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Abstract

SPICE (SParse Iterative Covariance-based Estimation) is a recently intro-

duced method for sparse-parameter estimation in linear models using a robust

covariance fitting criterion that does not depend on any hyperparameters. In

this paper we revisit the derivation of SPICE to streamline it and to provide

further insights into this method. LIKES (LIKelihood-based Estimation of

Sparse parameters) is a new method obtained in a hyperparameter-free man-

ner from the maximum-likelihood principle applied to the same estimation

problem as considered by SPICE. Both SPICE and LIKES are shown to

provide accurate parameter estimates even from scarce data samples, with

LIKES being more accurate than SPICE at the cost of an increased compu-

tational burden.
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1. Introduction and problem formulation

Consider the following linear model:

y =
M∑

k=1

akxk + e

= [a1, · · · , aM I]




x

e



 = Bβ

(1)

where

x = [x1, · · · , xM ]T

β =
[
xT eT

]T

B = [a1, · · · , aM I]
∆
= [b1, · · · , bM+N ] .

(2)

Furthermore, in (1) y ∈ CN denotes the observation vector, {ak ∈ CN}M
k=1 is

a set of given vectors, {xk ∈ C}M
k=1 are unknown parameters, and e ∈ CN is a

noise term; the matrix B ∈ CN×(M+N) and the vector β ∈ CM+N , introduced

in (2), are for later use. A number of both linear and nonlinear estimation

problems occurring in biostatistics, temporal and spatial spectral analysis,

radar imaging, astronomy, magnetic resonance imaging and so on (see, e.g.,

[1] [2] [3] [4] [5] [6] [7] [8] and the many references there) can be reduced to

the estimation of x in the above linear model with M >> N (i.e. scarce

data) and with only a few elements of x different from zero (i.e., a sparse

parameter vector). Note that if the noise vector e in (1) were assumed to

be sparse then the parameter vector x could be exactly recovered from y,

under fairly weak conditions, for instance by the methods proposed later on

in the paper (see, e.g., [9]). However, we do not make this assumption here

and therefore our problem is the estimation, rather than the exact recovery,

of x.
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There are several methods in the literature that can be used to estimate

the sparse parameter vector in (1). However, most of these methods require

the selection of one or more user parameters (aka hyperparameters), which

is usually a daunting task (see, e.g., the lucid discussion in [5]). In [1] [2] we

have recently introduced a SParse Iterative Covariance-based Estimation

(SPICE) method that does not suffer from this drawback: SPICE, which

is derived from a statistically and computationally sound covariance fitting

criterion, does not require the choice of any hyperparameters. We revisit

here the derivation of SPICE with the purpose of streamlining it and also

of providing further insights into this method. In particular, the focus in

[1] and [2] was on temporal and, respectively, spatial spectral analysis, and

owing to this focusing the estimation of x in (1) was less stressed than that

of other (related) parameters, see Section 2 for details. Here we change the

emphasis and treat x as the parameter vector of primary interest, which is

normally the case.

The principle of maximum likelihood is generally considered to be sta-

tistically more sound than covariance (or moment) fitting. We make use of

this principle, in a manner similar to [10] [11], to derive a novel method for

estimating x in (1), which we designate by the acronym LIKES (LIKelihood-

based Estimation of Sparse parameters). The concise derivation of LIKES,

presented in Section 3, relies on that of SPICE in Section 2; indeed, we ex-

ploit the links between LIKES and SPICE to simplify the description of the

steps of LIKES.

In Section 4 we present numerical evidence that lends support to the fact

that LIKES can be expected to be more accurate than SPICE at the cost
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of an increased computational burden. The numerical examples also show

that SPICE and LIKES provide more accurate parameter estimates than

two competitive algorithms, viz. Iterative Reweighted ℓ1-norm minimization

(IRL1) [12] [13] and Basis Pursuit (BP) [14].

2. SPICE

We will make the working assumption that the elements of β are random

variables that are uncorrelated to each other and which have zero means and

variances denoted by {pk}M
k=1 for {xk}M

k=1 and {σk}N
k=1 for {ek}N

k=1. Under

this assumption the covariance matrix of y is given by:

R = E(yy∗) = BPB∗ (3)

where the superscript ∗ denotes the conjugate transpose, and

P =




















p1 0 · · · · · · · · · · · · 0

0
. . . 0 · · · · · · · · · ...

