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Abstract. We address the problem of minimizing labelled transition
systems for name passing calculi. We show how the co-algebraic formu-
lation of automata with naming directly suggests an effective minimiza-
tion algorithm which reduces the number of states to be analyzed in the
verification of properties for name passing process calculi.

1 Introduction

Automatic methods for verifying finite state automata have been showed to be
surprisingly effective [3]. Indeed, finite state verification techniques have enjoyed
substantial and growing use over the last years. For instance several commu-
nication protocols and hardware systems of considerable complexity have been
formalized and proved correct by exploiting finite state verification techniques.
Since the state space is still very large for many designs, much research has been
devoted to find techniques to combat state explosion. Semantic minimization
[18,9] is a rather general technique which reduces the number of states to be an-
alyzed by producing a minimal automaton that is equivalent to the original one.
The minimal automaton is is indistinguishable from the original system with re-
spect to the set of properties specified in many logical systems (e.g. p-calculus)
but easier to handle due to its possibly much smaller size [6]. The possibility
of generating a minimal system provides further advantages. First, the minimal
automaton can be exploited to verify different properties of the same system.
Second, systems are usually obtained by composing components. Hence, mini-
mizing components before combining them yields smaller state spaces.

The advent of world-wide networks and wireless communications are con-
tributing to a growing interest in dynamic and reconfigurable systems. Unfortu-
nately, finite state verification of these systems is much more difficult. Indeed, in
this case, even simple systems can generate infinite state spaces. An illustrative
example is provided by the m-calculus [11]. Its primitives are simple but expres-
sive: channel names can be created, communicated (thus giving the possibility
of dynamically reconfiguring process acquaintances) and they are subjected to
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sophisticated scoping rules. The m-calculus has greater expressive power than or-
dinary process calculi, but the possibility of dynamically generating new names
leads also to models which are infinite-state and infinite branching.

Creation of new names is actually quite common also in practice. An example
is provided by the creation of nonces to identify sessions in security protocols
(see [10] for a critical review of the state-of-the-art on verification of security pro-
tocols). All these techniques are based on finite state verification, and typically
can ensure error freedom only for a finite amount of the behaviour of protocols.
Even if many protocols do not include iterations, however, an unbound number
of principals may take part in the interleaved sessions of the protocol; moreover,
many known attacks exploit the mixed interleaving of different sessions of the
same protocol.

Hence, traditional finite state models of behaviour have important short-
comings to address the challenges of supporting verification of dynamic dis-
tributed systems via semantic equivalence. To support finite state verification of
dynamic distributed systems two of the authors have introduced a novel founda-
tional model called History Dependent Automata (HD-automata) [12,15]. HD-
automata have been specifically designed to allocate and garbage collect names.
The theory ensures that finite state, finite branching automata give a faithful rep-
resentation of the behaviour of m-calculus processes. Furthermore, HD-automata
are expressive enough to represent formalisms equipped with mobility, locality,
and causality primitives [13,14]. The finite state representation of m-calculus
processes given by the HD-automata has been exploited to check behavioral
properties of the agents [8,7]. Few other approaches have been proposed for fi-
nite state verification of m-calculus processes [4,17]. The explicit management
of names provided by HD-automata allows for an extremely compact represen-
tation of the behaviour of processes. HD-automata are not only a convenient
format for representing the behaviour of 7-calculus processes in a compact way,
though. They may be considered the natural extension of automata to calculi
with name passing and name generation also from a theoretical point of view. In
particular, HD-automata can be defined as coalgebras on the top of permutation
algebras of states [16]. The permutation algebra describes the acts of name per-
mutations (i.e. renaming) on state transitions. This information is sufficient to
describe in a semantically correct way the creation, communication, and deallo-
cation of names: all the features needed to describe and reason about formalisms
with operations over names.

General results concerning coalgebras [1,19,20,2,21] extend also to these
kinds of coalgebras: they make sure that a final coalgebra exists and that it
defines minimal realizations of HD-automata. Also, equivalent HD-automata,
and hence equivalent 7-calculus processes, have isomorphic minimal realizations.

