
APPENDIX 1.1.2

M. Buscemi and U. Montanari. Pi-calculus early ob-
servational equivalence: a �rst order coalgebraic model.
Technical Report TR-02-18, Dipartimento di Informat-
ica, Universit�a di Pisa, 2002.

11

.

12

Universit�a di Pisa

Dipartimento di Informatica

Technical Report: TR-02-14

�-Calculus Early

Observational Equivalence:

A First Order Coalgebraic

Model

Maria Grazia Buscemi1 Ugo Montanari2

August 1, 2002

ADDRESS: Corso Italia 40, 56125 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

�-Calculus Early Observational Equivalence:

A First Order Coalgebraic Model

Maria Grazia Buscemi1 and Ugo Montanari2

1 Dipartimento di Matematica e Informatica, Universit�a di Catania, Italy.
2 Dipartimento di Informatica, Universit�a di Pisa, Italy.

buscemi@dmi.unict.it, ugo@di.unipi.it

Abstract. In this paper, we propose a compositional coalgebraic seman-
tics of the �-calculus based on a novel approach for lifting calculi with
structural axioms to coalgebraic models. We equip the transition system
of the calculus with permutations, parallel composition and restriction
operations, thus obtaining a bialgebra. No pre�x operation is introduced,
relying instead on a clause format de�ning the transitions of recursively
de�ned processes. The unique morphism to the �nal bialgebra induces a
bisimilarity relation which coincides with observational equivalence and
which is a congruence with respect to the operations. The permutation
algebra is enriched with a name extrusion operator Æ �a la De Brujin, that
shifts any name to the successor and generates a new name in the �rst
variable x0. As a consequence, in the axioms and in the SOS rules there
is no need to refer to the support, i.e., the set of signi�cant names, and,
thus, the model turns out to be �rst order.

1 Introduction

The �-calculus is the touchstone for several applications concerning higher order
mobility, security and object orientation. The advantages of the �-calculus rely
on its simplicity and its process algebra avor. Its operational semantics is given
in terms of a transition system and its abstract semantics is based on bisimilarity.

It is well known that labeled transition systems can be regarded as coalge-
bras for a functor in the category Set. A coalgebraic framework presents several
advantages: morphisms between coalgebras (cohomomorphisms) enjoy the prop-
erty of \reecting behaviors" and thus they allow, for example, to characterize
bisimulation equivalences as kernels of morphisms and bisimilarity as the bisim-
ulation associated to the morphism to the �nal coalgebra.

However, in the above representation of transition systems, the states are
seen as just forming a set, i.e., the algebraic structure modeling the construction
of programs and the composition of states is disregarded.

The missing structure may be recovered by integrating coalgebras with al-
gebras, as it is done by Turi and Plotkin [14]. They de�ne bialgebras and prove

Research supported in part by FET Global project IST-2001-33100 PROFUNDIS

and by MIUR project COMETA.

2

that for them bisimilarity is a congruence. Roughly, bialgebras are structures that
can be regarded both as algebras of coalgebras and as coalgebras of algebras.
Morphisms between bialgebras are both algebra homomorphisms and coalgebra
cohomomorphisms and, thus, the unique morphism to the �nal bialgebra, which
exists under reasonable assumptions, induces a (coarsest) bisimulation congru-
ence on any coalgebra.

A fully satisfactory coalgebraic theory for the �-calculus would take advan-
tage of well understood veri�cation techniques and of eÆcient algorithms for
computing �nite minimal realizations [13, 12, 4].

Here our goal is to provide a compositional coalgebraic semantics of the �-
calculus. We will de�ne a permutation algebra with parallel composition and
restriction for the calculus and, then, we will prove that the labeled transition
system of the �-calculus can be lifted to such an algebra, thus obtaining a bial-
gebra.

A similar task has been considered in [9, 10]. There, a coalgebraic semantics
of the �-calculus has been proposed, based on name permutations. The intuition
is that the e�ects of permutations on the behavior of agents are the smallest
information required to de�ne an observational equivalence via ordinary bisim-
ilarity, without restrictions due to name generation and passing. However, the
proposed model is at, i.e., it represents the calculus at an operational level, but
it does not capture its algebraic structure. Rather, in the present paper we are
mainly interested in a compositional interpretation of the �-calculus.

It is well known that, in the �-calculus, bisimilarity fails to be a congruence
due to the input pre�x. Thus, in order for this property to hold, our algebra
structure will include operators of name permutation, parallel composition and
restriction, but not pre�x. First, we de�ne static agents as �-agents whose out-
most operation is either pre�x, matching, recursion, or summation. We also
de�ne a bijective translation of �-agents into terms of our algebra. This func-
tion, in particular, maps static agents to constants in the algebra. Then we equip
each constant with a set of reduction rules that mimic any possible transition
the corresponding static agent can perform. Finally we prove that, for each �-
agent, the number of static agents and associated reduction rules needed in all
derivations of the agent is �nite.

The compositional structure of our bialgebra also gives advantages in �nite
state veri�cation methods [4]. Usually, such techniques glue components together
and, then, apply model checking or other veri�cation methods. However, in many
cases, state explosion severely limits the applicability. Rather, a compositional
approach gives a chance to minimize components before combining them, thus
preventing state explosion, at some extent, and yielding a smaller state space.

The restriction operator of our permutation algebra has no name argument.
Also extrusion and fresh input actions have no bound names. The reason is that
the extruded, fresh or restricted name is assumed to be always the �rst one, i.e.,
x0. To model name extrusion, we de�ne a �rst order operator Æ �a la De Brujin,
that shifts any name to the successor, thus generating a new name in x0. The
advantage of this choice is that it does not need a notion of support, i.e., the set

3

of names e�ectively present, which would yield a second order model. Similarly,
Pitts's nominal logics [11] exploits a �rst order model, by relying on substitution
algebras that do not need considering support names.

The coalgebraic semantics for the �-calculus proposed in [9, 10] relies on the
results about bialgebras in [2], where two suÆcient conditions are spelled out
for a labeled transition system to yield a coalgebra on the category Alg(�) of
algebras satisfying a speci�cation � = (�;E). We follow a di�erent strategy
to prove that the transition system of the �-calculus can be lifted to yield a
bialgebra. First, we consider a category Alg(�) of algebras where speci�cation
� does not contain axioms. Thus the powerset functor can be lifted to a functor
on Alg(�) using the De Simone speci�cation. Then, we construct a complete
axiomatization (with auxiliary operators) of the �-calculus algebra and we prove
that each axiom bisimulates. This is enough to ensure that the lifting can take
place and thus, in particular, that bisimilarity is a congruence. The construction
in [2] yields a category of bialgebras which satisfy the axioms, while in our case
the algebraic speci�cation is just a signature, without axioms. Thus our �nal
coalgebra is larger. However, given a coalgebra which satis�es the axioms, its
image in the �nal coalgebra is the same.

In [6], Fiore and Turi propose a semantic framework for name-passing process
calculi. Their model is based on functor categories equipped with a di�erentia-
tion functor Æ modeling the introduction of an extra variable { the variable to
be bound. Instead we work with permutation algebras enriched with the name
extrusion operation Æ. While we also rely on a functor category (when the al-
gebraic speci�cation is seen as a Lawvere theory), our setting is more uniform,
since Æ is at the same level of permutations and of any further operation (here
parallel composition) added to the algebra. Another di�erence is that we deal
with name permutations, rather than name substitutions, and, thus, we are able
to de�ne observational equivalence (rather than congruence) in a coalgebraic
way. A di�erence with respect to [11] and [7] is that we assume a �xed ordering
on names, while they do not need it.

The paper is organized as follows. Section 2 contains the background on per-
mutations, �-calculus, and coalgebras. In Sect. 3 we de�ne a category of coal-
gebras for mobile calculi and in Sect. 4 we introduce a permutation algebra for
the �-calculus. In Sect. 5 we prove a general result to lift coalgebras in Set with
structural axioms to coagebras on Alg(�) and in Sect. 6 we provide the coal-
gebraic semantics of the �-calculus, by applying such a result to the transition
system of the calculus. Finally, Sect. 7 contains some concluding remarks.

2 Background

2.1 Names and Permutations

We need some basic de�nitions and properties on names and on name permu-
tations. We denote with N = fx0; x1; x2; : : :g the in�nite, countable, totally
ordered set of names and we use x; y; z : : : to denote names. A name substitution

4

is a function � : N! N. We denote with � Æ�0 the composition of substitutions
� and �0; that is, � Æ�0(x) = �(�0(x)). We use � to range over substitution and
we denote with [y1 7! x1; � � � ; yn 7! xn] the substitution that maps xi into yi
for i = 1; : : : ; n and which is the identity on the other names. We abbreviate by
[y $ x] the substitution [y 7! x; x 7! y]. The identity substitution is denoted by
id. A name permutation is a bijective name substitution. We use � to denote a
permutation. Given a permutation �, we de�ne permutation �+1 as follows:

�

�+1(x0) = x0

�(xn) = xm
�+1(xn+1) = xm+1

(1)

Essentially, permutation �+1 is obtained from � by shifting its correspondences
to the right by one position.