... 0
. . .

...
...

...
...

...
... · · · pM

...
...

...
...

... · · · · · · σ1
...

...
...

...
...

... · · · . . . 0

0 · · · · · · · · · · · · 0 σN




















∆
=




















p1 0 · · · · · · · · · · · · 0

0
. . . 0 · · · · · · · · · ...

... 0
. . .

...
...

...
...

...
... · · · pM

...
...

...
...

... · · · · · · pM+1
...

...
...

...
...

... · · · . . . 0

0 · · · · · · · · · · · · 0 pM+N




















.

(4)

The SPICE estimation metric is the following weighted covariance fitting

criterion (see [1] [2] [15] and also the references therein) :

∥
∥
∥R−1/2(R − yy∗)

∥
∥
∥

2
(5)
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where ‖ · ‖ denotes the Frobenius norm for matrices (as well as the Euclidean

norm for vectors), and R−1/2 is a Hermitian square-root of the inverse matrix

R−1 (which is assumed to exist). The following comments on (3) and (5) are

in order:

• The type of model (3) for the data covariance matrix has been some-

times considered in the literature. Most commonly this model was used

due to its convenience rather than its veracity. However, the estimation

methods based on it are known to be robust to mismodeling (see, e.g.,

[1] [2] [16]).

• In some cases it may be known that the noise elements have the same

variance : σ1 = · · · = σN . Both SPICE and LIKES (see Section 3)

can be readily modified to take this information into account : see [1]

[2] for SPICE ; the modification of LIKES is similar. However, our

experience is that imposing this condition on {σk}, even when it holds,

does not improve the estimation accuracy significantly. Consequently,

for the sake of conciseness, we will omit any discussion on imposing it

and refer instead to the cited references for details on this aspect.

• We make a similar remark on the case of multiple data vectors (aka

snapshots), in which the vectors y and x in (1) should be replaced

by matrices Y and X with X being row-wise sparse. We refer the

interested reader to [2] for details on the extension of SPICE to this

case; the extension of LIKES is similar.

• We will estimate the power vector

p = [p1, · · · , pM+N ]T (pk ≥ 0) (6)
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by minimizing the covariance fitting criterion in (5). In some cases, such

as in the spectral analysis applications considered in [1] [2], estimating p

may be deemed to be sufficient. Indeed estimates of {pk} can be enough

to determine whether {|xk|} are “large” or “small”, which is what is

mainly required for signal detection in the said cases. However, {pk}
do not contain any information on the phases of {xk}, which are also of

interest in some applications. Furthermore, the direct calculation even

of {|xk|} from {pk} may not be always possible due to some unknown

scaling factor that is involved (see, e.g., [1]). With these facts in mind,

here we put the emphasis on estimating x as the parameter vector of

main interest, somewhat in contrast to what has been done in [1] [2].

While we still consider the minimization of (5) with respect to (wrt)

{pk}, we show that an estimate of β, and hence of {xk} in particular,

occurs naturally in the process of solving this minimization problem. As

might have been expected, this estimate of the realization of β that led

to the observed data vector y has the following maximum aposteriori

(MAP)-like form (e.g., [11]) :

β = PB∗R−1y (7)

see below for details.

Returning to (5), a simple calculation shows that this fitting criterion can be

re-written as:

tr
[
(I − yy∗R−1)(R − yy∗)

]

= tr(R) + ‖y‖2y∗R−1y − 2‖y‖2
(8)

where

tr(R) =
M+N∑

k=1

pk‖bk‖2. (9)
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It follows from (8) and (9) that the minimization problem of interest here is

the following:

min
p

y∗R−1y +
M+N∑

k=1

w2
kpk (10)

where the weights

wk = ‖bk‖
‖y‖ (11)

do not depend on p. At this point we remark on the fact that in [1] [2] the

second term in (10) was constrained to be equal to one :
M+N∑

k=1

w2
kpk = 1.