Our aim in this paper is to tackle the problem of minimizing labelled tran-
sition systems for name passing calculi. Instead of presenting our construction
in the abstract setting of category theory, namely the category of coalgebras
for an endofunctor on some base category, we shall be working in the standard
universe of sets and functions. The main point is to provide a concrete represen-



tation of the terminal coalgebra which directly suggests the data structures of
a minimization module of a semantic-based verification environment. Indeed, a
key goal of this paper is to provide a clear relationship between the structures of
the semantic world and the data structures for the implementation. A main con-
tribution of this paper is to show how the (theoretical) coalgebraic formulation
of automata with naming directly suggests an effective minimization algorithm.
The work reported in this paper is closely related to the theoretical development
of coalgebras, and, at the same time, it formally specifies an effective procedure
to perform finite state verification of distributed systems with dynamic name
generation via semantic equivalence.

2 Transition Systems, Co-Algebras and Minimization

A transition system T is a structure (S, L, —), where S is the set of states, L is
the set of (action) labels and —C S x L x S is the transition relation. Usually,

one writes s — s' to indicate (s,£,8") €—. In this section we provide a concrete
representation of the terminal coalgebra (of an endofunctor over Set) which will
yield the minimal transition system. Hereafter, we use the following notations:

— Set is the collection of all sets. By convention, () : Set denotes a set and
q : @ denotes an element in the set @);

— Fun is the collection of functions among sets. The function space over sets
will have the following structure:

Fun ={H |H =(S:Set,D:Set ,h:S — D)}.

By convention we use Sy, Dy and hy to denote the components of an
element of Fun.

Let H and K be functions (i.e. elements of Fun), then the composition of H
and K (H; K) is defined provided that Sk = Dy and it is the function given by
SH;K = SH, DH;K = DK, and hH;K = hK o hH.

Sometimes, we shall need to work with surjective functions. Let H be a
function, then H is the function given by:

- Sﬁ = SH, Dﬁ = {q' :Dgy | Elq : SH,hH(q) = q'} and hﬁ = hg.

Transition systems are described co-algebraically employing two components:
a set @ (the state space) together with a function K : Q — p(L x Q) where p(X)
is the finite powerset of X. The idea is that function K determines the behaviour

of the transition system: K (q) is the set of pairs (£, ¢') such that ¢ N ¢'. Functor
T(X) = p(L x X) operates on both sets and functions, and characterizes a whole
category of labelled transition systems, i.e. of coalgebras. In this paper, we aim
at developing a concrete co-algebraic description of the minimization procedure,
hence, we rephrase coalgebras in terms of certain structures called bundles.



Let L be the set of labels (ranged over by £), then a bundle B over L is
a structure (D : Set ,Step : p(L x D)). Given a fixed set of labels L, by
convention, B denotes the collection of bundles and 3 : B identifies the bundle
B. Intuitively, the notion of bundle has to be understood as giving the data
structure representing all the state transitions out of a given state. It details
which states are reachable by performing certain actions.

The following clauses define functor T'.

—T(Q)={B8:B| Dsg=Q}, for each Q : Set;
— For each H : Fun, T(H) is defined as follows:
® Sry = T(Su) and Dy = T(Dg);

Definition 1. Let L be a set of labels. Then a labelled transition system over L
is a co-algebra for functor T, namely it is a function K such that D = T(Sk).

Aa already mentioned a co-algebra K for functor T' represents a transition
system where Sk is the set of states, and hx(q) = B, with Dz = Sk and

Stepg = {(4,4") | ¢ N ¢'}. Figure 1 illustrates a labelled transition system and
its coalgebraic formulation via the mapping hx.

s S | IO
N K = ks L\ £),(0,9),(0,

NS N () = (Se{(a 1), (5, 4)})

3 4 hK(3) = (Sk7 {(C, 5)})

N L hic(4) = (Se. {le.5)})

5 hk(5) = {Sk, D)

Fig. 1. A labelled transition system and its coalgebraic specification

General results (e.g. [1]) ensure the existence of the final coalgebra for a large
class of functors . These results apply to our formulation of transition systems.
In particular, it is interesting to see the result of the iteration along the terminal
sequence [21] of functor T'.