2.2 The �-Calculus

Many versions of �-calculus have appeared in the literature. The �-calculus we
present here is early, monadic, and has synchronous communications.

Let N be the countable set of names introduced in the previous section. The
�-calculus agent terms, ranged over by p; q; : : :, are closed (wrt. variables X)
terms de�ned by the syntax:

p ::= 0
�
� �:p

�
� pjp

�
� p+p

�
� (���x) p

�
� [x=y]p

�
� recX: p

�
� X

where recursion is guarded1, and pre�xes, ranged over by �, are de�ned as:

� ::= �
�
� �xy

�
� x(y):

The occurrences of y in x(y):p and (���y) p are bound; free names and bound
names of agent term p are de�ned as usual and we denote them with fn(p) and
bn(p), respectively. Also, we denote with n(p) and n(�) the sets of (free and
bound) names of agent term p and pre�x � respectively.

If � is a name substitution, we denote with �(p) the agent term p whose free
names have been replaced according to substitution �, in a capture-free way.

The static �-calculus agent terms, ranged over by s, are de�ned by the syntax:

s ::= �:p
�
� p+p

�
� [x=y]p

�
� recX: p:

We de�ne �-calculus agents (�-agents in brief) as agent terms up to a structural
congruence �; it is the smallest congruence that satis�es the following axioms:

(alpha) p � q if p and q are alpha equivalent
(par) pj0 � p pjq � qjp pj(qjr) � (pjq)jr
(res) (���x) (���y) p � (���y) (���x) p (���x) p � p if x 62 fn(p)

(���x) (pjq) � pj(���x) q if x 62 fn(p)

1 Recursion is guarded in p i� in every subterm recX: q of p, variable X appears
within a context �: .

5

Note that (���x)0 � 0 is a particular case of the last axiom above. We do not
consider axioms for summation (+), matching (=), and recursion (rec .), since,
in this paper, we aim at introducing an algebra with only parallel composition
and restriction. We remark that p � q implies �(p) � �(q) and fn(p) = fn(q);
so, it is possible to de�ne substitutions and free names also for agents.

Below, we introduce an example of a static �-agent. Throughout the paper,
we will adopt it as a running example.

Example 1. Let p = recX: (���y) yx2:0 jx2y:X be a static �-agent. Agent p gen-
erates new names and extrudes them on a channel x2; in parallel, p sends name
x2 on each generated channel.

The actions an agent can perform are de�ned by the following syntax:

� ::= �
�
� xy

�
� x(z)

�
� �xy

�
� �x(z)

and are called respectively synchronization, free input, bound input, free output
and bound output actions; x and y are free names of � (fn(�)), whereas z is a
bound name (bn(�)); moreover n(�) = fn(�) [bn(�).

The standard operational semantics of the �-calculus is de�ned via labeled
transitions p

�
�! p0, where p is the starting agent, p0 is the target one and � is

an action. We refer to [8] for further explanations of the transition relation.
The operational semantics we consider in this paper is reported in Table 1.

It di�ers from the (standard) early operational semantics because it includes a
bound input rule (�-Inp0) and rule (�-Close) replaces rule

(�-Std-Close)
p1

�x(y)
�! q1 p2

xy
�! q2

p1jp2
�
�! (���y) (q1jq2)

if y 62 fn(p2)

To understand why the two semantics are equivalent, let us consider the �-agents
p1 = (���y)xy:0 and p2 = zy:0 jx (z):0. A transition p1jp2

�
�! (���y) zy:0 should

not be allowed because it would cause name y in the �rst component zy:0 of
p2 to be captured by restriction (���y) . Indeed, on the one hand, if we start with

p1
x(y)
�! 0 and p2

x y
�! zy:0, the above transition is prevented by the side condition

of rule (�-Std-Close); on the other hand, if by rule (�-Inp) we get p2
x y
�! zy:0, rule

(�-Close) cannot be applied since the input action is not bound, while if we employ

rule (�-Inp0) and we obtain x (y):0
x (y)
�! 0, then rule (�-Par) cannot be applied to

p2, since y is both bound in x (y) and free in z y:0.

2.3 Coalgebras

We recall that an algebra A over a signature � (�-algebra in brief) is de�ned by
a carrier set jAj and, for each operation op 2 � of arity n, by a function opA :
jAjn ! jAj. A homomorphism (or simply a morphism) between two �-algebras
A and B is a function h : jAj ! jBj that commutes with all the operations in �,
namely, for each operator op 2 � of arity n, we have opB(h(a1); � � � ; h(an)) =

6

(�-Tau) �:p
�
�! p (�-Out) �xy:p

�xy
�! p

(�-Inp) x(y):p
xz
�! [z 7! y]p (�-Inp0) x(y):p

x(y)
�! p

(�-Sum)
p1

�
�! q1

p1+p2
�
�! q1

and symmetric (�-Match)
p

�
�! q

[x = x]p
�
�! q

(�-Rec)
p[recX: p=X]

�
�! q

recX: p
�
�! q

(�-Par)
p

�
�! q

pjr
�
�! qjr

if bn(�) \ fn(r) = ;

(�-Res)
p

�
�! q

(���y) p
�
�! (���y) q

if y =2 n(�) (�-Open)
p

�xy
�! q

(���y) p
�x(y)
�! q

if x 6= y

(�-Com)
p1

�xy
�! q1 p2

xy
�! q2

p1jp2
�
�! q1jq2

(�-Close)
p1

�x(y)
�! q1 p2

x(y)
�! q2

p1jp2
�
�! (���y) (q1jq2)

Table 1. Early operational semantics.

h(opA(a1; : : : ; an)). We denote by Alg(�) the category of �-algebras and �-
morphisms. The following de�nition introduces labeled transition systems whose
states have an algebraic structure.

De�nition 1 (transition systems). Let � be a signature, and L be a set of
labels. A transition system over � and L is a pair lts = hA;�!ltsi where A is a
nonempty �-algebra and �!lts � jAj � L� jAj is a labeled transition relation.

For hp; l; qi 2 �!lts we write p
l

�!lts q.
Let lts = hA;�!ltsi and lts 0 = hB;�!lts0i be two transition systems. A

morphism h : lts ! lts 0 of transition systems over � and L (lts morphism, in

brief) is a �-morphism h : A! B such that p
l

�!lts q implies h(p)
l

�!lts0 h(q).

The notion of bisimulation on structured transition systems is the classical one.

De�nition 2 (bisimulation). Let � be a signature, L be a set of labels, and
lts = hA;�!ltsi be a transition system over � and L.

A relation R over jAj is a bisimulation if p R q implies:

{ for each p
l

�! p0 there is some q
l

�! q0 such that p0 R q0;

{ for each q
l

�! q0 there is some p
l

�! p0 such that p0 R q0.

Bisimilarity �lts is the largest bisimulation.

Given a signature � and a set of labels L, a collection of SOS rules can be
regarded as a speci�cation of those transition systems over � and L that have
a transition relation closed under the given rules.

De�nition 3 (SOS rules). Given a signature � and a set of labels L, a sequent

p
l

�! q (over L and �) is a triple where l 2 L is a label and p; q are �-terms
with variables in a given set X.

7

An SOS rule r over � and L takes the form:

p1
l1�! q1 � � � pn

ln�! qn

p
l

�! q

where pi
li�! qi as well as p

l
�! q are sequents.

We say that transition system lts = hA;�!ltsi satis�es a rule r like above

if each assignment to the variables in X that is a solution2 to pi
li�! qi for

i = 1; : : : ; n is also a solution to p
l

�! q.
We represent with

p1
l1�! q1 � � � pn

ln�! qn
...

p
l

�! q

a proof, with premises pi
li�! qi for i = 1; : : : ; n and conclusion p

l
�! q, obtained

by applying the rules in R.

De�nition 4 (transition speci�cations). A transition speci�cation is a tuple
� = h�;L;Ri consisting of a signature �, a set of labels L, and a set of SOS
rules R over � and L.

A transition system over � is a transition system over � and L that satis�es
rules R.

It is well known that ordinary labeled transition systems (i.e., transition
systems whose states do not have an algebraic structure) can be represented as
coalgebras for a suitable functor [13].

De�nition 5 (coalgebras). Let F : C ! C be a functor on a category C.
A coalgebra for F , or F -coalgebra, is a pair hA; fi where A is an object and
f : A! F (A) is an arrow of C. A F -cohomomorphism (or simply F -morphism)
h : hA; fi ! hB; gi is an arrow h : A! B of C such that

h; g = f ;F (h): (2)

We denote with Coalg(F) the category of F -coalgebras and F -morphisms.

