APPENDIX 1.2.4

R. Amadio and W. Charatonik. On name generation
and set-based analysis in Dolev-Yao model (extended ab-

stract). In Proc. CONCUR’02, volume 2421 of LNCS.
Springer Verlag, 2002.






On Name Generation and Set-Based Analysis
in the Dolev-Yao Model

Roberto M. Amadio! and Witold Charatonik?:3

I Laboratoire d’Informatique Fondamentale, Marseille
amadio@cmi.univ-mrs.fr
2 Max-Planck-Institut fiir Informatik, Saarbriicken
3 Uniwersytet Wroclawski, Wroclaw
witold@mpi-sb.mpg.de

Abstract. We study the control reachability problem in the Dolev-Yao
model of cryptographic protocols when principals are represented by tail
recursive processes with generated names. We propose a conservative
approximation of the problem by reduction to a non-standard collapsed
operational semantics and we introduce checkable syntactic conditions
entailing the equivalence of the standard and the collapsed semantics.
Then we introduce a conservative and decidable set-based analysis of the
collapsed operational semantics and we characterize a situation where
the analysis is exact.

Keywords: cryptographic protocols, name generation, verification, set
constraints.

1 Introduction

We study the control reachability problem for cryptographic protocols in the
Dolev-Yao model [DY83] which is nowadays a widely used model abstracting
the behaviour of cryptographic functions.

Most cryptographic protocols are programs of finite length without loops
and then the control reachability problem can be solved in NPTIME [ALVOI,
RTO1]. However, these finite programs usually can be executed any number of
times in different sessions. In every session a participant may generate fresh
names representing, e.g., nonces or keys. A number of attacks are then possible
relying on messages exchanged in previous or parallel sessions. Unfortunately,
introducing recursive behaviours in cryptographic protocols leads quickly to an
undecidable verification problem.

It has been observed by Durgin et al. [DLMS99] that name generation leads
to undecidability of control reachability even when the height of the messages
considered is bounded. When name generation is not allowed then the control
reachability problem is still undecidable in general, and decidable in certain par-
ticular cases allowing a limited use of the pairing construct (also known as ping-
pong protocols; see [DEIKR2]). To complete this picture, we show in [AC02] that

L. Brim et al. (Eds.): CONCUR 2002, LNCS 2421, pp. 499-514, 2002.
© Springer-Verlag Berlin Heidelberg 2002



500 Roberto M. Amadio and Witold Charatonik

the control reachability problem is undecidable without pairs and with bounded
height messages when name generation is allowed.

It then appears that in order to obtain a decidable class of protocols we have
to further restrict the use of name generation. The approach we explore in this
paper is to bound the number of parallel sessions generating new names. This
entails that there is a bound on the number of fresh names ‘used’” at any time
by the principals.

Technically, we will concentrate on tail-recursive processes including an op-
eration of name generation. In the standard operational semantics, whenever
we execute a name generation instruction vc, we associate to ¢ a fresh con-
stant. Thus, during the execution the name ¢ may get assigned constants from a
countable set Cy, C1, Cs, ... In this paper, we introduce a non-standard collapsed
operational semantics for name generation whose intuition is as follows: when
a principal starts a new session a name generated in the session gets assigned
a new constant while names generated in previous sessions are collapsed to an
old constant. Thus a name generator vc operates over the finite set of constants
Jicvold7 Cnew}.

In our formal model, looping back models starting a new session. Then the
collapsed semantics is a partial formalization of the idea that names generated in
previous sessions can be confused. We note that the logical length of a session can
be suitably adapted by unfolding the program. ! As long as the behaviour of prin-
cipals does not depend on name inequality, the collapsed semantics ‘simulates’
the standard one, i.e., reachability of a control point in the standard semantics
implies reachability of the same control point in the concrete one. Moreover, we
introduce checkable syntactic conditions that guarantee the equivalence of the
standard and the collapsed semantics (section 2).

Next, we provide a set-based analysis of the collapsed semantics. From an
algorithmic point of view, the fact that the collapsed semantics operates over a
finite signature is exploited to associate to a system of processes Fq a system of
set constraints @ g, such that the reachability of a control state in Fg implies the
nonemptiness of a distinguished variable in the least solution of @g,. It turns
out that the set constraints generated are a variant of those studied in [CP97,
TDT00] so that the nonemptiness problem can be solved by a suitable adaptation
of standard techniques (section 3). In particular, we give a general construction
that handles the renaming operators introduced by the collapsed semantics and
we point out a ‘linear’ subclass of definite set constraints that can be solved in
PTIME.