Let K be a transition system, and let Hy, Hy,..., Hpy1,... be the sequence

o —

of functions computed by H,41 = K;T(H,), where Hy is the unique function
from Sk to the one-element set {x} given by Su, = Sk; Du, = {*}; and
hi,(q : Su,) = *. Finiteness of g ensures convergence of the iteration along the
terminal sequence. We can say much more if the transition system is finite state.

Theorem 1. Let K be a finite-state transtion system. Then,

— The iteration along the terminal sequence converges in a finite number of
steps, i.e. Dy, ., = Dy,
— The isomorphism mapping F' : Dy, — Dg, ., yields the minimal realization

of transition system K.



Comparing the co-algebraic construction with the standard algorithm [9, 6]
which constructs the minimal labelled transition system we can observe:

— at each iteration i the elements of Dy, are the blocks of the minimization
algorithm (i.e. the i-th partition). Notice that the initial approximation D g,
contains a single block: in fact Hy maps all the states of the transition system
into {x}.

— at each step the algorithm creates a new partition by identifying the splitters
for states ¢ and ¢'. This corresponds in our co-algebraic setting to the fact
that Hi(q) = Hi(q') but Hiy1(q) # Hita(¢)-

— the iteration proceeds until a stable partition of blocks is reached: then the
iteration along the terminal sequence converges.

We now apply the iteration along the terminal sequence to the coalgebraic

formulation of the transition system of Figure 1. The initial approximation is
the function Hy defined as follows

Hy =(Su, = Sk, Dy = {*}, ha, (q) = *)
We now construct the first approximation H;. We have that
’
h‘H1 (Q) = (DH07{<€7 h'Ho(ql)) q— ql}>

T(Ho){{1,2,3,4,5},{(a,2), (b, 3), (b, 4)}) = ({x}, {{a, %), (b, %)})

In our example we obtain the function hg, and the destination state Dy, =
{B1, B2, B3} as detailed below.

s e

Hq 1) = ({* a, *), (0, * = ({x * *
(@) = ({3, {0, ), o)) 2 = (1 Ao 000
()= (e ) gt T
hay (@)= {sh{len)) 7

hy (5) = ({+},0)

We continue to apply the iterative construction, we obtain:

ha,(0) = (Dmuy, {(a, B1), (b, B2) })
hay(1) = (Dmuy, {{a, B1), (b, B2)})
hu,(2) = (Dmuy, {(a, B1), (b, B2) })
hm,(3) = (Day,{{c,0)})
hiy(4) = (Day s {(c,0)})
ha, (5) = (DH,,0)

Since Du, = Dp, the iterative construction converges, thus providing the
minimal labelled transition system illustrated in Figure 2, where ¢ = {0,1,2},
o, = {3,4} and e3 = {5}.



Fig. 2. Minimal labelled transition system

3 A co-algebraic formulation of HD-automata

In this section we extend the co-algebraic minimization to HD-automata. HD-
automata [15] are specifically designed to provide a compact representation of the
behavior of name passing process calculi. Names appear explicitly in the states of
an HD-automaton: the idea is that the names associated to a state are the names
which may play a role in the state evolution. A set {v1,...,v)q} of local names
is associated with each state ¢, and a permutation group Gy on {vi,...,v|q}
defines what renamings leave unchanged the behavior of q. Moreover, the identity
of names is local to the state: states which differ only for the order of their
names are identified. Due to the usage of local names, whenever a transition is
performed a name correspondence between the name of the source state and the
names of the target state is explicitly required.

3.1 Named sets

Now we introduce the notion of named sets. Hereafter, we use A “p (A g B)
to denote a bijective (injective) function from A to B.