Proposition 1. For a �xed set of labels L, let PL : Set ! Set be the functor
de�ned on objects as PL(X) = P(L � X + X), where P denotes the count-
able powerset functor, and on arrows as PL(h)(S) = fhl; h(p)i j hl; pi 2 S \
L � Xg [fh(p) j p 2 S \ Xg, for h : X ! Y and S � L � X + X. Then
PL-coalgebras are in a one-to-one correspondence with transition systems3 on L,

given by flts(p) = fhl; qi j p
l

�!lts qg [fpg and, conversely, by p
l

�!ltsf q if and
only if hl; qi 2 f(p).

2 Given h : X ! A and its extension ĥ : T�(X)! A, h is a solution to p
l
�! q for lts

if and only if ĥ(p)
l
�!lts ĥ(q).

3 Notice that this correspondence is well de�ned also for transition systems with sets
of states, rather than with algebras of states as required in De�nition 1.

8

In [1] the generalized notion of lax cohomomorphism is given, in order to
accommodate also the more general de�nition of lts morphisms in a (lax) coal-
gebraic framework. To make clear their intuition, let f : A ! PL(A) and
g : B ! PL(B) be two PL-coalgebras and let h : A ! B be a PL-morphism. If
we split the morphism condition (2) for h in the conjunction of the two inclusions
f ;PL(h) � h; g and h; g � f ;PL(h), then it is easily shown that the �rst inclu-
sion expresses \preservation" of transitions, while the second one corresponds
to \reection". Thus, lts morphisms can be seen as arrows (i.e., functions in
Set) that satisfy the �rst inclusion, while lts morphisms which also satisfy the
reection inclusion are PL-morphisms. This observation will be useful in Sect. 5.

De�nition 6 (De Simone format). Given a signature � and a set of labels
L, a rule r over � and L is in De Simone format if it has the form:

fxi
li�! yi j i 2 Ig

op(x1; : : : ; xn)
l

�! p

where op 2 �, I � f1; : : : ; ng, p is linear and the variables yi occurring in p are
distinct from variables xi, except for yi = xi if i =2 I.

The following results are due to [14] and concern bialgebras, i.e., coalgebras
in Alg(�). Bialgebras enjoy the property that the unique morphism to the �nal
bialgebra, which exists under reasonable conditions, induces a bisimulation that
is a congruence with respect to the operations, as noted in the introduction.

Proposition 2 (lifting of PL). Let � = h�;L;Ri be a transition speci�cation
with rules in De Simone format.

De�ne P� : Alg(�)! Alg(�) as follows:

{ jP�(A)j = PL(jAj);

{ whenever
fxi

li�! yi j i 2 Ig

op(x1; : : : ; xn)
l

�! p
2 R then

hli; pii 2 Si; i 2 I qj 2 Sj ; j =2 I

hl; p[pi=yi; i 2 I; qj=yj ; j =2 I]i 2 opP�(A)(S1; : : : ; Sn)
;

{ if h : A ! B is a morphism in Alg(�) then P�(h) : P�(A) ! P�(B) and
P�(h)(S) = f hl; h(p)i j hl; pi 2 S \ (L� jAj) g [fh(p) j p 2 S \ jAj g:

Then P� is a well-de�ned functor on Alg(�).

Corollary 1. Let � = h�;L;Ri be a transition speci�cation with rules R in De
Simone format.

Any morphism h : f ! g in Coalg(P�) entails a bisimulation �h on ltsf ,
that coincides with the kernel of the morphism. Bisimulation �h is a congruence
for the operations of the algebra.

Moreover, the category Coalg(P�) has a �nal object. Finally, the kernel of
the unique P�-morphism from f to the �nal object of Coalg(P�) is a relation
on the states of f which coincides with bisimilarity on ltsf and is a congruence.

9

The theory described so far accounts for the lifting of the functor from Set
to Alg(�); a further step is needed to lift a PL-coalgebra to be a P�-coalgebra.
Indeed, the above step is obvious in the particular case of f : A! P�(A), with
A = T� and f unique by initiality, namely when A has no structural axioms and
no additional constants, and ltsf is the minimal transition system satisfying �.

As an example that in general the lifting may not succeed, let us consider the
case of the chemical abstract machine CHAM. For our purposes, the signature
�c of a CHAM is de�ned as:

�c ::= 0
�
� j

�
� a:

�
� �a:

�
� redex a(;)

and Ec is the set of axioms for commutativity, associativity, id, 0 plus an axiom
redex a(p; q) = a:p j �a:q. The only reduction rule redex a(p; q) �! p j q is in
De Simone format. For P�c

the usual poweralgebra functor on Alg(�c), the
transition system of CHAM forms a PL-coalgebra, but not a P�c

-coalgebra 4.
And bisimilarity is not a congruence as, for example, 0 � a:p but �a:p 6� a:p j �a:p.

In Sect. 5, we will show how to lift a transition system with structural axioms
from Coalg(PL) to Coalg(P�), under appropriate conditions on the axioms.

3 A Category of Coalgebras for Mobile Calculi

In this section, we de�ne a transition speci�cation �pr for mobile calculi with
permutations (�), parallel composition (j), name restriction (�) and extrusion (Æ),
and prove that the category Coalg(P�pr

) of coalgebras over �pr is well-de�ned.
As mentioned in the introduction, operators � and Æ do not have arguments, as
the extruded or restricted name is assumed to be always the �rst one, i.e., x0.

De�nition 7. Signature �pr is de�ned as follows:

�pr ::= 0
�
� j

�
� �:

�
� Æ:

�
� �

We adopt the convention that operators have decreasing binding power, in the
following order: �, j, � and Æ. Thus, for example, �: Æ: �pjq means �: (Æ: ((�p)jq)).

Operators � are generic, �nite name permutations, as described in Subsect. 2.1.
Operator Æ is meant to represent the substitution [xi 7! xi+1], for i = 0; 1; : : :.
Of course, this substitution is not �nite, but, at least in the case of an ordinary
agent p, it replaces a �nite number of names, i.e., the free names of p.

We de�ne the set Lpr of the labels:

Lpr = f�; x y; x; x y; x j x; y 2 Ng: (3)

If l 2 Lpr then Æ (l) and � (l) are the labels obtained from l by respectively
applying substitution Æ and � to its names, where � (xi+1) = xi and Æ (xi) =

4 Indeed, axiom redex a(p; q) = a:p j �a:q does not satisfy the \bisimulation" condition
required in Theorem 7.

10

xi+1. Homomorphically, Æ and � are extended to �-agents, with Æ and � inactive
on bound names. Note that in �: p, p is a value of a �pr -algebra; in � (p), p is a
�-agent and � (p) is de�ned only if x0 =2 fn(p).

The correspondence between labels Lpr and the actions of the �-calculus is
the obvious one for � , x y, and x y. In the case of bound output transitions, only
the channel x on which the output occurs is observed in label x, and similarly
in the case of bound input transitions.

De�nition 8 (transition speci�cation �pr). The transition speci�cation �pr

is the tuple h�pr ; Lpr ; Rpr i, where the signature �pr is as in De�nition 7, labels
Lpr are de�ned in (3) and the rules Rpr are the SOS rules in Table 2.

The most interesting rules are those in the second column, where � is an
extrusion or the input of a fresh name. Intuitively, they follow the idea that
substitutions on the source of a transition must be reected on its destination
by restoring the extruded or fresh name to x0. Rule (Delta0) applies Æ to q and then
permutes x0 and x1, in order to have the extruded name back to x0. Conversely,
rule (Res0) permutes x0 and x1 to make sure that the restriction operation applies
to x0 and not to the extruded name x1. In rule (Par0) side condition bn(�) \
fn(r) = ; is not necessary. The intuitive reason is that Æ shifts all the variables
in r to the right and, thus, x0 does not appear in Æ: r.

(Rho)
p

�
=) q � 6= x; x

�p
�(�)
=) �q

(Rho0)
p

�
=) q � = x; x

�p
�(�)
=) �+1q

(Par)
p

�
=) q � 6= x; x

pjr
�

=) qjr
(Par0)

p
�
=) q � = x; x

pjr
�

=) qjÆ: r

(Delta)
p

�
=) q � 6= x; x

Æ: p
Æ (�)
=) Æ: q

(Delta0)
p

�
=) q � = x; x

Æ: p
Æ (�)
=) [x0 $ x1]Æ: q

(Res)
p

�
=) q � 6= x; x

�: p
� (�)
=) �: q

if x0 62 n(�) (Res0)
p

�
=) q � = x; x

�: p
� (�)
=) �: [x0 $ x1]q

if x0 62 n(�)

(Open)
p
x x0=) q x 6= x0

�: p
� (x)
=) q

(Close)
p1

x
=) q1 p2

x
=) q2

p1jp2
�

=) �: q1jq2

(Com)
p1

x y
=) q1 p2

xy
=) q2

p1jp2
�

=) q1jq2

Table 2. Structural operational semantics.

Proposition 3. Let �pr = h�pr; Lpr; Rpri be the transition speci�cation in Def-
inition 8. Rules Rpr are in De Simone format.

Note that the rules of the �-calculus in Table 1 are not in De Simone format:
the side condition on fn(r) prevents rule (�-Par) from that.

