF task systems, the schedulability problem for static priority schedulers is strongly coNP-hard.
Hardness Result: Proof Sketch

3-PARTITION instance \(I \):

\[
\begin{align*}
\text{m bins} & \quad \text{3m items} \\
\end{align*}
\]

Possible to (exactly) fit all items? (strongly NP-hard)

Reduction to GMF schedulability:

Thus: \(\tau(I) \) unsched. \(\iff \) \(I \in \text{3-PARTITION} \)
Hardness Result: Proof Sketch

3-PARTITION instance I:

Possible to (exactly) fit all items? (strongly NP-hard)

Reduction to GMF schedulability:

Thus: $\tau(I)$ unsched. $\iff I \in 3$-PARTITION
Model Hierarchy Revisited

EDF

L&L

sporadic

coNP-hard

EDRT

k-EDRT

DRT

RRT

RB

GMF

ncGMF

MC

EDF

SP

L&L

sporadic

EDRT

k-EDRT

DRT

RRT

RB

GMF

ncGMF

coNP-hard

Martin Stigge

Workload Models + Analysis
Response-Time Analysis (RTA)

Use RTA for SP Schedulability Analysis.

![Response time diagram]

Standard RTA for static priorities + periodic/sporadic tasks:

\[R_j = C_j + \sum_{i \in hp(j)} \left\lceil \frac{R_j}{T_i} \right\rceil C_i \]
Problem: Path Combinations

Response time

Response time

Combinatorial Explosion!
Problem: Path Combinations

Combinatorial Explosion!
Intuition: No Task-Local Worst Cases

Which path is worse: \((v_1, v_2)\) or \((v_2, v_1)\)?
Intuition: No Task-Local Worst Cases

Task T_{high}:

Which path is worse: (v_1, v_2) or (v_2, v_1)?

It depends! $T_1: \langle 2, 7 \rangle$ versus $T_2: \langle 4, 10 \rangle$
Intuition: No Task-Local Worst Cases

Task T_{high}:

Which path is worse: (v_1, v_2) or (v_2, v_1)?

It depends! $T_1: (2, 7)$ versus $T_2: (4, 10)$

v_1 v_2

T_{high}:

T_1:

T_{high}:

T_1:

Martin Stigge
Workload Models + Analysis
44
Intuition: No Task-Local Worst Cases

Task T_{high}: $\langle v_1, v_2 \rangle$ versus $\langle v_2, v_1 \rangle$

Which path is worse: (v_1, v_2) or (v_2, v_1)?

It depends! $T_1: \langle 2, 7 \rangle$ versus $T_2: \langle 4, 10 \rangle$
Request Functions

\[
rf(t) := \max \{ e(\pi') \mid \pi' \text{ is prefix of } \pi \text{ and } p(\pi') < t \}
\]
Request Functions (cont.)

Useful for deriving response time:

\[
R_{SP}(v, \bar{r}f) = \min \left\{ t \geq 0 \mid e(v) + \sum_{T'>T} rf(T')(t) \leq t \right\}
\]

\[
R_{SP}(v) = \max_{\bar{r}f \in RF(\tau)} R_{SP}(v, \bar{r}f)
\]
Request Functions (cont.)

Useful for deriving response time:

\[R_{SP}(v, \bar{r}) = \min \left\{ t \geq 0 \mid e(v) + \sum_{T' > T} rf(T')(t) \leq t \right\} \]

\[R_{SP}(v) = \max_{\bar{r} \in RF(\tau)} R_{SP}(v, \bar{r}) \]

Combinatorial Explosion?!
Abstract Request Functions

\[rf(t) \]

\[rf(v_4, v_2, v_3) \]

\[rf(v_5, v_2, v_3) \]
Abstract Request Functions

\[rf(t) \]