Definition 2. A named set A is a structure

A=(Q:5Set,|_|: Q — w,<: Q x Q@ — Bool,G : [[ p{v1-vg} =% {v1.v¢}) )
a:Q

where Vq : Qa, Ga(q) is a permutation group and <4 1is a total ordering.

A named set is a set of states equipped with a mechanism to give local meaning
to names occurring in each state. In particular, function |_ | yields the number
of local names of states. Moreover, the permutation group G a(q) allows one
to describe directly the renamings that do not affect the behaviour of g, i.e.,
symmetries among the local names of ¢. Finally, we assume that states are
totally ordered. By convention we write {g : @4} to indicate the set {v;..v/q, }
and we use NSet to denote the universe of named sets. In the definition above,
the general product [] is employed (as usual in type theory) to type functions
f such that the type of f(q) is dependent on g.

Definition 3. A named function H is a structure

H=(S:NSet,D: NSet,h: Qs — Qp,X: H p({h(9)}p ﬂ) {g¢}s))
¢:Qs



where Vq : Qsy, Vo : Xu(q), Gpy (hu(q));0 = Yu(q) and 0;Gs,(q) € Xu(q)-

As in the case of standard transition systems, functions are used to determine
the next state of transitions. As states are equipped with local names, a name
correspondence (the mapping Hy) is needed to describe how names in the desti-
nation state are mapped into names of the source state. However, since names of
corresponding states (¢, hg(q)) in hy are defined up to permutation groups, we
must equip H with a set Xy (q) of injective functions. Since the name correspon-
dence must be functional, the whole set X5 (g) must be generated by saturating
any of its elements by the permutation group of hg(q), and the result must be
invariant with respect to the permutation group of q.

Named functions can be composed in the obvious way. Let H and K be
named functions. Then H; K is defined only if Dy = Sk, and

- S,k = Su, D,k = Dk,
— hix : Qsy — Qpyx = hm; hk,
= Xk (q: Qsy) = Xk (hu(q)); Xu(q)

Let H be a named function, H denotes the surjective component of H:

- SA —SH and QDA_{q QDH |E|q QSH hH( )_ql}a
IqIDA lalp,
— Gp_(g) = GDH( )s
~ hglo) =
H( )= EH( )

3.2 Bundles over w-calculus actions

To deal with HD-automata and named sets, the notion of bundle must be en-
riched. First we have to define the set of labels of transitions. Labels of transitions
must distinguish among the different meanings of names occurring in 7-calculus
actions, namely synchronization, bound output (scope extrusion) free output,
bound input, output where the subject and the object coincide, and so on. The
set of m-calculus labels L, is the set {T AU, BOUT,OUT,BIN,IN}. However,
this is not enough. We still have to specify how many names are associated to
labels. For instance, no name is associated to TAU (synchronization) labels,
whereas one name, is associated to bound output BOUT labels. Let |_| be the
weight map associating to each w-label the set of indices of distinct names the
label refers to. The weight map is defined as follows:

[TAU|=0 |BOUT|=|BIN|={1} |OUT|=|IN|={1,2}
Definition 4. A bundle B consists of the structure
B ={(D: NSet,Step : p(gd D) )
where qd D is the set of quadruples of the form (£, 7,0,q ) given by

{v1i.},q:Qp,0: [[{a}n H Qo).

£EL R

m]

gdD={{L:Ly,m:|¢] —



d
" g [{xvi.} if L€ {BOUT BIN}
Qf= {v,..}  if¢ ¢ {BOUT,BIN}

under the constraint that Gp,(q); Sy = Sq, where Sq = {( {,7,q,0 ) € Stepg}
and p; (£,m,q,0 ) = (£,,¢,p;0 ).

The intuition is that a bundle provides the abstraction to describe the successor
set of a state. More precisely, if ( £,7,q,0 ) € ¢dD, then ¢ is the destination state;
£ is the label of the transition; 7 associates to the label the names observed in
the transition; and o states how names in the destination state are related with
the names in the source state. Notice that the distinguished element * belongs
to the names of the source state when a new name is generated in the transition.