11

Theorem 1. Let �pr = h�pr; Lpr; Rpri be the transition speci�cation in De�-
nition 8. Then, functor PLpr in Set can be lifted to functor P�pr

in Alg(�pr)
and category Coalg(P�pr

) is well de�ned.

Proof. The claim follows by Proposition 3 and Proposition 2.

4 A �pr -Algebra for the �-Calculus

In this section we introduce a �pr -algebra for the �-calculus, and we prove a
�niteness result.

4.1 A �pr -Algebra

We now de�ne a �pr -algebra and a bijective translation of �-agents to values of
such an algebra.

De�nition 9 (�pr -algebra for the �-calculus). Algebra B� is de�ned as the
initial algebra B� = T(�pr[C�;Epr[E0) where:

{ �pr is as in De�nition 7,
{ constants C� are

C� = fls j s is a static �-agentg

{ axioms Epr are the axioms below:

(perm) (� Æ �0)p = �(�0(p)) id p = p
(par) pj0 = p pjq = qjp pj(qjr) = (pjq)jr
(res) �:0 = 0 �: (Æ: p)jq = pj�: q �: �: [x0 $ x1]p = �: �: p
(delta) Æ:0 = 0 Æ: p j q = (Æ: p) j Æ: q Æ: �: p = �: [x0 $ x1]Æ: p
(rho) �0 = 0 �(pjq) = �p j �q ��: p = �: �+1p Æ: �p = �+1Æ: p

{ axioms E0 are
�ls = l�(s) Æ: ls = lÆ (s):

Axioms (par) and (res) correspond to the analogous axioms for the �-
calculus. The other axioms rule how to invert the order of operators among
each other, following the intuition that � and Æ decrease and increase variable
indexes, respectively. Axioms Epr and E0 can be applied from left to right to re-
duce every term p into a canonical form p0(ls1 ; : : : ; lsn), such that � and Æ do not
occur in context p0(; ; : : :). Notice that other expected properties like �: Æ: p = p
and [x0 $ x1]Æ: Æ: p = Æ: Æ: p can be derived from these axioms.

De�nition 10 (translation [[�]]). We de�ne a translation on �-calculus agent
terms [[�]] : � ! jBj as follows:

[[0]] = 0 [[pjq]] = [[p]]j[[q]] [[(���y) p]] = �: [Æ (y)$ x0]Æ: [[p]] [[s]] = ls:

12

The translation of the restriction gives the avor of the De Brujin notation: the
idea is to split standard restriction in three steps. First, one shifts all names
upwards to generate a fresh name x0, then swaps Æ (y) and x0, and, �nally,
applies restriction on x0, which now stands for what `used to be' y.

Translation [[�]] is also de�ned on actions as follows: [[�]] = �, if � 6= x (y); x (y);
[[x (y)]] = x; [[x (y)]] = x.

Theorem 2. If p � q then [[p]] = [[q]]:

Proof. See the Appendix.

Theorem 3. Function [[�]] is bijective. I.e., let f[�]g : jBj ! � be a translation
de�ned as follows: f[0]g = 0; f[pjq]g = f[p]gjf[q]g; f[�: p]g = (���xi) � ([Æ (xi) $
x0]f[p]g); if Æ (xi) =2 fn(f[p]g); f[ls]g = s; f[�p]g = �(f[p]g); f[Æ: p]g = Æ (f[p]g). Then,
for every p in B, [[f[p]g]] = p and, for every �-agent q, f[[[q]]]g = q.

Proof. See the Appendix.

De�nition 11 (transition system ltsg). The transition system for algebra
B� is ltsg = hB� ;=)gi, where =)g is de�ned by the SOS rules in Table 2 plus
the following axioms:

(Static)
s

�
�! r � 6= x (y); x (y)

ls
[[�]]
=)g[[r]]

(Static0)
s

�
�! r � = x (y); x (y)

ls
[[�]]
=)g[Æ (y)$ x0]Æ: [[r]]

When no confusion arises, we will simply denote ltsg with lts and =)g with =).

Theorem 4. Transition system lts satis�es the speci�cation �pr in De�ni-
tion 8.

Proof. Trivial, as lts rules include rules Rpr.

Example 2. Let us consider again �-agent p = recX: (���y) yx2:0jx2y:X . By rule

(�-Rec) and (�-Open), p can reduce as p
x2(x3)
�! x3x2:0 j p. On the other hand,

[[p]] = lp. By rule (Static0), lp can reduce as lp
x2=) [Æ (x3) $ x0]Æ: [[x3x2:0 j p]]

and [Æ (x3)$ x0]Æ: [[x3x2:0 j p]] = [[x0x3:0]] j [x4 $ x0]Æ: lp.

At a second step, by rule (�-Rec) and (�-Open), p can reduce as p
x2(x1)
�!

x1x2:0 j p, and by rule (�-Par) x3x2:0 j p
x2(x1)
�! x3x2:0 jx1x2:0 j p. On the other

hand, [[x0x3:0]] j [x4 $ x0]Æ: lp
x3=) [[x1x4:0]] j [[x0x4:0]] j Æ: Æ: lp. Indeed, by rule

(Static0), lp
x2=) [x2 $ x0]Æ: [[x 1x2:0 j p]] and [x2 $ x0]Æ: [[x1x2:0 j p]] =

[[x0x3:0]] j [x2 $ x0]Æ: lp. Then, by (Delta0), Æ: lp
x3=) [x0 $ x1]Æ: [[x0x3:0]] j Æ: lp =

[[x0x4:0]] j Æ: Æ: lp. By rule (Rho0), [x4 $ x0]Æ: lp
x3=) [x5 $ x1][[x0x4:0]] j Æ: Æ: lp =

[[x0x4:0]] j Æ: Æ: lp. Finally, [[x0x3:0]] j [x4 $ x0]Æ: lp
x3=) [[x1x4:0]] j [[x0x4:0]] j Æ: Æ: lp,

by rule (Par0).

13

The two lemmata below will be useful to prove that the transition system of
the �-calculus is equivalent to lts = hB�;=)i.

Lemma 1. Let p and q be two �-agents. If p � q, then Æ (p) � Æ (q) and
�(p) � �(q).

Lemma 2.

1. Let p and q be two �-agents. If p
�
�! q and � 6= x (y); x (y) then [[p]]

[[�]]
=) [[q]];

if p
�
�! q and � = x (y); x (y) then [[p]]

[[�]]
=) [Æ (y)$ x0]Æ: [[q]].

2. Let p and q be in B. If p
�

=) q and � 6= x; x, then f[p]g
�
�! f[q]g; if

p
x

=) q (resp. p
x

=) q), then f[p]g
x (xi)
�! � ([Æ (xi)$ x0]f[q]g), (resp. f[p]g

x (xi)
�!

� ([Æ (xi)$ x0]f[q]g)), for every xi such that Æ (xi) =2 fn(f[q]g).

Proof. See the Appendix.

4.2 A Finiteness Result

We now prove that, for each �-agent p, the set of static agents and associated
reduction rules needed in all derivations of p is �nite up to name permutations.
It is not larger than the set of the static subagents of p, closed with respect to
name fusions.

De�nition 12.

{ Let s be a static �-agent. We de�ne S(s) as follows: S(q1 + q2) = S([[q1]]) [
S([[q2]])[fq1+q2g; S(recX: q) = [recX: q 7! X]S([[q]])[frecX: qg; S(X) =
;; S([x = y]q) = S([[q]]) [f[x = y]qg.

{ Let p be a term of B� in the canonical form p(ls1 ; : : : ; lsn) such that � and Æ
do not occur in context p(; ; : : :). We de�ne S(p) as follows: S(�: p) = S(p);
S(pjq) = S(p) [S(q); S(0) = ;; S(ls) = S(s).

Notice that S(s) is de�ned only for static agents, as, for the subagents q of
s, S([[q]]) is recalled.

Lemma 3. Let p and q be terms of B�. If p
�

=) q then for each q0 2 S(q) there
is a p0 2 S(p) with q0 = �p0, for some name substitution � (not necessarily a
permutation).

Theorem 5. Let p be in B�. The number of constants ls (and respective axioms
for =)) in all derivations of p is �nite, up to name permutations.

Proof. Set S(p) is �nite for every p, since it is de�ned by structural recur-
sion. Thus, also its closure with respect to name fusion Ŝ(p) = f�q j q 2
S(p); � name substitution g is �nite, when taken up to name permutations. But

Lemma 3 guarantees that p
�

=) q implies Ŝ(q) � Ŝ(p).

14

The condition \up to name permutations" is not restrictive. Indeed, the idea
is that, for each agent p, we can give a �nite number of clauses lq

�
=) q0 such that

the transitions of static agents in all the derivations of p only use permutations

of the form l�q
�(�)
=) �0q0, with �0 = � or �0 = �+1 according to �.

Example 3. Let us consider again agent p = recX: q, with q = (���y) yx2:0 jx2y:X .
S([[p]]) = fpg [[recX: q 7! X]S([[q]]). Since [[q]] = �: lx0x3:0 j lx3x0:X , then
S([[q]]) = fx0x3:0g [fx3x0:Xg and S([[p]]) = fpg [fx0x3:0g [fx3x0:recX: qg.

