DESIGN OF PERFECT PHASE-QUANTIZED SEQUENCES WITH LOW PEAK-TO-AVERAGE-POWER RATIO

Mojtaba Soltanalian and Petre Stoica
Dept. of Information Technology, Uppsala University, Uppsala, Sweden

Abstract

Perfect phase-quantized unimodular sequences with entries in \(\{ x \in \mathbb{C} \mid x^n = 1 \} \) have optimal peak-to-average-power ratio (PAR); however, they are extremely rare. For active sensing or communication systems which are able to tolerate sub-optimal PAR values, we show how to construct phase-quantized sequences possessing both virtually perfect periodic autocorrelation and low PAR. Numerical examples are provided to illustrate the performance of the proposed methods.

Introduction

The periodic autocorrelation of \(x \) is defined as

\[
R_u = \sum_{l=0}^{n-1} x_l x_{l+u}, \quad 0 \leq u < n
\]

The sequence \(x \) is called perfect iff

\[
R_u = \begin{cases}
E & u \equiv 0 \pmod{n}, \\
0 & \text{otherwise}
\end{cases}
\]

The PAR metric is defined as

\[
\text{PAR} \triangleq \max_{1 \leq i \leq n} \frac{|x_i|^2}{\frac{1}{n} \sum_{i=1}^{n-1} |x_i|^2} \quad \text{unimodular sequences} \quad x_i = e^{j\phi_i} \quad \text{phase-quantized sequences} \quad x_i = e^{j \frac{2\pi}{m} k_i}
\]

The key contributions of the proposed methods are: (i) they allow small alphabet sizes \(2 \leq m \ll n \), (ii) they do not restrict the length or alphabet sizes (in contrast to almost all perfect sequence construction methods), and (iii) they provide many phase-quantized sequences therefore circumventing the rareness dilemma of perfect phase-quantized unimodular sequences.

The Proposed methods

- **The modified PECAN**
 - Generate a perfect unimodular sequence and consider the \(m \)-level phase-quantized version of it.

 Compute \(\{ \psi_l \} \)

 \[
 \psi_l = \text{arg}(X_l), \quad 0 \leq l < n
 \]

 where \(\{ X_l \} \) denotes the discrete Fourier transform (DFT) of \(\{ x_k \} \)

 Compute \(\{ \alpha_l \} \)

 \[
 \alpha_l = \begin{cases}
 \beta_1, & \beta_2 \in [1 - \varepsilon_1, 1 + \varepsilon_2] \\
 1 + \varepsilon_2, & \beta_2 > 1 + \varepsilon_2 \\
 1 - \varepsilon_1, & \beta_2 < 1 - \varepsilon_1
 \end{cases}
 \]

 where \(\varepsilon_l \) is the inverse DFT of \(\{ e^{j \psi_l} \} \)

- **Alternating Projections**
 - Generate a perfect unimodular sequence and consider the \(m \)-level phase-quantized version of it.

 Compute the optimal projection on \(\Gamma \)

 \[
 \min_{A \in \Gamma} \| A - A_L \|_F^2
 \]

 Compute the optimal projection on \(\Lambda \)

 \[
 \min_{A \in \Lambda} \| A - A_L \|_F^2
 \]

 Repeat the projections.

Numerical Examples

Fig. 1. Design of a phase-quantized sequence of length \(n = 64 \) with low PAR via the alternating projection method. The phase quantization level is \(m = 2 \). (a) The sequence amplitudes \(\{ \alpha_l \} \) and integer phases \(\{ \psi_l \} \). (b) The autocorrelation function of \(\{ x_l \} \). (c) The PAR and PNL vs. the iteration number for the obtained sequence. The sequence achieves practically perfect periodic correlation properties and PAR = 2.138.

Table 3. The lowest PAR values obtained for different lengths \(n \) and alphabet sizes \(m \) by running the two proposed methods 50 times; alternating projections (see the first row for each length) and the extended PECAN method with \(\varepsilon_1 = 1 \) and \(\varepsilon_2 = \infty \) (see the second row for each length). The third row for each length presents the results of running the extended PECAN method 10 times for the same values of \(n \) and \(m \) (see the last row for each length).

Research Grants: This work was supported in part by the European Research Council (ERC) under Grant #228044 and the Swedish Research Council (VR).