Some additional operations over bundles will be helpful. Given a function f,
define f* to be its x-extension as follows:

f*(m):{* ifx=x

f(z) otherwise

Let { B[} be the function over bundles given by

{81 = U rng(m) Urng(o) \ {+}

(€,m,q,0 YEStepg

where rng yields the range of functions. Function { 3 [} gives the set of names
which occur in the bundle . Hereafter, we will only consider bundles 8 such
that { B[} is finite. Moreover, we will use || to indicate the number of names
which occur in the bundle 8 (i.e. 8] = [{B]}]).

The most important construction on bundles is the normalization operation.
This operation is necessary for two different reasons. The first reason is that there
are different equivalent ways for picking up the step components (i.e. quadruples
( £,m,q,0 )) of a bundle. We assume to have an ordering relation over the
quadruples in gd D, which yields an ordering C over the bundles on D. This
ordering relation will be used to define canonical representatives of bundles.
The ordering on quadruples can be defined non ambiguously only assuming an
ordering on D. This is why we introduced an ordering relation on named sets in
the first place.

The second, more important, reason for normalizing a bundle is for removing
from the step component of a bundle all the input transitions which are redun-
dant. Consider for instance the case of a state ¢ having only one name v; and
assume that the following two tuples appear in a bundle:

(INamya%{vl_)y}) and (BIN,IL',(],{Ul—)*} )

Then, the first tuple is redundant, as it expresses exactly the same behavior
of the second tuple, except that a “free” input transition is used rather than a
“bound” one. Hence, the transformation removes the first tuple from the bundle.



We have to remark that redundant transitions occur when building the HD-
automaton for a 7-calculus agent. Indeed, it is not possible to decide which free
input transitions are required, and which transitions are covered by the bound
input transition!. The solution to this problem consists of adding a superset
of the required free input transitions when the HD-automaton is built, and to
exploit a reduction function to remove the ones that are unnecessary. During the
iterative execution of the minimization algorithm, bundles are split: this means
that the set of redundant components of bundles decreases. Hence, when the
iterative construction terminates, only those free inputs that are really redundant
have been removed from the bundles.

The normalization of a bundle 8 is done in different steps. In the first step,
the bundle is reduced by removing all the possibly redundant input transitions.
Reduction function red(8) on bundles is defined as follows:

- Dred(ﬁ) = DB’
— Stepreas) = Steps \ {{ IN,zy,q,0 ) | ( BIN,z,q,0" ) : Steps Ao’ = (a5{y = *})}.

Once the redundant input transitions have been removed, it is possible to asso-
ciate to bundle 8 the set of its “active names” ang = {|red(8) [}. These are the
names that appear either in a destination state or in a label of a non-redundant
transition of the bundle. Finally, the normalization function norm(g8) is defined
as follows:

- Dnorm(ﬁ’) = Dﬂ
- Stepnorm(ﬂ) = ming (Stepﬂ \ {< IN, rY,4q,0 ) | Y ¢ anﬂ})’

where minc is the function that returns the minimal permutation of a given
bundle with respect to order C. More precisely, given a bundle 8 and a per-
mutation 6 : {| 8 [} LN { B [}, bundle §;0 is defined as Dg,y = Dg, stepg,y =
{(¢,7;0,q,050) | (¢,m,q,0) : B}. The bundle mincp is the minimal bundle in
(B:0 | 0: 1B} 25 (B}, with respect to the total ordering C of bundles over
D. In the following, we use perm(8) to denote the canonical permutation that
associates Step,,rm(s) and Steps \ {{ IN,zy,q,0 ) |y & ang}.

We remark that, while all the I N transitions covered by BIN transitions are
removed in the definition of red(3), only those corresponding to the reception
of non-active names are removed in the definition of norm(8). In fact, even if
an input transition is redundant, it might be the case that it corresponds to the
reception of a name that is active due to some other transitions.

Finally, we need a construction which extracts in a canonical way a group
of permutations out of a bundle. Let 8 be a bundle, define Gr 8 to be the set
{p | Stepg; p* = Steps}.

Proposition 1. Gr 8 is a group of permutations.