In section 4, we characterize a situation —without name generation— where the
set based analysis is exact and obtain a new decidable class of cryptographic pro-
tocols with a complexity ranging between simple and double exponential time.
With name generation, the set-based analysis is conservative but not necessarily
exact. In practice, it is difficult to find examples where the loss of precision is

! Clearly, if we adopted iteration rather than tail recursion, then it would be more
difficult to design a sensible collapsed semantics; as shown by Stoller [Sto99] an
attack may require exponentially many parallel sessions.



On Name Generation and Set-Based Analysis in the Dolev-Yao Model 501

essential; an artificial example is given in section 4. A long version of this paper
is available as a research report [AC02]: it includes all the proofs that have to be
omitted here for lack of space and it also illustrates how our model can be used
to formalize the standard property of secrecy as well as a more elusive property
of freshness.

Related work We restrict our attention to authors who considered fully automatic
methods to prove correctness of recursive cryptographic protocols in the Dolev-
Yao model.

Monniaux [Mon99] introduces tree automata (which are related to set-con-
straints) to represent the knowledge of the adversary. In his study, he restricts his
attention to protocols without recursion, but the approach has been generalized
to handle recursion by the following authors. He already notices the lack of
precision of the set based analysis pointed out in example 2.

At about the same time, Weidenbach [Wei99] applies the SPASS theorem
prover to the analysis of a protocol by Neuman and Stubblebine. He reduces the
verification problem to a proof search in monadic Horn clauses (again related
to set-constraints). There is no general guarantee of termination for his method
but some decidable subclasses are pointed out. Name generation is modelled by
skolemisation —looking at the name generator as an existential- but no result is
reported on the soundness or completeness of this modelling with respect to a
standard operational semantics of name generation.

Later, Genet and Klay [GK00] and Goubault [Gou00] also rely on tree au-
tomata to produce a conservative approximation of cryptographic protocols.
Genet and Klay consider a rather rough approximation where every action can
be performed at any time and point out in their conclusion the need for a refined
analysis of the control (a programme we carry on to some extent here). Goubault
proposes to approximate a name generator by a superset of all values that it can
generate in a run (which is quite different from the collapsed semantics studied
here). In these two papers, no definite analysis is given of the complexity and
the precision of the approximation schema.

Finally, Comon et al. [CCMO1] introduce a special class of tree automata
with memory that allows to decide in DEXPTIME secrecy properties for a class of
cryptographic protocols strictly containing the ping-pong protocols. This work
does not cover the notion of name generation and the class of protocols con-
sidered is incomparable with the one considered in theorem 4; their class goes
beyond regular tree languages but, because of the so called basicness condition,
only particular input filters are admitted.

2 Model

We begin by recalling the basic assumptions in the Dolev-Yao model (sec-
tion 2.1). Then we introduce a particular family of tail recursive processes, their
operational semantics, and the related control reachability problem (section 2.2).
We propose a certain number of syntactic conditions and exhibit related frag-
ments of the model where the control reachability problem is still undecidable



502 Roberto M. Amadio and Witold Charatonik

(section 2.3). Finally, we define a collapsed semantics simulating the standard
one and determine a checkable condition where the collapsed semantics is precise
(section 2.4).

2.1 The Dolev-Yao Model

We recall that in the Dolev-Yao model communications are mediated by an
adversary that can analyse the messages exchanged and synthesize new ones.
To represent the set of messages we assume an infinite set of constants N and
consider terms over the (infinite) signature X' = N U {E?, (_, )?}. Thus we have
two binary constructors: E for encryption and (_, ) for pairing.

We use the following standard notation: x,y, ... for (term) variables; V for
the set of variables; T'x;(V') for the collection of finite terms over Y UV; ¢, ¢/, . ..
for terms in T (V); t for vectors of terms; [t/x] for the substitution of ¢ for .
We denote with Var(t) the variables occurring in the term ¢.

The set of messages M is defined as the least set that contains A/ and such
that: (1) if ¢t € M and ¢ € N then E(t,t') € M and (2), if ¢,#/ € M then
t,t'y e M.