5 Lifting Coalgebras on Set to Coalgebras on Alg(�)

In this section we prove a general result about lifting a coalgebra g in Set with
set of states B and equipped with operations�, auxiliary constants C, structural
axioms E and De Simone rules R to a coalgebra in Alg(�). The lifting allows to
apply Corollary 1 and, in particular, to prove that bisimilarity is a congruence.

Theorem 6. Let B be the class of coalgebras g in Set with the following prop-
erties:

1. g : jBj ! PL(jBj), with B = T(�[C;E).
2. ltsg satis�es transition speci�cation � = (�;L;R), with R in De Simone

format.
3. A set of basic transitions T � C�L�T�[C exists for constants C, namely,

(c; l; t) 2 T implies c
l

�!g [t]E.

Then, there is an initial coalgebra ĝ in B, such that 8g 2 B, 8p 2 B, p
l

�!ĝq

implies p
l

�!gq.
Furthermore, the transitions of ĝ can be derived using the rules R and the

following additional rules:

(Const)
(c; l; t) 2 T

c
l

�!ĝt
(Struct)

t1 =E t01 t01
l

�!ĝt
0
2 t02 =E t2

t1
l

�!ĝt2

where terms t; t1; t
0
1; t2; t

0
2 are in T�[C.

Proof. Signature � [C, axioms E and transition speci�cation � can be con-
sidered as a single algebraic speci�cation, equipped with an initial model. The
elements of the model can be derived using the proof system associated to the
speci�cation.

Remark 1. Let A be a �-algebra and h : X ! jAj be a function in Set. Then,

h can be uniquely extended to ĥ : T�(X)! A in Alg(�). For simplicity, in the

sequel, we will also denote ĥ by h.

De�nition 13. Let g : jBj ! PL(jBj) be the initial coalgebra of Theorem 6,
where, however, constants C are considered as auxiliary, i.e., B is seen as a
�-algebra. Then, we de�ne the following �-algebras and �-morphisms:

15

{ A = T�(C) and h : A! B as the unique extension in Alg(�) of h(c) = [c]E,
for c 2 C;

{ f : A ! P�(A) as the unique extension of f(c) = f(l; t) j (c; l; t) 2 Tg in
Alg(�).

In the sequel, we want to �nd conditions under which PL-coalgebra g can be
lifted to a P�-coalgebra and function h, as above de�ned, to a P�-morphism.
The observation in Subsect. 2.3 allows us to state, without any further condition,
that h is a lax morphism between PL-coalgebras f and g. The reection inclusion,
instead, will require appropriate hypotheses.

Property 1. Function h in De�nition 13 is a lts morphism, namely, a lax PL-
coalgebra morphism. Furthermore, it is surjective.

Proof. Immediate, as every proof of a transition in ltsf holds also in ltsg .

Theorem 7. Let g be the initial coalgebra in B as speci�ed by Theorem 6, and
let A, h, and f be de�ned as in De�nition 13. Then, h is surjective. Let us
assume that for all equations t1 = t2 in E, with free variables fxigi2I , we have
De Simone proofs as follows:

xi
li�! yi i 2 I

t1
l

�! t01

implies
xi

li�! yi i 2 I

t2
l

�! t02

and t01 =E t02 (4)

and viceversa, using the rules in R and the additional rules:

c
l

�! t i� (c; l; t) 2 T:

Then, the left diagram below commutes in Set, i.e., h; g = f ;PL(h). Thus,
h is a PL-morphism.

Proof. We start noticing that h : A ! B is surjective since B = A==E and
=E is the kernel of h. Then, we �rst prove that the equivalence relation =E is a
bisimulation for ltsf . We use rule induction on the proofs of =E. For axioms in E
, the property is guaranteed by Condition 4. Rules for reexivity, symmetry and
transitivity are obviously satis�ed. Rule for congruence is also easily checked,
since if ti and t0i bisimulate, for i = 1; � � � ; n, also k(t1; � � � ; tn) and k(t01; � � � ; t

0
n),

with k 2 �n, have corresponding transitions by applying the same De Simone
rule or the same constant rule.

Since h is a lax PL-coalgebra morphism, to derive our result it is enough to

show that h(t1)
l

�!gp implies t1
l

�!f t2, with h(t2) = p. We prove this property
by induction on the rules of ltsg , as speci�ed by Theorem 6. Rules in R and rule
(Const) can be easily checked since they are the same for ltsf and for ltsg . Also,

the last rule (Struct) preserves the property. Indeed, given [t01]E
l

�!g [t
0
2]E , i.e.,

h(t01)
l

�!gh(t
0
2), by induction hypothesis we have t01

l
�!f t

00
2 , with h(t002) = h(t02).

Furthermore, since t1 =E t01 and =E is a bisimulation for f , we can �nd t1
l

�!f t
000
2 ,

with t0002 =E t002 and, thus, h(t0002) = h(t002). Also, t
0
2 =E t2 implies h(t2) = h(t02).

Then, h(t0002) = h(t2).

16

jAj
h //

f

��

jBj

g

��
PL(jAj)

PL(h)
// PL(jBj)

A
h //

f

��

B

g

��
P�(A)

P�(h)
// P�(B)

Theorem 8. Let g be the initial coalgebra in B as speci�ed by Theorem 6, and
let A, h, and f be de�ned as in De�nition 13. If the left diagram above commutes
in Set, i.e., h; g = f ;PL(h), then g can be lifted from Set to Alg(�) and the
right diagram commutes in Alg(�).

Proof. See the Appendix.

Corollary 2. Let g be the initial coalgebra in B as speci�ed by Theorem 6, and
let the right diagram above commute. Then in g bisimilarity is a congruence.

Proof. The claim follows by Theorem 8 and Corollary 1.

6 A Bialgebra for the �-Calculus

In this section, we apply the results of Sect. 5 to the permutation algebra B�

and to the transition system hB�;=)gi. We will prove that axioms Epr satisfy
the \bisimulation" condition in Theorem 7 and that hB�;=)gi is equivalent to
the transition system of the �-calculus. Thus, bisimilarity is a congruence with
respect to parallel composition and restriction.

Theorem 9. If we consider �pr as transition speci�cation, algebra B� de�ned
in De�nition 9, with Epr[E0 = E and C� = C. Then, Condition 4 in Theorem 7
holds.

Proof. See the Appendix.

Corollary 3. Let B� be the algebra de�ned in De�nition 9. Bisimilarity is a
congruence in g : B� ! P�pr

(B�).

Proof. The claim derives by Proposition 3, Theorem 9, Theorem 8 and Theo-
rem 7.

Theorem 10. Let p and q be �-agents. Then, p � q if and only if [[p]] �g [[q]].

Proof. The proof is based on the fact that, by Corollary 3, bisimilarity �g is
a congruence with respect to parallel composition and restriction. See the ap-
pendix.

Corollary 4. Bisimilarity � in the �-calculus is a congruence with respect to
parallel composition and restriction.

Proof. See the Appendix.

17

7 Conclusions

In this paper we have presented a general result about lifting calculi with struc-
tural axioms to coalgebraic models and we have applied such a result to the
�-calculus. We have enriched the permutation algebra for the calculus de�ned
in [9, 10] with parallel composition, restriction and an extrusion operation Æ.
Since this algebra satis�es the condition required by our general theory (i.e.,
structural axioms bisimulate), the associated transition system can be lifted to
obtain a bialgebra and, as a consequence, in the �-calculus, bisimilarity is a
congruence with respect to parallel composition and restriction. To achieve this
result, our algebra features no pre�x operation: we rely, instead, on a clause
format de�ning the transitions of recursively de�ned processes. Therefore, the
bisimilarity induced by the unique morphism to the �nal bialgebra is the obser-
vational equivalence, rather than observational congruence, as in [6].

We expect that our coalgebraic model can be extended to treat weak bisim-
ulation. Instead, we do not know how to adapt our model to deal with the
late bisimilarity equivalence. In [5], late bisimilarity is seen in terms of early
bisimulation. The idea is to split a bound input transition in two parts: in the
�rst one, only the channel is observed; in the second one, there are in�nitely
many transitions, each labeled with a substitution for the input name. While
the �rst transition is easy to model, the second kind of transitions requires a
rule employing a substitution which is not a permutation.

We are rather con�dent that �-calculus observational congruences (both early
and late) can be easily handled in our approach by considering algebras of name
substitutions rather than name permutations. The same extension should ac-
commodate also calculi with name fusions. More challenging would be to intro-
duce general substitutions (on some �rst order signature), yielding models rather
close to logic programming. By varying the underlying algebra, but otherwise
employing similar constructions, we plan to show the exibility of our uniform
bialgebraic approach, where substitutions and extrusion are at the same level as
the other operations of the algebra.

References

1. A. Corradini, M. Gro�e-Rhode, R. Heckel. Structured transition systems as lax
coalgebras. In Proc. of CMCS'98, ENTS 11. Elsevier Science, 1998.