! In the general case, to decide whether a free input transition is required it is as
difficult as to decide the bisimilarity of two m-calculus agents.



3.3 The minimization algorithm

We are now ready to introduce the functor T' that defines the co-algebras for
HD-automata. The action of functor 7' over named sets is given by:

— Qra) = {B : Bundle | Dg = A, 8 normalized},
- |/8|T(A) = 8],

- GT(A)(ﬂ) =Gr ﬁ:

- A <74) B2 iff Steps, C Stepg,,

while the action of functor T' over named functions is given by:

- ST(H) = T(SH), DT(H) = T(DH),

— hrny(B: Qresy)) : Qripy) = norm(B'),

~ Zrw)(B: Quesy)) = Gr(norm(B")); (perm(B')) ™" s inj : {norm(8') [} — {BYr(sy)
where ﬂl = (DH7 {( Z; Uy hH(q)aU,; a ) | ( eaﬂ-a q,0 ) : Stepg,a' : EH(Q)})

Notice that functor 7' maps every named set A into the named set T'(A)
of its normalized bundles. Also a named function H is mapped into a named
function T'(H) in such a way that every corresponding pair (g, hg(q)) in hg
is mapped into a set of corresponding pairs (3,norm(8')) of bundles in hzg.
The quadruples of bundle 3’ are obtained from those of 8 by replacing ¢ with
hu(q) and by saturating with respect to the set of name mappings in X (q).
The name mappings in Y7 ()3 are obtained by transforming the permutation
group of bundle norm(f') with the inverse of the canonical permutation of 5’
and with a fixed injective function inj mapping the set of names of norm(s')
into the set of names of 3, defined as i < j, inj(v;) = vy and inj(v;) = vy
implies ¢/ < j'. Without bundle normalization, the choice of 8’ among those
in ;0 would have been arbitrary and not canonical with the consequence of
mapping together fewer bundles than needed.

Definition 5. A transition system over named sets and mw-actions is o named
function K such that Dk = T(Sk).

HD-automata are particular transition systems over named sets. Formally, an
HD-automaton A is given by:

— the elements of the state Q) 4 are m-agents p(v;..v,) ordered lexicographically:
p1 <a p2 i p1 <iez P2

— |p(vi..vn)| 4 =,

— Gaq={id: {q}a — {q}a}, where id denotes the identity function,

— h:Qa— {B| Ds = A} is such that ( £,7,q',0 ) € Stepy(q) represent the
m-calculus transitions from agent g.

We remark that bundle Stepy(,) should not contain all the transitions from g,
but only a representative subset. For instance, it is not necessary to consider a
free input transition where the received name is not active provided that there is
a bound input transition which differs from it only for the bound name. Finally,
by using renaming o in the element of the bundles, it is possible to identify all
those m-agents that differ only for an injective renaming. In the following, we



represent as ¢ ih, q' the “representative” transitions from agent g that are used
™

in the construction of the HD-automaton.
We can now define the function K.

- SK = A7
— hk(q) = norm(h(q)),
— Zk(q) = Gr(hx(q)); (perm(h(q)))~"5inj : {h(@) [} — {q}a

We now construct the minimal HD-automata by an iterative procedure. We first
need to define the initial approximation. Given a HD-automata K, the initial
approximation Hj is defined as follows:

— SH, = Sk, Dn, = unit where Qunit = {*}, |*|,,;; = 0 (and hence {x} = ¢),
Gunit * = ¢7 and * Sunit *,

- hHo(q : QSHO) =¥,

- XH,q= {¢}

The formula which details the iterative construction is given by

—

Hpyy = KT (Hy).

Two of the authors have developed in [16] a final coalgebra model for the 7-
calculus. In particular, the early transition system is modelled as a coalgebra on
a suitable category of permutation algebras, and early bisimilarity is obtained
as the final coalgebra of such a category. HD-automata are then proposed as
a compact representation of these transition systems. It is possible to adapt
the results of [16] to our framework, and hence, to prove convergence of the
iteration along the terminal sequence. Furthermore, if we consider finite state
HD-automata (i.e. finite state HD automata associated to finitary m-calculus
processes) we can prove a stronger result.