However, we will not impose this constraint here, but instead will consider

(10) as it stands. The benefit of doing so is twofold : i) the SPICE algorithm

obtained from (10) is slightly simpler than the version in [1]; and ii) the {pk}
obtained from (10) are related to {|xk|} via a known scaling factor (see (22)

below) and thus, if desired, {|xk|} can be expediently calculated from {pk};
note that for the {pk} obtained with the SPICE version in [1] [2], the said

scaling factor depends on unknown quantities.

The minimization problem in (10) is convex. Indeed, it can be cast as

the following semi-definite program (SDP) [17] (with α being an auxiliary

variable):

min
p,α

α +
M+N∑

k=1

w2
kpk

s.t.




α y∗

y R



 ≥ 0.
(12)

However we do not recommend obtaining the solution to (10) by solving

the above SDP. The reason is that the currently available SDP solvers for

(12) are too time consuming for the values of N and M encountered in many

applications (as an example, using a state-of-the art SDP solver for (12) with
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N = 50 and M = 103, which is a medium-size case, takes about one hour on

a reasonably powerful PC).

Interestingly enough, (10) can also be cast as a second-order cone program

(SOCP), which can be solved much more efficiently than the SDP in (12) (in

less than five minutes for the example in the previous paragraph). This fact

follows essentially from the analysis of the multi-snapshot case in [2], but

it was not shown explicitly for (10). In the next sub-section, we provide a

simple proof of the SOCP reformulation of (10).

2.1. SOCP-based solver

Consider the following augmented problem:

min
p,β

β∗P−1β +
M+N∑

k=1

w2
kpk

s.t. Bβ = y.

(13)

The use of the symbol β to denote the extra variables in (13) is not accidental

: indeed, the constraint in (13) is nothing but the data equation (1). Similarly

to (10), the problem (13) can also be shown to be convex. Note that if some

{pk} are equal to zero, then P−1 in (13) should be replaced by the pseudo-

inverse of P ; the following analysis carries over the latter case with only

relatively minor modifications.

The property of (13), which is important here, is that the minimization

wrt β yields the original problem. Specifically :

min
β

β∗P−1β = y∗R−1y s.t. Bβ = y. (14)

Consequently, the solutions p to (10) and (13) are identical. To prove (14),
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we need to show that

β∗P−1β ≥ y∗R−1y s.t. Bβ = y (15)

or equivalently (making use of the constraint) :

β∗P−1β ≥ β∗B∗R−1Bβ (16)

which holds if and only if

P−1 ≥ B∗R−1B (17)

(for two Hermitian matrices A and B, the notation A ≥ B means that the

difference matrix A−B is positive semi-definite). By a standard property of

partitioned positive semi-definite matrices ([18]), equation (17) is equivalent

to: 


P−1 B∗

B R



 =




P−1/2

BP 1/2





[

P−1/2 P 1/2B∗
]

≥ 0 (18)

which is obviously true. The result (15) is therefore proved. Furthermore, it

can be easily verified that the minimizing vector β is given by:

β = PB∗R−1y (19)

a fact that will be used in the next sub-section (note that (19) is the MAP-like

estimate of β in (7), which was mentioned in the previous discussion).

Making use of the observation that the solution p to (10) is identical to

the minimizer p of (13), we will obtain this solution from (13); interestingly

the latter problem can be solved more efficiently than (10), as explained in

the following, in spite of the additional variable β in (13).

9



The minimization of (13) wrt p, for fixed β, decouples in (M + N) one-

dimensional problems with the following generic form :

min
p≥0

|β|2
p

+ w2p (20)

or, equivalently,

min
p≥0

(
|β|√

p
− w

√
p
)2

+ 2w|β|. (21)

It follows easily from (21) that the minimizer p of (13), for fixed β, is:

pk = |βk|
wk

k = 1, . . . , M + N (22)

and also that the minimization problem wrt β that remains to be solved is

given by

min
β

M+N∑

k=1

wk|βk|

s.t. Bβ = y.

(23)

This problem can be readily cast as an SOCP [17] (with {αk} being auxiliary

variables):

min
{αk},β

M+N∑

k=1

wkαk

s.t. |βk| ≤ αk k = 1, . . . , M + N

Bβ = y

(24)

which can be solved much more efficiently than the SDP in (12).