2. A. Corradini, R. Heckel, and U. Montanari. Compositional SOS and beyond: A
coalgebraic view of open systems. Theoretical Computer Science 280:163-192, 2002.

3. R. De Simone. Higher level synchronising devices in MEIJE-SCCS. Theoretical
Computer Science 37(3):245{267, 1985.

4. G. Ferrari, U. Montanari, and M. Pistore. Minimizing Transition Systems for Name
Passing Calculi: A Co-algebraic Formulation. In Proc. of FoSSaCS'02, LNCS 2303.
Springer, 2002.

5. G. Ferrari, U. Montanari, and P. Quaglia. A pi-calculus with Explicit Substitutions.
Theoretical Computer Science 168(1):53{103, 1996.

6. M. Fiore and D. Turi. Semantics of name and value passing. In Proc. of LICS'01,
IEEE. Computer Society Press, 2001.

18

7. M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In
Proc. of LICS'99, IEEE. Computer Society Press, 1999.

8. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and
II). Information and Computation, 100(1):1{77, 1992.

9. U. Montanari and M. Pistore. Pi-Calculus, Structured Coalgebras and Minimal
HD-Automata. In Proc. of MFCS'00, LNCS 1983. Springer, 2000.

10. U. Montanari and M. Pistore. Structured Coalgebras and Minimal HD-Automata
for the pi-Calculus. Technical Report 0006-02, IRST-ITC, 2000. Available at the
URL: http://sra.itc.it/paper.epl?id=MP00.

11. A. M. Pitts. Nominal Logic: A First Order Theory of Names and Binding. In Proc.

of TACS'01, LNCS 2215. Springer, 2001.
12. M. Pistore. History Dependent Automata. PhD. Thesis TD-5/99. Universit�a di

Pisa, Dipartimento di Informatica, 1999. Available at the URL:
http://www.di.unipi.it/phd/tesi/tesi 1999/TD-5-99.ps.gz.

13. J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science 249(1):3{80, 2000.

14. D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Proc.

of LICS'97, IEEE. Computer Society Press, 1997.

A Proofs

Proof of Theorem 2. The proof is by structural induction on the axioms of the
structural congruence �.

First, note that [Æ (x) $ x0]Æ: [[r]] = Æ: [[r]], if x =2 fn(r). Indeed, it is easily
proved by �rst applying axioms E0 and then substitution [Æ (x) $ x0] to the
�-agent Æ (p).

The most interesting cases of the proof concern alpha equivalent non-static
agents and restriction.

Ax. (���x) p � (���y) [y 7! x]p; y =2 fn(p).
By the condition, (���y) [y 7! x]p = (���y) [y $ x]p. [[(���y) [x$ y]p]] = �: [Æ (y)$
x0]Æ: [[[x$ y]p]] = �: [[[Æ (y)$ x0][Æ (x) $ Æ (y)]Æ (p)]] = �: [[[Æ (x) $ x0]Æ (p)]]
= [[(���x) p]].

Ax. (���x) (���y) p � (���y) (���x) p.
First, [[(���x) (���y) p]] = �: �: �1ÆÆ[[p]] and [[(���y) (���x) p]] = �: �: �2ÆÆ[[p]], for some
�1 and �2 that di�er for a permutation [x0 $ x1]. Then, [[(���x) (���y) p]] =
[[(���y) (���x) p]], by axiom �: �: q = �: �: [x0 $ x1]q.

Ax. (���x) (pjq) � pj(���x) q if x 62 fn(p).
[[(���x) (pjq)]] = : : : = �: ([Æ (x) $ x0]Æ: [[p]] j[Æ (x) $ x0]Æ: [[q]]): Since x =2 fn(p),
[Æ (x)$ x0]Æ: [[p]] = Æ: [[p]]. Then, [[(���x) (pjq)]] = �: (Æ: [[p]]j[Æ (x)$ x0]Æ: [[q]]) =
[[p]]j�: [Æ (x)$ x0]Æ: [[q]] = [[pj(���x) q]].

Ax. (���x) p � p, if x 62 fn(p).
It follows by the condition, by the observation on top of the proof, and by
axiom �: (Æ: pjq) = pj�: q, with q = 0.

19

Proof of Theorem 3. We �rst prove that, for q 2 B, [[f[q]g]] = q. We just consider
the case q = �: p, which is the most interesting case.
[[f[�: p]g]] = [[(���xi) � ([Æ (xi)$ x0]f[p]g)]] = �: [Æ (xi)$ x0]Æ: [[� ([Æ (xi)$ x0]f[p]g)]]
= �: [[[Æ (xi) $ x0]Æ (� ([Æ (xi) $ x0]f[p]g))]]. Since [Æ (xi) $ x0]Æ (� ([Æ (xi) $
x0]f[p]g)) = f[p]g and [[f[p]g]] = p, then [[f[�: p]g]] = �: p. Note that the condition is
necessary for the application of �.

We now prove that, for a �-calculus agent r, f[[[r]]]g = r. We just consider the
case r = (���x) p, for some x.
f[[[(���x) p]]]g = (���x) � ([Æ (x) $ x0]f[[Æ (x) $ x0]Æ: [[p]]]g), since x =2 fn([Æ (x) $
x0]Æ: [[p]]). Then, f[[[(���x) p]]]g = : : : = (���x) f[�: Æ: [[p]]]g = (���x) p, by axiom �: (Æ: p)jq
= pj�: q, with q = 0, and by induction hypothesis.

Proof of Lemma 2. The proof of (1) is by induction on the rules !. We just
consider the most interesting cases.

Rule (�-Res). By the condition, � 6= x (y); x (y). By induction hypothesis, [[p]]
[[�]]
=)

[[q]]. It follows that [Æ (y) $ x0]Æ: [[p]]
Æ ([[�]])
=) [Æ (y) $ x0]Æ: [[q]], by applying

rules) and exploiting that [Æ (y) $ x0]Æ ([[�]]) = Æ ([[�]]), for y =2 n([[�]]).

Since x0 =2 Æ ([[�]]), [[�]] 6= x; x, and � (Æ ([[�]])) = [[�]], [[(���y) p]]
[[�]]
=) [[(���y) q]].

Rule (�-Close). By hypothesis [[p1]]
x

=) [Æ (y)$ x0]Æ: [[q1]] and [[p2]]
x

=) [Æ (y)$

x0]Æ: [[q2]]. Then, [[p1jp2]]
�

=) �: [Æ (y)$ x0]Æ: [[q1jq2]].

Rule (�-Open). By hypothesis, [[p]]
x y
=) [[q]]. Thus, [Æ (y)$ x0]Æ: [[p]]

Æ (�x)x0
=) [Æ (y)$

x0]Æ: [[q]], by applying rules) and noting that [Æ (y)$ x0]Æ (x y) = Æ (�x)x0.

It follows that �: [Æ (y)$ x0]Æ: [[p]]
x

=) [Æ (y)$ x0]Æ: [[q]], with � (Æ (x)) = x.
Rule (�-Par). If � 6= x (y); x (y), the proof is trivial. Suppose � = x (y) (the proof

is similar if � = x (y)). By induction hypothesis, [[p]]
x

=) [Æ (y) $ x0]Æ: [[q]].

Then, [[p]]j[[r]]
x

=) [Æ (y)$ x0](Æ: [[q]])jÆ: [[r]] and [[pjr]]
x

=) [Æ (y)$ x0]Æ: [[qjr]],
as y =2 fn(r).

The proof of (2) is by induction on the rules). We just consider the most
interesting cases.

Rule (Static0). Suppose � = x (proof is similar if � = x). We apply the rule with
ls = p and r = � ([Æ (y)$ x0]f[q]g) and exploit that [[[Æ (y)$ x0]Æ (� ([Æ (y)$
x0]f[q]g))]] = [[f[q]g]].

Rule (Par0). Let � = x (similarly, if � = x). By hypothesis, f[p]g
x (xi)
�! � ([Æ (xi)$

x0]f[q]g), for every xi, such that Æ (xi) =2 fn(f[q]g). Under the hypothesis

Æ (xi) =2 fn(f[q]gjÆ (f[r]g)), xi =2 fn(f[r]g). Thus, f[p]gjf[r]g
x (xi)
�! � ([Æ (xi) $

x0]f[q]g)jf[r]g and � ([Æ (xi)$ x0]f[q]g)jf[r]g = � ([Æ (xi)$ x0](f[q]gjf[Æ: r]g)).

Rule (Delta0). Suppose � = x. By hypothesis, f[p]g
x (xi)
�! � ([Æ (xi) $ x0]f[q]g);

for every xi s.t. Æ (xi) =2 fn(f[q]g). Thus, Æ (f[p]g)
�0

�! Æ (� ([Æ (xi)$ x0]f[q]g)),
with �0 = Æ (x)(Æ (xi)), and Æ (� ([Æ (xi) $ x0]f[q]g)) = � ([Æ (Æ (xi)) $ x0]
[x0 $ x1] Æ (f[q]g)).