- \(rf(v_4, v_2, v_3) \)
- \(rf(v_5, v_4, v_2) \)
Abstract Request Functions

\[
\begin{align*}
&v_1 \langle 2, 5 \rangle \\
&v_2 \langle 3, 8 \rangle \\
&v_3 \langle 1, 8 \rangle \\
&v_4 \langle 5, 10 \rangle \\
&v_5 \langle 1, 5 \rangle
\end{align*}
\]

\[rf(t)\]

\[arf\]

\[rf(v_4, v_2, v_3)\]

\[rf(v_5, v_4, v_2)\]
Define an *abstraction tree* per task:

- Leaves are concrete *rf*
- Each node: maximum function of child nodes
- Root is maximum of all *rf*
Define an *abstraction tree* per task:

- Leaves are concrete *rf*
- Each node: maximum function of child nodes
- Root is maximum of *all rf*
Define an *abstraction tree* per task:

- Leaves are concrete rf
- Each node: maximum function of child nodes
- Root is maximum of all rf
Define an *abstraction tree* per task:

- Leaves are concrete *rf*
- Each node: maximum function of child nodes
- Root is maximum of *all* *rf*
Define an abstraction tree per task:

- Leaves are concrete rf
- Each node: maximum function of child nodes
- Root is maximum of all rf
Define an *abstraction tree* per task:

- Leaves are concrete *rf*
- Each node: maximum function of child nodes
- Root is maximum of *all rf*

Allows stepwise refinement!
Refinement Algorithm

Tuple: \(\bar{rf} = (rf(T_1), rf(T_2), rf(T_3)) \)
Refinement Algorithm

Tuple: \(\bar{r}f = (r(T_1), r(T_2), r(T_3)) \)

Response time: \(R_{SP}(v, \bar{r}f) = 23 \)

Using: \(R_{SP}(v, \bar{r}f) = \min \left\{ t \geq 0 \mid e(v) + \sum_{T' > T} r(T')(t) \leq t \right\} \)
Refinement Algorithm

\[
\text{Tuple:} \\
\begin{align*}
\bar{r}_f^1 &= (r_f(T_1), r_f(T_2), r_f(T_3)) \\
\bar{r}_f^2 &= (r_f(T_1), r_f(T_2), r_f(T_3)) \\
\bar{r}_f^3 &= (r_f(T_1), r_f(T_2), r_f(T_3)) \\
\end{align*}
\]

Store

\[
(23, \bar{r}_f^1)
\]

\[
\begin{align*}
\text{Initialiation:} & \quad \bullet \quad \text{Most abstract functions} \\
\text{Each iteration:} & \quad \bullet \quad \text{Replace functions along abstraction trees} \\
\text{Termination:} & \quad \bullet \quad \text{All functions are concrete} \\
& \quad \text{OR:} \quad \bullet \quad \text{Estimate is already safe}
\end{align*}
\]

Using:

\[
R_{SP}(v, \bar{r}_f) = \min \left\{ t \geq 0 \mid e(v) + \sum_{T' \in T_f} T'_f(t) \leq t \right\}
\]
Refinement Algorithm

Step:

\[\bar{rf}_1 = (rf(T_1), rf(T_2), rf(T_3)) \]

\[\downarrow \]

\[\bar{rf}_2 = (rf'(T_1), rf(T_2), rf(T_3)) \]

\[\bar{rf}_3 = (rf''(T_1), rf(T_2), rf(T_3)) \]

In \(T_1 \):

\[rf \]

\[rf' \]

\[rf'' \]

Store

(23, \(\bar{rf}_1 \))
Refinement Algorithm

Step:

\[\bar{rf}_1 = (rf(T_1), rf(T_2), rf(T_3)) \]

\[\downarrow \]

\[\bar{rf}_2 = (rf'(T_1), rf(T_2), rf(T_3)) \rightarrow 18 \]

\[\bar{rf}_3 = (rf''(T_1), rf(T_2), rf(T_3)) \rightarrow 21 \]

In \(T_1 \):

\[rf' \quad \rightarrow \quad rf \quad \rightarrow \quad rf'' \]