In summary, the SOCP-based SPICE algorithm consists of solving the

SOCP in (24) to obtain an estimate of β (and hence of x). The solution p

to the original SPICE problem in (10), if desired, can be obtained from β

via (22).
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It is worth noting that in the case of real-valued data, the SOCP in (24)

reduces to the following linear program (LP) (below, αk, βk ∈ R):

min
{αk,βk}

M+N∑

k=1

wkαk

s.t. − αk ≤ βk ≤ αk ; αk ≥ 0 ; k = 1, . . . , M + N

Bβ = y

(25)

which can be solved quite efficiently. In effect there are a host of super-fast

algorithms in the literature that can be used to solve (25), such as homotopy-

based methods and iterative thresholding-based algorithms (see, e.g., [19]).

For real-valued data, the use of such an efficient algorithm to solve the

LP in (25) is currently the fastest available method to compute the SPICE

estimate. However, in the complex-valued data case, the cyclic algorithm

(CA) presented in the next sub-section can be a faster way of solving (13)

than the SOCP-based algorithm of this section.

2.2. CA-based solver

The minimizers of the criterion in (13) wrt β, for fixed p, and wrt p, for

fixed β, have been derived in the previous sub-section : they are given by the

closed-form expressions in (19) and, respectively, (22). Therefore, the main

ingredients of a CA for the minimization of (13) are already available. Let

the super-index i indicate the i-th iteration, and let P (i) denote the matrix

P made from {pi
k}. The CA-based SPICE algorithm consists of the following

equations (which are to be iterated until a convergence criterion is satisfied)

:

pi
k = |βi

k|/wk

βi+1
k = pi

kb
∗
kR

−1(i)y ; R(i) = BP (i)B∗
(26)
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(k = 1, . . . , M+N ; i = 0, 1, 2, . . .). This iterative algorithm converges globally

to the solution of (13) from any initial values {pk > 0} or {βk 6= 0} (see [1] and

the references there). However, needless to say, the rate of convergence may

depend on the initial value. Here we will initialize (26) with the element-wise

least-squares estimate of β in (1) :

β0
k =

b∗

ky

‖bk‖2 k = 1, . . . , M + N. (27)

Note that in the case of the SOCP-based SPICE the user does not need to

choose any initial values, as the SOCP solver selects them implicitly.

We have compared the execution times of the CA-based and the SOCP-

based algorithms for computing the SPICE estimate in a number of complex-

valued data cases. It is our experience that the CA-based algorithm can be

faster than the SOCP-based one for small to medium values of M , whereas it

tends to be slower for large values of M . Because we have used a state-of-the

art solver for SOCP whereas our Matlab code for CA is likely far from optimal

(in particular this code comprises several loops which are notoriously slow in

Matlab), we decided to include neither run time plots for the two algorithms

nor any specific indication as to the value of M beyond which the SOCP-

based solver becomes faster than the CA-based algorithm : after all, such a

value of M should depend not only on the codes used for the two algorithms

and on the machine on which they are run but also on the problem under

consideration (in particular on the matrix A of that problem).

3. LIKES

We will now make the additional assumption that x and e are circularly

Gaussian distributed. This means that y has a circular Gaussian distribution
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with zero mean and covariance matrix equal to R. Consequently the nega-

tive log-likelihood function associated with y is given (to within an additive

constant) by:

f(p) = ln|R| + y∗R−1y. (28)

We will obtain an estimate of p by minimizing this function, i.e. :

min
p

y∗R−1y + ln|R|. (29)

The objective in (29) is a well-established fitting criterion even when the

data are not Gaussian distributed. In fact, in the one-snapshot case consid-

ered in this paper, (29) may be deemed to be statistically a more appealing

estimation criterion than the covariance fitting metric in (10).

With regard to the form of the two fitting criteria in (10) and (29), we

see that they share a common term, viz. y∗R−1y, which is a convex function

of p. The problem is that the second term in (29), unlike that in (10), is

not convex. In fact this term can be shown to be a concave function of p,

see Appendix A. The consequence of this fact is, as shown in Appendix B,

that (29) is a non-convex problem which, unlike the SPICE problem in the

previous section, may be hard to solve globally. In the following we will

derive an iterative algorithm for the minimization problem in (29), which

decreases the criterion f(p) at each iteration and can thus be expected to

converge at least locally. As we will see shortly, each iteration of this new

algorithm turns out to require solving a SPICE-like problem, which can be

done by means of the SPICE solvers presented in the previous section.