We abbreviate a message E(--- E(t,Dy),...,Dy) with Dy ---D,t thus re-
garding nested encryptions as words. The functions S for synthesis and A for
analysis are closure operators over the power set of messages M defined as fol-
lows:

e S(T) is the least set that contains T' and such that: (1) if ¢1,t2 € S(T) then
<t1,t2> S S(T) and (2) if t; € S(T),tz € T NN then E(tl,tQ) S S(T)

o A(T) is the least set that contains T' and such that: (1) if (t1,t2) € A(T)
then t; € A(T), i = 1,2 and (2) if E(t1,t2) € A(T), t2 € A(T) NN then t; €
A(T).

For the sake of simplicity, in this paper we restrict our attention to symmetric
encryption where encryption and decryption keys coincide and moreover we make
the rather standard assumption that keys are atomic names, i.e., a pair or an
encrypted message cannot be used as a key. However, our results are not strictly
dependent on these hypotheses and we expect that they can been adapted to,
e.g., public keys and complexr symmetric keys.

2.2 Tail-Recursive Processes
In a message, it is useful to distinguish between data and key positions.

Definition 1. Let u,v be variables or constants and let t € Tx:(V') be a term.
We define two predicates Occpaia(u,t) and Occkey(u,t) that are satisfied if u
occurs in t in Data or Key position, respectively:

(1) Occpata(u,u),

(2) Occpata(u, (t1,t2)) if Occpata(u,t;), i =1 ori=2,
(3) Occpata(u, E(t,v)) if Occpata(u,t).

(4) Occkey(u, (t1,t2)) if Occgey(u,t;), i=1ori=2,
(5) Occkey(u, E(t,v)) if u=1v or Occrey(u,t).



On Name Generation and Set-Based Analysis in the Dolev-Yao Model 503

Remark 1. Note that u may occur in ¢ without occurring in either data or key
position. This may happen only when no ground instance of ¢ can produce a
message, i.e., when ¢ contains a subterm F(t1,%2) and t5 is neither a constant
nor a variable. Note also that we cannot syntactically outlaw such terms since
they may be created from correct messages by communication, e.g., E(t1,t2)
may be created from E(t1,z) by a communication that assigns the term to to
the variable z.

We fix a finite system Eq of k equations:
A; = ve; Q; where Q; =74 .15t .. 7t}'s}A; fori=1,....k 1;>1 (1)

with distinct process identifiers A;, ¢ = 1,...,k and where A} is either A; or
a special state err. The following definitions of configuration and reduction will
refer to this system. The intuitive semantics is as follows: A; generates a vector
of fresh names ¢; (this models the generation of fresh nonces or keys), it engages
in an alternating sequence of input-output where it receives messages of the
shape t; and emits messages of the shape 53'-, and finally either it loops back or it
reaches an erroneous state. Example 1 shows how to translate a usual protocol
description into such a system of equations. In general, we would introduce one
equation for each participant and each role it plays in a protocol. If an arbitrary
number of participants is allowed then a preliminary phase of abstraction is
needed.
We will say that the terms t; are filters and define the filter variables as

FVar(t}) = Var(t})\ U. Var(th) .

Similarly, the key variables are defined by KVar(sy) = {z € Var(s}) |
Occrey(2,85) }-

We suppose that there is always a ground instance of the terms t;, s; that can
produce a message. If such a ground instance does not exist, then the thread will
be blocked at the occurrence of the term, and an equivalent system is obtained
by inserting at a corresponding position a filter which can be never satisfied.

The filters t; must correspond to a combination of projections and decryp-
tions. For this purpose, we require that filter variables occur in data position.
Namely, if # € FVar(t}) then  must occur in ¢/, in data position (cf. definition 1).
This condition forbids, e.g., to set 4 = E(x,y), which in the operational seman-
tics presented below would allow a principal to decrypt an encrypted message
without knowing the key.

Finally, we require that the variables in an output are contained in the vari-
ables of the preceding input, i.e., Var(s}) € FVar(t}). We will see next that
there is no loss of generality in this assumption.

We now turn to the formal operational semantics. For every vector of gener-
ated names ve;, i =1,...,k in Fq, we reserve the vectors of distinct constants:

CyM, Crev, C1,j=0,1,2,...



504 Roberto M. Amadio and Witold Charatonik

We assume that no confusion arises with constants appearing in Eq or with
constants related to another thread. We will see that the standard semantics of
name generation relies only on the constants C?7,j = 0,1,2,... while the col-
lapsed semantics presented in section 2.4 will rely on the constants C Z-Old, crev,
We say that a thread P relates to the equation A; = ve; Q; if P is either A; or
an instance of 7¢%.1s% ... 7t 1sj LA}, j > 1.