Store

\[(23, \bar{rf}_1) \]
Refinement Algorithm

Step:

\[\bar{rf}_1 = (rf(T_1), rf(T_2), rf(T_3)) \]
\[\downarrow \]
\[\bar{rf}_2 = (rf'(T_1), rf(T_2), rf(T_3)) \rightarrow 18 \]
\[\bar{rf}_3 = (rf''(T_1), rf(T_2), rf(T_3)) \rightarrow 21 \]

In \(T_1 \):

\[rf \]
\[rf' \]
\[rf'' \]

Store

(23, \(\bar{rf}_1 \))
(21, \(\bar{rf}_2 \))
(18, \(\bar{rf}_3 \))
Refinement Algorithm

\[\bar{rf} = (rf(T_1), rf(T_2), rf(T_3)) \]

\[\downarrow \]

\[\bar{rf}_2 = (rf'(T_1), rf(T_2), rf(T_3)) \]

\[\downarrow \]

\[\bar{rf}_4 = (rf(T_1), rf'(T_2), rf(T_3)) \]

\[\downarrow \]

\[\bar{rf}_5 = (rf(T_1), rf''(T_2), rf(T_3)) \]

\[\rightarrow \]

\[\rightarrow \]

Initialization:
• Most abstract functions

Each iteration:
• Replace functions along abstraction trees

Termination:
• All functions are concrete
 OR:
 • Estimate is already safe

Using:
\[R_{SP}(v, \bar{rf}) = \min \{ t \geq 0 | e(v) + \sum_{T' \in T_{rf}} T'(t) \leq t \} \]
Refinement Algorithm

Step:

\[\bar{rf}_2 = \langle rf(T_1), rf(T_2), rf(T_3) \rangle \]

Store

- \((21, \bar{rf}_2)\)
- \((18, \bar{rf}_3)\)
Refinement Algorithm

Step:

\[
\bar{rf}_2 = (rf(T_1), rf(T_2), rf(T_3))
\]

\[
\downarrow
\]

\[
\bar{rf}_4 = (rf(T_1), rf'(T_2), rf(T_3))
\]

\[
\bar{rf}_5 = (rf(T_1), rf''(T_2), rf(T_3))
\]

In \(T_2\):

\(rf\)

\(rf'\)

\(rf''\)

Store

(21, \(\bar{rf}_2\))

(18, \(\bar{rf}_3\))
Refinement Algorithm

Step:

\[
\bar{rf}_2 = (rf(T_1), rf(T_2), rf(T_3))
\]

\[
\downarrow
\]

\[
\bar{rf}_4 = (rf(T_1), rf'(T_2), rf(T_3)) \rightarrow 20
\]

\[
\bar{rf}_5 = (rf(T_1), rf''(T_2), rf(T_3)) \rightarrow 17
\]

In \(T_2 \):

\[
\begin{array}{c}
rf' \\
rf \\
r''
\end{array}
\]

Store

\[
(21, \bar{rf}_2)
\]

\[
(18, \bar{rf}_3)
\]
Refinement Algorithm

Step:

\(\bar{rf}_2 = (rf(T_1), rf(T_2), rf(T_3)) \)

\(\downarrow \)

\(\bar{rf}_4 = (rf(T_1), rf'(T_2), rf(T_3)) \rightarrow 20 \)

\(\bar{rf}_5 = (rf(T_1), rf''(T_2), rf(T_3)) \rightarrow 17 \)

In \(T_2: \)

\(rf' \)

\(rf'' \)

Store

(21, \(\bar{rf}_2 \))

(20, \(\bar{rf}_4 \))

(18, \(\bar{rf}_3 \))

(17, \(\bar{rf}_5 \))
Refinement Algorithm

\[
\bar{r}_f = (r_f(T_1), r_f(T_2), r_f(T_3))
\]

\[
R_{SP}(v, \bar{r}_f) = 23
\]

\[
\bar{r}_f_1 = (r_f(T_1), r_f(T_2), r_f(T_3))
\]

\[
\bar{r}_f_2 = (r_f(T_1), r_f(T_2), r_f(T_3))
\]

\[
\bar{r}_f_3 = (r_f(T_1), r_f(T_2), r_f(T_3))
\]

\[
\bar{r}_f_4 = (r_f(T_1), r_f(T_2), r_f(T_3))
\]

\[
\bar{r}_f_5 = (r_f(T_1), r_f(T_2), r_f(T_3))
\]

\[
\bar{r}_f_6 = (r_f(T_1), r_f(T_2), r_f(T_3))
\]

\[
\bar{r}_f_7 = (r_f(T_1), r_f(T_2), r_f(T_3))
\]