Let p̃ be an arbitrary point in the parameter space, and let R̃ denote the

corresponding covariance matrix. Because a concave function is majorized
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by its tangent plane at any point, the following inequality must hold for any

p :

ln|R| ≤ ln|R̃| +
M+N∑

k=1

tr
(

R̃
−1

bkb
∗
k

)

(pk − p̃k)

= ln|R̃| − N + tr(R̃
−1

R) = ln|R̃| − N +
M+N∑

k=1

w̃2
kpk

(30)

where

w̃2
k = b∗

kR̃
−1

bk. (31)

It follows from (30) that :

f(p) ≤
(

ln|R̃| − N
)

+ y∗R−1y +
M+N∑

k=1

w̃2
kpk

∆
= g(p) (32)

for any vectors p̃ and p. Note also that

f(p̃) = g(p̃). (33)

The important implication of (32) and (33) is that we can decrease the func-

tion f(p) from f(p̃) to, let us say, f(p̂) by choosing p̂ as the minimum point

of g(p) or at least such that g(p̃) > g(p̂) :

f(p̂) ≤ g(p̂) < g(p̃) = f(p̃) (34)

(the first inequality above follows from (32), the second inequality from the

definition of p̂, and the equality from (33).) This is in fact the underlying

principle of the minimization-majorization approach to solving a given min-

imization problem, see, e.g. [20] [21]. The usefulness of the said approach

depends on whether the minimization (or the decrease) of g(p) is easier than

that of f(p). Here this is definitely true, as g(p) is (to within a constant)

a SPICE-like convex criterion function, compare it with (10). Consequently,
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the SPICE solvers of the previous section can be used to find a vector p̂ with

the above property, for any given p̃.

The procedure for the minimization of the negative log-likelihood function

in (29), outlined above, is designated by the acronym LIKES (LIKelihood-

based Estimation of Sparse parameters). LIKES consists of an initialization

stage (we can use the same initial values as for SPICE, see (27), to compute

the initial weights {w̃k}; alternatively we can set {w̃k = wk} where {wk} are

the SPICE weights in (11)), and of the following main steps that are to be

iterated until a convergence criterion is satisfied :

Inner step. Using the most recent estimate to define p̃, build R̃ and

employ either of the SPICE solvers to obtain the next estimate p̂ (as well as

β̂, if desired). Note that an off-the-shelf SOCP solver will compute p̂ as the

minimum point of g(p) ; on the other hand, if desired, the CA-based solver

can be iterated only as long as it decreases g(p) “significantly” and therefore

it can be stopped before complete convergence to speed up the computation

of p̂ ; the trade-off being that a presumably larger number of outer iterations

may then be required.

Outer step. Set p̃ = p̂, and go to the inner step.

It is somewhat interesting to note that neither of the estimation methods

presented in this paper appears to make explicit use of the information that

the parameter vector is sparse, and yet both SPICE and LIKES provide

sparse estimates (see the next section). To understand this behavior, at least

partly, observe that the second term in the p-dependent SPICE criterion in

(10) is nothing but the (weighted) ℓ1-norm of the parameter vector, which

is known to penalize non-sparse vectors ; and the same is true for the β-
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dependent SPICE criterion in (23) where the objective function itself is the

weighted ℓ1-norm of β. These observations also apply to LIKES whose inner

step is a SPICE-like estimation problem.

We expect that the LIKES estimates of β and p are more accurate

than the SPICE estimates. A reason for this expectation is the maximum-

likelihood character of LIKES. The fact that the weights {w̃k} of LIKES

are adaptive also makes LIKES more appealing than SPICE whose weights

{wk} are constant : indeed, w̃2
k can be interpreted as an approximation of

the inverse power 1/p̃k (see [16]) and thus if p̃k was “small” then p̂k is likely

to be even smaller; in particular, this means that the LIKES estimate can

be expected to be sparser than the SPICE estimate. The numerical results

presented in the next section lend support to the expected better accuracy

of LIKES. On the other hand, we should note that LIKES is computation-

ally more demanding than SPICE. Roughly speaking, the execution time of

LIKES is equal to that of SPICE times the number of run outer-step itera-

tions (which appears to be usually between 10 and 20).