Definition 2 (standard configuration). A standard configuration is a pair
(R,T) where:

e R=(Pi,n1)| | (Pg,nk) is the parallel composition of k pairs composed of
a thread P; relating to the it" equation and a counter n;.

o T is a finite set of messages representing the knowledge of the adversary,

and such that the constants Cfld, crew, CY fori=1,...,k and j > n; do not
occur in (R, T).

We assume that parallel composition is associative and commutative and feel
free to write R as (P;,n;) | R’, where R’ might be empty.

Definition 3 (standard reduction). We define a reduction relation on stan-
dard configurations as follows:

(unfold)  ((As,n;) | R, T) — (6" Qimi +1) | R,T), (1)
(i/o) ((?t)s.P,n;) | R, T) — ((6P,n;) | R, T U{0s}), (2)
where: (1) ot = [C™H /ey, (2) 0t € S(A(T)) and 6s € M .

The first rule (unfold) expands the recursive definition, instantiates the gen-
erated names ¢; with fresh constants, and increments the related counter n;.
The second rule (i/o) inputs from the adversary a message 6t matching a filter
and outputs a message fs. Note that if fs is not a message then the reduction
cannot take place. We can now state the control reachability problem.

Definition 4. We fix Ry = (A1,0) | --- | (Ag,0) as initial control, Ty # 0
as initial knowledge of the adversary, and write (Ro,Ty) — err if (Ro,To) —
((err,n) | R, T") for some n,R',T". The control reachability problem amounts to
determine whether (Ro, T) = err.

2.3 Undecidable Fragments

It is convenient to introduce some syntactic transformations that do not affect
the control reachability problem. Consider a thread A = ve ?ty.1s1 ...y 15,. Al
and suppose s; is the first output that depends on filter variables of t,...,¢;_1,
say ®1,...,¢;i—1. f d = dy,...,d; and ¢ = x1,...,2; then (d - x) stands
for (dvz1,...,djz;) = (E(x1,d1),..., E(xj,d;)). With this convention, we can
rewrite the thread as
A= VCI/dl, N 7di—1 ?tl.!<81, <d1 . $1>> N
i1 Nsim1, (dim1 - @io1)).

?<ti, <d1 . y1>, ceey <di,1 . yi71>>![y1; . ,yifl/.’lll, ceey .’131',1]51'. .
Loy Al



On Name Generation and Set-Based Analysis in the Dolev-Yao Model 505

where d;,y; are fresh. In other terms, we store under the fresh keys d; the
parameters x; and retrieve them again in the filter just preceding the output s;.
By iterating this transformation, we obtain an equivalent thread satisfying the
condition Var(s;) C FVar(t;).

Repeated outputs 7t.!s1.!ss can be encoded as 7t.!sy.7z.!so with = fresh. Re-
peated inputs 7¢1.7t2.!s can be encoded as 7ty.ltg.7¢2.!s where o is a term in
the initial knowledge. We will also write 7t1.!s1 ...7¢,.!s,.0 to indicate that the
thread stops at point 0. This can be encoded by inserting at the place of 0 a filter
that can never be passed. Finally, we may generate names during a session as in
L2t s.we?t' s’ . which is equivalent to generate them at the very beginning.

Next we introduce four syntactic conditions on the system Fq. We anticipate
that the syntactic transformations we have presented above can be performed
while satisfying these conditions.

Definition 5 (variable dependency). We say that the variables x and y are
dependent in a term t if for some C there exists a subterm E(t',C) of t with
two distinct occurrences of x and y (x depends on itself if it occurs twice in t').
Otherwise, we say that x and y are independent in t.

Definition 6 (syntactic conditions). The system Eq satisfies the:

(1) LINEARITY condition if the filters t} are linear, i.e., each variable in F'Var(t})
occurs exactly once in t;

(2) LOCALITY condition if the filters t; do not depend on previous filter variables,
ie., Var(t) = FVar(t}).

(3) INDEPENDENCE condition if for every i/o action ?t.s, assuming n : KVar(s)
— N s any assignment and (s1,...,8m) = ns the following holds for | =
1,...,m: either (i) §Var(s;) < 1, or (ii) s; is a linear term and the variables
Var(s;) are independent in nt.