20

Rule (Close). By hypothesis, f[p1]g
x (y)
�! � ([Æ (y) $ x0]f[q1]g); for every y s.t.

Æ (y) =2 fn(f[q1]g); and f[p2]g
x (k)
�! � ([Æ (k)$ x0]f[q2]g); for every k s.t. Æ (k) =2

fn(f[q2]g). Thus, f[p1]gjf[p2]g
�
�! (���y) (� ([Æ (y) $ x0](f[q1]gjf[q2]g))), by ap-

plying rule (�-Close) with y = k, and (���y) (� ([Æ (y)$ x0](f[q1]gjf[q2]g))) =
f[�: q1jq2]g.

Rule (Res). By hypothesis, f[p]g
�
�! f[q]g. We take xi s.t. Æ (xi) =2 fn(f[p]g) [

fn(f[q]g) [n(�). Then � ([Æ (xi) $ x0]f[p]g)
� (�)
�! � ([Æ (xi) $ x0]f[q]g), ex-

ploiting that � ([Æ (xi) $ x0]�) = � (�). Since xi =2 n(� (�)), by rule (�-Res),

(���xi) � ([Æ (xi) $ x0]f[p]g)
� (�)
�! (���xi) � ([Æ (xi) $ x0]f[q]g), i.e., f[�: p]g

� (�)
�!

f[�: q]g.
Rule (Res0). Suppose � = x (similar proof, otherwise). By hypothesis,

f[p]g
x (xi)
�! � ([Æ (xi)$ x0]f[q]g), with Æ (xi) =2 fn(f[q]g).

(���xk) � ([Æ (xk) $ x0]f[p]g)
�0

�! (���xk) � ([Æ (xk) $ x0]� ([Æ (xi) $ x0]f[q]g)),
with �0 = � ([Æ (xk)$ x0]x:(� (x0))). It is possible to prove that
(���xk) � ([Æ (xk)$ x0]� ([Æ (xi)$ x0]f[q]g)) � � ([xj $ x0]f[�: q]g), for xj =2
fn(f[�: q]g).

Rule (Open). By hypothesis, f[p]g
xx0�! f[q]g. Suppose Æ (xi) =2 fn(f[p]g). Then,

(���xi) � ([Æ (xi) $ x0]f[p]g)
�
�! (���xi) � ([Æ (xi) $ x0]f[q]g), with

� = � ([xi $ x0]x)(� (Æ (xi))), noting that � ([xi $ x0]x) 6= xi andx 6= x0.

Proof of Lemma 3. The proof is by structural induction on the rules). We only
consider the most interesting cases.

As remarked, by applying axioms Epr and E0, every term p can be re-
duced into a normal form p0(ls1 : : : ; lsn), with � and Æ not occurring in context
p0(; ; : : :).

Rule (Rho) (similarly for (Rho0)). Let p, �p, q, and �q be in normal form. It is
easy to see that p and �p only di�er on a �nite number of name permutations
applied to some si in their labels lsi and analogously for q and �q. Then,
S(�q) � S(�p), by the hypothesis S(q) � S(p).

Rule (Delta) (similarly for (Delta0)). Agents p and Æ: p di�er on a �nite number
of name substitutions. Then, the proof proceeds as in the previous case.

Rule (Static) (similarly for (Static0)). If s
�
�! r, the subagents of r are the same

as s or less, except possibly for permutations and noninjective substitutions
(the latter due to rule (�-Inp)).

Proof of Theorem 8. By construction, f , h, and P�(h) are morphisms inAlg(�).
Then, we have to prove that g is a morphism, i.e., g(opB(p1; : : : ; pn)) =
opP�(B)(g(p1); : : : ; g(pn)).

21

Since h is surjective, there exist t1; : : : ; tn such that h(ti) = pi, for i =
1; : : : ; n. Then,

g(opB(p1; : : : ; pn) = g(opB(h(t1); : : : ; h(tn))
= g(h(opA(t1; : : : ; tn))) (h morphism)
= P�(h)(f(op

A(t1; : : : ; tn))) (h; g = f ;PL(h))

= opP�(B)(P�(h)(f(t1); : : : ; P�(h)(f(tn)))) (f ;P�(h) morphism)
= opP�(B)(g(h(t1)); : : : ; g(h(tn))) (h; g = f ;PL(h))

= opP�(B)(g(p1)); : : : ; g(pn)))

Proof of Theorem 9. The proof examines all the axioms Epr and E0.

Ax. Æ: �p = �+1Æ: p: There are two cases.

1. By rule (Delta), Æ: �p
Æ (�)
=) Æ: p0, with Æ (�) 6= �x; x. Then, �p

�(�0)
=) �p00 and

p
�0

=) p00, with �p00 = p0, � = �(�0) and �0 6= �x0; x0, for any x0.

On the other hand, by rule (Delta), Æ: p
Æ (�0)
=) Æ: p00 with �0 6= �x0; x0 and,

by rule (Rho), �+1Æ: p
�+1(Æ (�

0)
=) �+1Æ: p

00.

2. By rule (Delta0), suppose Æ: �p
Æ (�x)
=) [x0 $ x1]Æ: p

0 (similarly, if � = Æ (x)).

Necessarily, �p
�(�x0)
=) �+1p

00 and p
�x0

=) p00, with �(�x0) = �x and p0 = �+1p
00.

On the other hand, by rule (Delta0), Æ: p
Æ (�x0)
=) [x0 $ x1]Æ: p

00 and

�+1Æ: p
�+1(Æ (�x

0))
=) �+2[x0 $ x1]Æ: p

00. Note that �+2[x0 $ x1]Æ: p
00 =

[x0 $ x1]�+2Æ: p
00, as �+2 does not substitute either x0 or x1.

Ax. �: (Æ: p)jq = pj�: q: There are three cases.

1. By rule (Res), �: (Æ: p)jq
� (�)
=) �: p0. Necessarily, (Æ: p)jq

�
=) p0 and there

are the following possible cases.
(a) By rule (Par), suppose Æ: p

�
=) p00 (similarly, otherwise) and p0 = p00jq.

Then, p
� (�)
=) p000, with p00 = Æ: p000.

On the other hand, by rule (Par), pj�: q
� (�)
=) p000j�: q.

(b) By rule (Com), Æ: p
x y
=) p00, q

xy
=) q00, with � = � and p0 = p00jq00. By

rule (Delta), p
� (x y)
=) p000, with x0 =2 n(x y) and p00 = Æ: p000.

On the other hand, by rule (Res), �: q
� (xy)
=) �: q00 and, by rule (Com),

pj�: q
�

=) p000j�: q00.

(c) By rule (Close), � = � . Suppose Æ: p
�x

=) p00, q
x

=) q00, and p0 =

�: p00jq00 (similar proof, otherwise). Then, by rule (Delta0), p
� (x)
=) p000,

with p00 = [x0 $ x1]Æ: p
000.

On the other hand, �: q
� (x)
=) �: q00 and pj�: q

�
=) �: p000j�: q00, by

rule (Close). Note that by axioms Epr �: �: [x0 $ x1](Æ: p
000)jq00 =

�: p000j�: q00.

22

2. By rule (Res0), �: (Æ: p)jq
� (�)
=) �: [x0 $ x1]p

0. By rule (Par0), suppose

Æ: p
�

=) p00, with p0 = p00jÆ: q. By rule (Delta0), p
� (�)
=) p000 and p00 =

[x0 $ x1]Æ: p
000.

On the other hand, by rule (Par0), pj�: q
� (�)
=) p000jÆ: �: q. By axioms Epr,

�: [x0 $ x1]([x0 $ x1]Æ: p
000)jÆ: q = p000jÆ: �: q.

3. By rule (Open), �: (Æ: p)jq
� (x)
=) p0. Necessarily, Æ: pjq

�xx0=) p0 and x 6= x0. By

rule (Par), suppose q
�xx0=) q0 and p0 = Æ: pjq0.

On the other hand, by rule (Open), �: q
� (�x)
=) q0 and, by rule (Par0),

pj�: q
� (�x)
=) (Æ: p)jq0.

Ax. �: �: [x0 $ x1]p = �: �: p: There are the following possible cases.

1. By rule (Res), �: �: [x0 $ x1]p
� (�)
=) �: p0 and �: [x0 $ x1]p

�
=) p0, with

� 6= �x; x and x0 =2 n(�). Necessarily, rule (Res) has been applied to

�: [x0 $ x1]p and [x0 $ x1]p
Æ (�)
=) p00, with p0 = �: p00 and x0 =2 n(Æ (�)).

By rule (Rho), p
Æ (�)
=) [x0 $ x1]p

00.

On the other hand, by rule (Res), �: p
�

=) �: [x0 $ x1]p
0 and, again by

rule (Res), �: �: p
� (�)
=) �: �: [x0 $ x1]p

00.