We end this section with a discussion on the relationship between LIKES

and the Sparse Bayesian Learning (SBL) approach of [10] and [11]. While

both LIKES and SBL make use of the maximum-likelihood principle, as

in (29), the two algorithms are quite different from one another : SBL is

an Expectation-Maximization (EM) - type of method, whereas LIKES is a

Minimization-Majorization (MM) - based technique (as explained above).

In general EM algorithms are known to converge more slowly than MM

counterparts (see, e.g., [21]) and, indeed, in a number of preliminary tests

we have observed that LIKES can converge at a much faster rate than SBL.
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Consequently, from a pragmatic/computational perspective, LIKES may be

preferable to the SBL algorithm of [11] [10] (a detailed comparison of LIKES

and SBL is left to future work). From a theoretical viewpoint, on the other

hand, the analysis in [11] and [10] has a number of interesting results that

also apply to LIKES mutatis mutandis. In particular, the cited papers (espe-

cially [11]) contain a detailed explanation of the sparsity of the LIKES/SBL

parameter estimates : in a nutshell, if {pk}M
k=1 in (3) are assumed to have

a certain prior then the resultant hierarchical prior for x can be shown to

have a sparsity-inducing character. Furthermore, [11] includes a useful anal-

ysis of the global and local minima of the negative log-likelihood function in

(28) which, in the case of local minima, holds under either noisy or noiseless

conditions.

4. Numerical illustrations and concluding remarks

4.1. Spectral analysis example

We consider the problem of estimating the amplitudes {ck} and frequen-

cies {ωk} of three sinusoidal signals from noisy irregularly-sampled observa-

tions :

y(tn) =
3∑

k=1

cke
iωktn + e(tn) ; n = 1, . . . , 50 (35)

where the noise samples {e(tn)} are uncorrelated Gaussian random variables

with zero mean and variance σ, and the sampling times {tn} are drawn

from a uniform distribution over the interval [0, 100]. The true values of the
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sinusoidal parameters in (35) are the following ones :

c1 = 5 c2 = 5 c3 = 10

ω1 = 2π 0.3 ω2 = 2π 0.5 ω3 = 2π 0.52.
(36)

The signal-to-noise ratio (SNR) for (35)-(36) is defined as :

SNR = 10 log(100/σ). (37)

Let

ap =








eiνpt1

...

eiνptN








; p = 1, . . . , M (38)

where

νp = 2π
M

p ; N = 50 ; M = 1000. (39)

Using the above notation we can re-write (35) in the form (1), viz.

y = Ax + e (40)

with the parameter vector x having only three non-zero elements which are

equal to {ck}3
k=1.

The SPICE and LIKES estimates of {|xk|}, obtained in 100 Monte-Carlo

runs using the SOCP-based solver with non-identical {σk}, are shown (in a

superimposed manner) in Figure 1 along with the IRL1 and BP estimates

(for SNR = 15dB). The latter two estimates require knowledge of the noise

variance σ. In applications σ must, of course, be estimated from y and

this is not an easy task. In order to estimate σ as reliably as possible we

assume that we know the sparsity of x in (40) (i.e. the number of non-zero

elements of x). While this appears to be a less restrictive assumption than
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assuming that σ is known (as done in the cited papers where IRL1 and BP

were introduced), it is still a relatively impractical assumption and making

it basically eliminates one of the main advantages of the sparse estimation

methods over the parametric ones (indeed, once we know that the number

of components in (35) is three we can apply a powerful parametric method

to y to estimate the signal parameters, see, e.g. [16]).

To estimate σ we make use of the initial estimate of x in (27), viz. |xk| =

|a∗
ky|/‖ak‖2 (for k = 1, · · · , M), which is nothing but the Periodogram. We

estimate the frequencies {ωk}3
k=1 as the locations of the three largest peaks

of {|xk|} and then use these frequency estimates in (35) to estimate {ck}3
k=1

via least squares. Finally we obtain an estimate of σ as the sample variance

of the residuals of the said least-squares problem.