(4) DATA OR KEY condition if every generated name occurs in the related thread
either in data or key position (but not both, cf. definition 1), and moreover, if at
least one generated mame occurs in data position then every variable occurring
in a filter can only occur in the related thread in data position.?

Conditions (1-3) are partially motivated by the following undecidability re-
sult whose proof is based on a rather direct encoding of 2-counter machines.
Conditions (1-3) will also play a role in the complexity and precision of the
set-based analysis. Moreover, conditions (1-2) together with condition (4) will
be used in section 2.4 to characterize the precision of the collapsed semantics.

2 The restriction that filter variables occur only in data position is needed to avoid
that a principal uses generated nonces as keys. The condition could be omitted if we
included in the model a typing mechanism to distinguish nonces from keys.



506 Roberto M. Amadio and Witold Charatonik

Example 1. An example of cryptographic protocol satisfying all the four syntac-
tic conditions in definition 6 is the Andrew Secure RPC Protocol from [CJ97]

1)A— B: A E(Na,Kab)

) B — A: E((Na +1,Nb), Kab)
3) A— B: E(Nb+1,Kab)
4) B — A: E((K'ab, N'b), Kab)

We do not have addition in our syntax, but we take x4 1 as an abbreviation for
(x,1) where 1 is a constant symbol. Thus, we can model the protocol with the
following two equations (note that the only variables here are x,y, z and w):

AL =vn, Ay = vy, KLy, my,
1 !<A7E(na7Ka )> (1) ?<A5E(I5Kab)>'
2 ?E((na—i-l,y),Kab) !E((x—l—l,nb),Kab)).

(1)

(2) -(2)

(3) 'E(y+ 17Kab)- (3) 7E(nb + 1;Kab)-

(4) ?E((z,w), Kup).- A1 (4)  E((kly,np), Kap)-As

Other examples include a series of Woo and Lam IT protocols in [CJ97, section
6.3.10].

Theorem 1 (undecidability). There are encodings of 2-counter machines
showing that violation of one of the conditions LINEARITY, LOCALITY, INDE-
PENDENCE is sufficient for the undecidability of the control reachability problem.

Remark 2. If we assume the DATA OR KEY condition then theorem 1 still holds.
Moreover, if we violate the INDEPENDENCE condition then undecidability does
not rely on name generation.

2.4 Collapsed Semantics

We introduce the notion of collapsed configuration and reduction mimicking
definitions 2 and 3.

Definition 7 (collapsed configuration). A collapsed configuration is a pair
(R,T) where:

e R is the parallel composition of k threads Py | --- | P, with P; relating to
the it equation,

e T is a finile set of messages representing the knowledge of the adversary,
and such that the constants C’Z fori=1,... k do not occur in (R,T).

Definition 8 (collapsed reduction). We define a reduction relation on col-
lapsed configurations as follows:

(unfold) (4; | R,T) — (07" Q; | afldR ,afldT),
i o7 = [C10 fe] and o9 = [C1/Cpev]
(i/o) (?t)s.P|R,T) — (0P| R,TU{0s}), if 0t € S(A(T)) and s € M .



On Name Generation and Set-Based Analysis in the Dolev-Yao Model 507

The notion of control reachability for collapsed configurations is an immedi-
ate adaptation of definition 4. Without name generation the collapsed semantics
coincides with the standard semantics and therefore it follows from the remark 2
that the control reachability problem for the collapsed semantics is also unde-
cidable in general.

We want to relate the control reachability problem for standard and collapsed
configurations. Given any standard configuration (R,T) where R = (Py,n1) |
-+ | (Pg,nk) we define a substitution 7 as follows:

j crevifj=n,
TR(Cg) = {Cfpld if; <n;.

We extend the definition of 7x to standard configurations as follows:
TR(R,T) = (TRP1 | | TRPk,TRT) .
We can prove the following proposition by case analysis on the reduction rules.

Proposition 1 (simulation). Let (R,T) be a standard configuration.
(1) If (R, T) — (Rl, T1) then TR(R, T) — TR, (Rl, Tl)
(2) If ((A1,0) | -+ | (Ax,0),T0) = err then (Ay | - | Ay, Tp) = err.

Next, we analyse the impact of the syntactic conditions on the precision of
the collapsed semantics.

Proposition 2. There are examples showing that the violation of one of the
conditions LINEARITY, LOCALITY, DATA OR KEY is sufficient to compromise
the precision of the collapsed semantics (even when condition INDEPENDENCE s
satisfied).