...
Refinement Algorithm

Initialization:
- Most abstract functions

Each iteration:
- Replace functions along *abstraction trees*

Termination:
- All functions are *concrete*
 - OR:
 - Estimate is already safe

Store

(20, \bar{rf}_4)
(18, \bar{rf}_3)
(17, \bar{rf}_5)
...
Refinement Algorithm

Initialization:
- Most abstract functions

Each iteration:
- Replace functions along abstraction trees

Termination:
- All functions are concrete
- Estimate is already safe

Store

(20, $\bar{r}f_4$)
(18, $\bar{r}f_3$)
(17, $\bar{r}f_5$)

...
1-30 tasks with 5-10 vertices each, branching degree 1-3
Evaluation: Precision Improvement

Type A: lower parameter variance
Type B: higher parameter variance
Generality

- Exact solution for NP-hard problem
 - *Efficient* method
 - Iterative refinement
- General!
 - Apply to *any* combinatorial problem
 - ... with monotonic abstraction lattice
Fahrplan

1 DRT Tasks in the Model Hierarchy
 - Liu and Layland and Sporadic Tasks
 - Frames and Branching
 - The Digraph Real-Time (DRT) Task Model
 - Adaptive Variable-Rate (AVR) Tasks

2 Feasibility Analysis of DRT
 - Feasibility Theorem
 - Demand Pairs
 - Test Termination
 - Evaluation

3 Static Priority Schedulability Analysis of DRT
 - Response-Time Analysis
 - Request Functions
 - Refinement Algorithm
 - Evaluation
Summary

- RRT
- RB
- GMF
- MF
- L&L
- ncRRT
- ncGMF
- sporadic
- coNP-hard
Summary

coNP-hard

EDRT

k-EDRT

DRT

RRT

ncRRT

RB

ncGMF

GMF

MF

sporadic

L&L

EDF
Summary

- **coNP-hard**
- **p.p.**

EDF

- L&L
- sporadic
- MF
- GMF
- RB
- RRT
- DRT
- k-EDRT
- EDRT

SP

- L&L
- sporadic
- MF
- GMF
- RB
- RRT
- DRT
- k-EDRT
- EDRT

RRT

- ncRRT
- ncGMF
- GMF
- MF
- sporadic

EDF

- ncRRT
- ncGMF
- GMF
- MF
- sporadic

SP

- ncRRT
- ncGMF
- GMF
- MF
- sporadic
Summary

CoNP-hard

EDRT

k-EDRT

DRT

ncRRT

RB

ncGMF

GMF

MF

L&L

sporadic

EDF

SP

CoNP-hard

EDRT

k-EDRT

DRT

ncRRT

RB

ncGMF

GMF

MF

L&L

sporadic

EDF

SP
Thanks!
Backup Slides Coming Up . . .
Path Abstractions: SP + EDF
Path Abstractions: Static Priorities

\[rf_{\pi}(t) := \max \left\{ e(\pi') \mid \pi' \text{ is prefix of } \pi \text{ and } p(\pi') < t \right\} \]
Path Abstractions: EDF

\[\tau_2 \nu \pi(t, t') \coloneqq \max \left\{ e(\pi') \mid \pi' \text{ is prefix of } \pi, p(\pi') < t \text{ and } d(\pi') \leq t' \right\} \]
$\text{Path Abstractions: EDF}$

$\text{wf}_\pi(t, t') := \max\{e(\pi') \mid \pi' \text{ is prefix of } \pi,\ p(\pi') < t \text{ and } d(\pi') \leq t'\}.$