All four estimates shown in Figure 1 are sparse but this is not fully obvious

for SPICE and LIKES due to overlaying many realizations and to the fact

that the zero elements in the estimated parameter vector may appear at

different positions in various realizations; to shed some light on this aspect,

in Figure 2 we show one randomly selected plot from each of Figures 1 a) -

d). We note the following facts from Figures 1 and 2 : the LIKES estimate is

more accurate than SPICE and both outperform IRL1 and BP. The latter two

estimates are slightly biased for frequencies (see the inserts in Figure 1) and

heavily biased downward for amplitudes presumably due to an overestimation

of σ; we remind the reader that σ is estimated under the practically restrictive

assumption that the number of sinusoids in the data is known : without this

assumption simple estimation of σ is likely to be even less accurate and the

performance of IRL1 and BP to degrade accordingly.

19



The three largest elements of the estimated x are taken as estimates

of {ck}3
k=1. The MSE’s of these estimates, obtained from 100 Monte-Carlo

simulation runs, are shown in Figure 3 for SNR ∈ [0dB, 25dB]. We observe

from this figure that LIKES and SPICE significantly outperform IRL1 and

BP. Note also from this figure that the LIKES estimate is the most accurate

one for all SNR values considered.

Finally we note that, once the frequencies {ωk} are determined, e.g. by

either SPICE or LIKES, the amplitudes {ck} could be estimated by least

squares (LS). However, as already mentioned above when discussing the es-

timation of σ for IRL1 and BP, LS is a parametric method that estimates

only the amplitudes of the three sinusoids with given frequencies {ωk} and

therefore its use has to be preceded by a step for estimating the number of

sinusoids in the data. In contrast with this, SPICE and LIKES are non-

parametric methods which do not require such a step (note, for instance,

that even when we showed the MSE’s of the estimated amplitudes in Figure

3 we estimated all {xk} not only the three of them having the largest mag-

nitude). For this reason, we do not consider the LS amplitude estimate here

but note that this estimate is quite competitive if we decide to go parametric

and dispose of a good detector for estimating the number of signals in the

observed data.

4.2. Range-Doppler imaging example

In this sub-section we consider a sensing system (such as radar) that

transmits a probing signal towards an area of interest. Let {sk}N
k=1 denote

the code used to modulate the transmitted waveform, which is assumed to

be a pseudo-random sequence with zero mean and unit variance. Then a

20



simplified (non-parametric) model for the received signal (after demodulation

and a number of other pre-processing operations) is as follows (e.g. [22]):

y =
N−1∑

k=−N+1

L−1∑

l=−L

xklakl + e. (41)

In (41), xkl is the reflectivity coefficient for the cell corresponding to the k-th

range bin and the l-th Doppler bin, e is a white noise with zero mean and

variance σ, and

akl = Jk








s1e
iωl

...

sNeiNωl








(42)

where ωl is the frequency associated with the l-th Doppler bin,

ωl = π
L
l, (43)

and Jk denotes the following shifting matrix

Jk =


















k+1
︷ ︸︸ ︷

0 · · · 1 · · · 0

0 · · · · · · . . .
...

0 · · · · · · · · · 1

0 · · · · · · · · · 0
...

...
...

...
...

0 · · · · · · · · · 0


















= J∗
−k k = 0, . . . , N − 1. (44)

We consider the case of five targets present in (41), with the following pa-

rameters:

Range bin k : 0 0 0 2 −2

Doppler bin l : −15 5 10 −15 20

Reflectivity coefficient xkl : 5 5 10 5 5

(45)
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Similarly to (37), we define the SNR as

SNR = 10 log(100/σ). (46)

We will show results for a data realization with SNR = 20dB, N = 50, and

L = 25.

Note that the data vector y in (41), which is temporally aligned with the

0-th range bin, is typically used to estimate the parameters of the targets

(i.e. the reflectivities and Doppler shifts) that are present only in the 0-th

range bin. Indeed, targets in the k-th range bin are “observable” in fewer

and fewer elements of y as |k| increases and therefore their estimation from

y in (41) might not be reliable; to estimate the parameters of such targets

with a satisfactory accuracy we need another segment of the entire received

data string, which is properly aligned with the range bin of interest.