On the other hand, if the three conditions hold then the control reachabil-
ity problem in the collapsed semantics is equivalent to the control reachability
problem in the standard one.

Theorem 2 (precision of collapsed semantics). Suppose the system Eq sat-
isfies conditions LINEARITY, LOCALITY, and DATA OR KEY. Then ((A1,0) | -]

(Ar,0),T0) = err iff (Ay |-~ | Ap, To) = err.

Another way to obtain the precision of the collapsed semantics, which was
suggested to us by Y. Lakhnech, is to restrict our attention to tail-recursive pro-
cesses that publish at the end of the session the names generated at its beginning.
We say that the system Fq satisfies the condition PUBLISH if in the system (1)
the Q;’s have the shape ?7ti.!s% ... 7z.]¢;. Al

Proposition 3. Suppose the system Eq satisfies conditions LINEARITY, LOCAL-
ITY, and PUBLISH. Then the collapsed semantics is precise in the sense of theo-
rem 2.

The condition PUBLISH allows to get rid of the restrictive condition DATA OR
KEY. On the other hand, this condition puts the burden on the protocol which
has to resist attacks coming from the publication of ‘old” names.



508 Roberto M. Amadio and Witold Charatonik

3 Set Based Analysis

In this section we perform an analysis based on set constraints of the control
reachability problem in the collapsed semantics. In section 3.1 we introduce a
particular family of set constraints tailored to our needs, in section 3.2 we show
how to generate them, and in section 3.3 we explain how to solve them.

3.1 A Family of Set Constraints

We will use a class of set constraints very close to definite set constraints with
membership expressions [[1J90, CP97, TDT00], but there are few differences.
First, we do not allow any expressions except variables on the right-hand side of
inclusion, which is quite usual in set based program analysis [[1J94]; therefore,
we are not interested in testing satisfiability but in computing the least solution
(such constraints are always satisfiable—a trivial solution is a valuation assigning
the set of all terms to each variable). Second, we use conditional inclusions of the
form if ne(S) then S’ C X. This is not an essential extension since the emptiness
test is an inherent part of every set constraint solving algorithm. Moreover, in
a setting with more complicated expressions on the right-hand side of inclusion,
such conditional inclusion is equivalent to f(S,S5’) C f(S,X). Third, we use
membership expressions as in [TDT00]. A not surprising, but probably new
observation here is that if the formulas in the set comprehension part of these
expressions are all linear then set constraints can be solved in polynomial time
(see theorem 3(2)). Finally, we use a novel operation of renaming needed in the
representation of the unfolding rule of the collapsed semantics (definition 8).
To our knowledge, this operation was not present in any previous work on set
constraints.

Syntax of Set Constraints We assume that a finite signature X = {f,...}
of function symbols is given. Every function symbol has a fixed arity; symbols
of arity 0 are also called constants and denoted with ¢,... We will use a set of
individual variables V.= {x,y, ...} ranging over terms from Ts; and a set of set
variables = = {X,Y,...} ranging over sets of terms 27=.

Set expressions are given by the grammar:

S u= X | f(S1,...,5) | {z|teS}]|oS,

where X ranges over = and [ over n-ary function symbols from Y. The meta-
variable ¢ ranges over linear terms in T (V') and may contain individual variables
possibly different from z. The hypothesis that terms are linear can be removed
at the price of an increase in the complexity of the solving algorithm (see [CP97,
TDTO0]).

The renaming operator o is a substitution of the form [¢’/c ] that replaces
all occurrences of constant symbols from ¢ with a respective symbol in ¢’. To
ensure termination of the solving algorithm we assume that all renamings here
are idempotent (0o = o) and commutative (0o’ = ¢’c) and come from a finite



On Name Generation and Set-Based Analysis in the Dolev-Yao Model 509

set Sub, so that a composition of renamings can be canonically represented by
a subset of Sub taking conventionally the identity if the subset is empty. The
assumption that the renamings operate on constant symbols is not essential—an
extension to other function symbols is straightforward.

Set constraints are:

& = SCX|if [\ne(S;) then S C X [P AP, .
3
As is usual, we identify a conjunction of constraints with the set of all conjuncts.
We will require that for every inclusion S C X in all subexpressions {x | t € S’}
of S, the variable = occurs in the term ¢ (this requirement is not essential, but
it allows to avoid special rules in table 2 for handling the set of all terms). We
will not require this in subexpressions of ne(S).