2. By rule (Open), �: �: [x0 $ x1]p
� (x)
=) p0 and �: [x0 $ x1]p

xx0=) p0, with

x 6= x0. Necessarily, by rule (Res), [x0 $ x1]p
Æ (x)x1
=) p00, with p0 = �: p00

and x0 6= Æ (x); Æ (x0). By rule (Rho), p
Æ (x)x0
=) [x0 $ x1]p

00.

On the other hand, by rule (Open), �: p
x

=) [x0 $ x1]p
00 and, by rule

(Res0), �: �: p
� (x)
=) �: p00.

3. By rule (Res0), �: �: [x0 $ x1]p
� (�)
=) �: [x0 $ x1]p

0 and �: [x0 $ x1]p
�

=)

p0 with � = �x; x and x0 =2 n(�). By rule (Res0), [x0 $ x1]p
Æ (�)
=) p00, with

p0 = �: [x0 7! x1]p
00 and x0 =2 n(Æ (�)). By rule (Rho0), p

Æ (�)
=) [Æ (x0) $

Æ (x1)]p
00.

On the other hand, by rule (Res0), �: p
�

=) �: [x0 $ x1][Æ (x0)$ Æ (x1)]p
00

and, again by rule (Res0), �: �: p
� (�)
=) �: [x0 $ x1]�: [x0 $ x1][Æ (x0) $

Æ (x1)]p
00.

4. By rule (Res0), �: �: [x0 $ x1]p
� (�)
=) �: [x0 $ x1]p

0 and �: [x0 $ x1]p
�

=)

p0 with � = �x; x and x0 =2 n(�). By rule (Open), [x0 $ x1]p
Æ (x)x0
=) p0, with

� = x. By rule (Rho), p
Æ (x)x1
=) [x0 $ x1]p

0.

On the other hand, by rule (Res), �: p
xx0=) �: [x0 $ x1]p

0 and, by rule

(Open), �: �: p
� (x)
=) �: [x0 $ x1]p

0.

Ax. �(pjq) = �p j �q. The most interesting case is the following.

23

By rule (Rho0), �(pjq)
�(x)
=) �+1p

0 and pjq
x

=) p0. Necessarily, by rule (Par0),

p
x

=) p00 and p0 = p00jÆ: q.

On the other hand, by rule (Rho0), �p
�(x)
=) �+1p

00, and by rule (Par0) �p j �q
�(x)
=)

(�+1p
00) j Æ: �q.

Ax. ��: p = �: �+1p. The most interesting case is as follows.

By rule (Rho0), ��: p
�(�)
=) �+1p

0 and �: p
�

=) p0 with � = x; x. By rule (Res0),

p
Æ (�)
=) p00 and p0 = �: [x0 $ x1]p

00.

On the other hand, by rule (Rho0), �+1p
�+1(Æ (�))
=) �+2p

00, with x0 =2 �+1(Æ (�)).

Then, by rule (Res0), �: �+1p
�(�)
=) �: [x0 $ x1]�+2p

00 and, by axioms Epr ,
�+1�: [x0 $ x1]p

00 = �: [x0 $ x1]�+2p
00.

Ax. Æ: p j q = (Æ: p) j Æ: q: The most interesting case is the following.

By rule (Delta0), Æ: pjq
Æ (�)
=) [x0 $ x1]Æ: p

0 and pjq
�

=) p0, with � = x; x. By

rule (Par0), suppose p
�

=) p00 and p0 = p00jÆ: q.

On the other hand, by rule (Delta0), Æ: p
Æ (�)
=) [x0 $ x1]Æ: p

00 and, by rule (Par0),

(Æ: p) j Æ: q
Æ (�)
=) [x0 $ x1](Æ: p

00) j Æ: Æ: q.

Ax. Æ: �: p = �: [x0 $ x1]Æ: p:

By rule (Delta0), Æ: �: p
Æ (�)
=) [x0 $ x1]Æ: p

0 and �: p
�

=) p0 with � = x; x.

Necessarily, by (Res0), p
Æ (�)
=) p00, with p0 = �: [x0 $ x1]p

00.

On the other hand, by rule (Delta0), Æ: p
Æ (Æ (�))
=) [x0 $ x1]Æ: p

00. Then, by rule

(Rho0), [x0 $ x1]Æ: p
Æ (Æ (�))
=) [Æ (x0) $ Æ (x1)][x0 $ x1]Æ: p

00. Finally, by rule

(Res0), �: [x0 $ x1]Æ: p
Æ (�)
=) �: [x0 $ x1][Æ (x0)$ Æ (x1)][x0 $ x1]Æ: p

00.
By axiomsEpr , [x0 $ x1]Æ: �: [x0 $ x1]p

00 = �: [x0 $ x1][Æ (x0)$ Æ (x1)][x0 $
x1]Æ: p

00.

Ax. � ls = l�(s):

By rule (Rho0), �ls
�(�)
=) �+1q and ls

�
=) q, with � = x; x. By rule (Static0),

s
f[�]g
�! f[q0]g and q = [Æ (y)$ x0]Æ: q

0, for y =2 fn(f[q0]g).

On the other hand, by applying permutation � to transition s
f[�]g
�! f[q0]g,

we obtain �(s)
�(f[�]g)
�! �(f[q0]g). Then, by rule (Static0), l�(s)

�(�)
=) [Æ (�(y)) $

x0]Æ: �q
0.

Ax. Æ: ls = lÆ (s):

By rule (Delta0), Æ: ls
Æ (�)
=) [x0 $ x1]Æ: q and ls

�
=) q, with � = x; x. Neces-

sarily, by rule (Static0), s
f[�]g
�! f[q0]g and q = [Æ (y)$ x0]Æ: q

0, for y =2 fn(f[q0]g).

On the other hand, by applying function Æ to each name in transition s
f[�]g
�!

f[q0]g, Æ (s)
Æ (f[�]g)
�! Æ (f[q0]g). Finally, by rule (Static0), lÆ (s)

Æ (�)
=) [Æ (Æ (y)) $

24

x0]Æ: Æ: q
0 and [x0 $ x1]Æ: [Æ (y) $ x0]Æ: q

0 = [Æ (Æ (y)) $ x0]Æ: Æ: q
0, as [x0 $

x1] is inactive on Æ: Æ: q0.

Proof of Theorem 10. We �rst prove that p � q implies [[p]] �g [[q]].

We de�ne a binary relation R as follows: [[p]]R [[q]]
def
() p � q. We prove that

R is a bisimulation. Suppose [[p]]
�

=) p0. We only prove the most interesting

case, i.e., with � = �x; x, and we suppose � = �x. By Lemma 2, p
x(xi)
�! � ([Æ (xi)$

x0]f[p0]g), 8Æ (xi) =2 fn(f[p0]g), and, by de�nition of bisimilarity, q
x(xi)
�! q0, with

q0 � � ([Æ (xi) $ x0]f[p0]g). By Lemma 2, [[q]]
x

=) [Æ (xi) $ x0]Æ: [[q
0]]. By

Lemma 1, q0 � � ([Æ (xi) $ x0]f[p0]g) implies [Æ (xi) $ x0]Æ (q
0) � f[p0]g. Finally,

by de�nition of R, [Æ (xi)$ x0]Æ: [[q
0]]R p0, as required.

We now prove that [[p]] �g [[q]] implies p � q. We de�ne a binary relation R

as follows: pR q
def
() [[p]] �g [[q]]. We prove that R is a bisimulation. Suppose

that p
�
�! p0. We only prove the most interesting case, i.e., with � = x(y); xy,

and we suppose � = x(y). By Lemma 2, [[p]]
x

=) [Æ (y) $ x0]Æ: [[p
0]], and, by

de�nition of bisimilarity, [[q]]
x

=) q0, with q0 �g [Æ (y)$ x0]Æ: [[p
0]]. By Lemma 2,

q
x(y)
�! � ([Æ (y) $ x0]f[q0]g), assuming Æ (y) =2 fn(f[q0]g). We have to prove that

� ([Æ (y) $ x0]f[q0]g)R p0. By Corollary 3, �g is a congruence and, thus, q0 �g

[Æ (y) $ x0]Æ: [[p
0]] implies �: [Æ (y)$ x0]q

0 �g [[p0]]. Finally, by de�nition of R,
� ([Æ (y)$ x0]f[q

0]g)R p0, as required.

Proof of Corollary 4. First, we prove that if p1 � q1 and p2 � q2, then p1jp2 �
q1jq2. By Theorem 10, [[p1]] �g [[q1]] and [[p2]] �g [[q2]]. Since �g is a congruence,
[[p1]]j[[p2]] �g [[q1]]j[[q2]] and, thus, [[p1jp2]] �g [[q1jq2]]. Finally, by Theorem 10,
p1jp2 � q1jq2.

Now, we prove that if p � q then (���x) p � (���x) q. By Theorem 10, [[p]] �g [[q]].
Since �g is a congruence, �: [Æ (x) $ x0]Æ: [[p]] �g �: [Æ (x) $ x0]Æ: [[q]] and, by
de�nition of [[]], [[(���x) p]] �g [[(���x) q]]. Finally, by Theorem 10, (���x) p � (���x) q.