With the above fact in mind we have placed the existing targets in the

central range bin k = 0 and in two bins close to it k = ±2, see (45). Never-

theless, we will not estimate {xkl} only for these three values of k, but will

use the data vector y to estimate all {xkl}.
Evidently the data model (41) is already in the form (1) (with M + N =

5000) and hence we can directly apply the initial estimator in (27) as well

as SPICE and LIKES to it; note, once again, that the initial estimate is

the Periodogram (which is still the method preferred by practitioners for

this type of applications). The so-obtained estimates of {|xkl|}, aka the

estimated range-Doppler images, along with the true image are shown in

Figure 4 where |xkl| occurs at position (k, l). Both SPICE and LIKES yield

precise estimates of the true range-Doppler image; in particular, observe the

considerable sparsity of SPICE and LIKES images which are not affected by
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noise even for range bins far away from the central one (the images obtained

by IRL1 and BP have a poorer performance than the SPICE and LIKES

images and are thus omitted). In contrast to this, the Periodogram estimate

is rather noisy and as a consequence most targets are barely visible if at

all; in fact this estimate was so distorted for k /∈ [−20, 20] that we chose to

present the Periodogram image in Figure 4 only for k ∈ [−20, 20].

Appendix A : Concavity proof

We prove here that ln|R| is a concave function of p by showing that its

Hessian matrix is negative semi-definite at any point in the parameter space.

We have that :

∂ln|R|
∂pk

= tr
(

R−1 ∂R
∂pk

)

= b∗
kR

−1bk (47)

and

∂2ln|R|
∂pk∂ps

= −b∗
kR

−1bsb
∗
sR

−1bk
∆
= −Hks. (48)

The matrix H , introduced above, must therefore be shown to be positive

semi-definite. In other words we have to prove that g∗Hg ≥ 0 for any vector

g = [g1, · · · , gM+N ]T . Let

X =
M+N∑

k=1

gkbkb
∗
k (49)

and let vec(X) denote the vector made from the columns of X stacked on

top of each other. Then a simple calculation shows that:

g∗Hg =
M+N∑

p=1

M+N∑

s=1

g∗
pgstr

(
R−1bpb

∗
pR

−1bsb
∗
s

)
= tr

(
R−1X∗R−1X

)

= vec∗(X)
(
R−T ⊗ R−1

)
vec(X)

(50)
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where ⊗ denotes the Kronecker matrix product. Because the matrix R−T ⊗
R−1 is positive definite, it follows from (50) that g∗Hg ≥ 0 and the proof is

concluded.

Appendix B : Non-convexity proof

The Hessian matrix associated with the function f(p) in (28) has the

following elements :

∂2f(p)
∂pk∂ps

= −b∗
kR

−1bsb
∗
sR

−1bk + 2Re(y∗R−1bkb
∗
kR

−1bsb
∗
sR

−1y)

∆
= −Hks + Gks k, s = 1, . . . , M + N

(51)

where Re(z) denotes the real part of z. The first term in (51) follows from

(48) and it corresponds to a negative semi-definite matrix (see the previous

appendix); the second term in the above equation, which corresponds to

the Hessian matrix of y∗R−1y, can be similarly shown to be positive semi-

definite : G ≥ 0. For sufficiently small values of ‖p‖, G dominates H in

(51); whereas the opposite is true if ‖p‖ is large enough. It follows that the

Hessian matrix in (51) becomes positive semi-definite as ‖p‖ approaches zero,

comes to be negative semi-definite as ‖p‖ approaches infinity, and in general

is indefinite for some intermediate values of ‖p‖. With this observation, the

proof is concluded.
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Figure 1: Superimposed plots of {|xk|} obtained via (a) SPICE (b) LIKES (c) BP

and (d) IRL1 in 100 Monte-Carlo runs. The circles indicate the true parameter

values. The zoom-in plots show the spectrum in the interval [0.49 − 0.51] Hz
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Figure 2: Four randomly selected plots of {|xk|} from Figure 1 for (a) SPICE (b)

LIKES (c) BP and (d) IRL1.
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Figure 3: MSE vs SNR for the SPICE, LIKES, BP and IRL1 estimates of {ck}3
k=1.
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−50
−40

−30
−20

−10
0

10
20

30
40

50

−20
−15

−10
−5

0
5

10
15

20
25

0

2

4

6

8

10

12

k
l

|x
kl

|

(c) SPICE
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(d) LIKES

Figure 4: The true and estimated range-Doppler images.
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