Theorem 2. Let K be a finite state HD-automaton. Then

— The iteration along the terminal sequence converges in o finite number of
steps: n ewists such that Dy, ., = Dg,,
— The isomorphism mapping F : Dy, — Dg,, ., yields the minimal realization

of the transition system K up to strong early bisimilarity.

Sketch of the proof. It is possible to see that at every iteration either a block is
split (i.e. there are q and ¢’ with hm, (¢) = hm, (¢') but hm,,,(q) # ha,..(d'));
or, if no block is split, some block acquires additional names (i.e. there is ¢
with | ha, (q) |<| hH,,,(q)]); or, if there are no additional names the group of
permutations of some block decreases (i.e. there is ¢ with Gy, (¢) O Ghy, ., (4))-
Since blocks cannot be indefinitely split (there is a finite number of states),
the number of names cannot indefinitely increase (each block cannot have a
number of names larger than any state in it) and groups of permutations cannot
indefinitely decrease (they are finite) every terminal sequence is well-founded.



The following functional expression (in a extended A-calculus) makes the it-
eration step of the normalization algorithm explicit.

Tt = (Ag.norm (A, {( 7,40 ) | ¢ =0 ¢'}));
MB.norm (D, {( 4,7, ki, (0),0%0 ) | (£,m,0,0 ) : Steps, o+ Tn, (@)})

hit, 41 () = norm (D, , {( 4,7, b, (d'),0'50 ) | 4 20 d', 0" Su, (d)}).

Notice that the normalization on the transition system is absorbed by the nor-
malization on the resulting bundle.

4 Minimizing behaviours of 7r-calculus processes

In this section we provide an example of minimization by considering a transition
system which describes the behaviour of a w-calculus process. Let S(z,y, 2) be
the m-calculus process

Y.R(z,y,2) +ylz.R(x,y,2)
2 (w).S(z,y,w) + y?(w).S(y,z, 2)

Here, we use z!y (resp z7(y)) to denote output (resp. input) actions. Process
S(z,y,z) syntactically contains name z, however this name is not active in any
system evolution. As we will see, name z disappears in the minimal realization
for S(z,y, z). The behaviour of the process S(z,y, z) is illustrated by the labelled
transition system displayed in the upper part of Figure 3.

The transition system has been automatically generated using the HAL en-
vironment [7,8]. The HAL environment is an integrated tool set for the spec-
ification, verification and analysis of mobile system specified in the w-calculus.
HAL contains several modules to check bisimilarity; however, it does not include
any module to minimize the state space of w-calculus processes under analysis.
Notice that we extended labels of transitions. For instance, label IN2 is used to
describe an input action where subject and object names coincide.

Hereafter, we adopt the following notations for name permutations. Term
id, denotes the identity permutation over n names and term exchs denotes the
permutation that exchanges two names.

Let Sk be the set {qo, q1,92, 43,95, g6 }, where G, = id)y Vq : Sk. The oc-
currences of names in the states are given by |qo| = |q1] = |a4] = 3, |g2| = |gs| =
|gs] = |g6| = 2, where |g| = n means that state g contains names {vy,va,...,vp}.
The mapping hx is displayed in the lower part of Figure 3.

Finally, let Y'xq be the injection of the names occurring in hyq into the
corresponding names of ¢ (i.e., either ids or ids).

The initial approximation is the function Hy defined as follows

HO = (SHO = SKaDHO = unit,hHo = /\q : SK-*;EHO(I = @)

Applying the definition of the iterative algorithm we have

hH hH
qo,92,43, 44 _$/81 q1,45, 46 452



+(xly.R(x, Y, 2), y!'X.R(x, Y, 2))

R(#O, #1, #2)

Fig. 3. An example of HD-automaton and its coalgebraic specification.

hk(qo)

hi(q1)

hx(g3)

hi(qa)

S(#0, #1, #2) SO, #1, #0) S(H#0, #1, #1)

#1A#2)
#1240 #1#L
#11#0
O
R(#0, #1, #0)
O
R(#O, #1, #1)

{Sk,{ (OUT, v1v2, q1,1ds),
OUT, U2U15q1:id3)})

(Sk!{ IN2,’[)1,Q2,1:d2),
IN,Uﬂ)Q,Qa,idQ),
IN,U11)3,Q4,id3),
BIN,v1,qa,id2 U (vs, %)),
IN,vav1,qa,excha U (v3,v3)),
IN2,v2,qa,excha U (v3,v3)),
IN,vavs, q4,excha U (v3,v3)),
BIN,vs,qa,excha U (vs,v3))})

hK(qz) = (Sk,{ OUT, ’U1’U2,q6,id2),
OUT; V2v1, g6, Zd2)})
(Sk){ OUT, U1U2,Q5,id2),
)
(Sk!{ OUT: U1U2aq1:id3)a
OUT, V21,41, ids)})
(Ska{ INQ,U1,qz,id2),

hx(gs)

IN, ’1)11)2,Q3,1:d2),
BIN,v1,qa,id2 U (vs, %)),
IN,vav1,q2,excha),
IN2,v2, q2, exchs),
BIN,v3,q2,exchs)})

hK(qﬁ) = (Ska{ IN27U17q27id2)7

IN,’U1’U2,(]3,’id2),

BIN, v1,q4,id2 U (vs, %)),
IN,vav1,qs3,exchs),
IN2,vs, g3, exchs),

{
(
{
(
(
(
{
(
(
(
(
(
(
(OUT, V21, Qs5, idz })
(
(
(
{
(
(
{
(
(
(
(
(
(
(BIN,v3, g3, excha)})

#0#1



where bundles #; and (2 and their associated permutation groups are defined

as follows:
ﬂl = (DH(), { OUT7 V1V2, *, 0)1 (OUT, V201, *, 0)})

(
ﬁ2 = (DHO’{ (IN27U17*7®);
(IN,v1v2,*, 0},
(BIN,vl,*,(l)),
(IN,vavy,*, 0},
(IN2,v2, %, D),
(BIN, Uz,*,@)})
[B1] =2  Gp1 = {id2, exchz}
|B2] =2 GPB2 = {ids,exchs}
Yw,q = (id2, exchs) for all ¢ € Sk.

Notice that the normalization construction has removed redundant transitions
from bundles. Hence, the overall number of transitions decreases.
Applying again the definition of the iterative algorithm we have

hH hH
q0,42,43, 494 —%ﬂi q1,45, 46 Jﬂé

where bundles ] and B and their associated permutation groups are defined
as follows:

/Bi = (DHl ) { (OUT7 V102, /827 id2)a (OUT7 V21, ,82, id?),
(OUT,v1v2, B2, excha), (OUT, vov1, B2, excha)})
Bé = (DHli{ (IN21U17ﬂ17id2)7

(IN, UlU?aﬁlaidQ)y

(BIN7 UlaﬂhidZ)y

(IN, U2U1,ﬁ1,ewch2),

(IN2,v2, 81, exchs),

(BIN7 Uz,ﬂ1,6$ch2)})

1Bi] =2 GB; = {ida, exchs}
185l =2 GBS = {id2, excha}
Yu,q = (id2, exche) for all ¢ € Sk.

Since Dy, = Dg,, the iterative algorithm terminates and H» defines the min-
imal HD-automaton. Notice that the minimal HD-automaton contains 2 states
and 10 transitions rather than 7 states and 28 transitions of the original HD-
automaton.

5 Concluding remarks

In this paper we have developed a minimization procedure for finite state veri-
fication of name passing calculi. The minimization algorithm is automatically
derived from the co-algebraic formulation. We plan to experiment with the
minimization algorithm to evaluate its usefulness in practice by equipping the
HAL verification environment with a module performing minimization of HD-
automata. We are currently developing a prototype implementation of the min-
imization algorithm for HD-automata in O-Caml.
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