Semantics of Set Constraints A valuation o : 5 — 27> is a mapping as-
signing sets of ground terms to set variables. The semantics of set expressions
relative to a valuation « is defined recursively as follows.

[X]a = a(X)
[F(S1, ..y S)]a = {f(t1, .- tn) | t1 € [Si]ay--->tn € [Sn]at
{z|teSta={t€Tx|{y} = Var(t)\{z} and Is [t'/z,s/y]t € [S]a}
[oS]a = {ot |t €[S]a} -

We note that if « does not occur in ¢t and there is an instance of ¢ in [S], then
[{z |t € S}]a is the set of all terms T'x. Similarly, if 2 does not occur in ¢ and
there is no instance of ¢ in [S], then [{z |t € S}]n is the empty set.

A valuation « is a solution of a constraint @ if for all conjuncts S C X in @
we have [S], C «(X), and for all conjuncts if A; ne(S;) then S’ C X we have
[5]a € a(X) whenever [S;] # 0 for all i.

Obviously every constraint @ is satisfiable—a trivial solution is a valuation
assigning T’s; to each variable (under this valuation each inclusion just expresses
that a given set is a subset of the universe). In the following we want to find
the least solution of a given constraint @. This least solution may be defined
inductively by:
ao(X) =0,

@iy1(X) = U{[S]a: | S € X € @ or (if ne(A;S)) then SCX € &[S ]a, # 0)},
a(X)  =Uien(X) .

3.2 Constraints Generation

Here we show how to generate set constraints from a system Fq satisfying the
conditions LINEARITY, LOCALITY, and INDEPENDENCE. We prove that the gen-
erated constraints give a conservative approximation of the protocols. 3

3 The method can be generalized to protocols not satisfying the conditions above. To
this end, it seems natural to rely on non-linear constraints in order to limit the loss
of precision. In this case the constraints can be solved in DEXPTIME.



510 Roberto M. Amadio and Witold Charatonik

Under the syntactic conditions above a control state is a process R that can be
decomposed in Py | - - | Py so that P; is either A; or error o (?t%.1s% ... 7t} s} ).
AL, For a system of k threads each comprising n i/o alternations there are at
most (n+2)* control states and for a reachable collapsed configuration (R, T), R
is always a control state.

For every control state R we introduce a set variable Tx. Intuitively it will
represent (an approximation of) the knowledge of the adversary at this control
point, so for any reachable configuration (R,T') the variable T will contain the
set S(A(T)). Moreover, we introduce a set variable T, that will be empty if an
erroneous configuration is not reachable.

Table 1 gives the rules to generate constraints. The rules are self-explanatory:
(init) is for the initial configuration, (err) for determining Terr, (A1—3) and (S1_2)
for analysis and synthesis, respectively. The rule (unfold) is for the unfolding
step. Here we note that every renaming occurring in the (unfold) constraint
is of the form [C¢!/Cv], so for two different renamings their domains are
disjoint, and every domain is disjoint from any range. This gives idempotency and
commutativity as required. Finally, the (i/o, _,) rules cover the (i/o) reduction.
In these rules, we get rid of the key variables in the output by considering all their
possible instances (note that in the collapsed semantics the set N is finite). This
is conceptually simple but may lead to inefficiency. In practice, one can introduce
a limited form of intersection and write set expressions such as {z; | t € X} NN

Table 1. Constraints generated

(init) ¢ C Tr, (1)
(err) Terr\R g Terr (2)
(A1) Az | (z,y) € Tr} CTr (3)
(A2)  {y|(z,y) €Tr} CTr 3)
(As) if ne{y | C € Tr}) then {z | E(z,C) € Tr} C Tr (3)
(S1)  (Tr,Tr) CTr (3)
(S2) if ne({y | C € Tr}) then E(Tr,C) C Tr (3)
(unfold) UfldTAi‘R - TU?SMQHR (4)
(i/o;) if ne({y | nt € Tr}) then Tr C Tr/ (5)
(/o) i ne({y | nt € Tn}) then [S/z](ns) C Tr (5)

(1) (Ro,To) initial configuration, ¢t € Tp.
(2) err | R control state.

(3) For all R control state and C' € N.
(4)

(4)

{z1,..., 20} = Var(s)\KVar(s),
n: KVar(s) > N, S; = {x; | nt € Tr}.



On Name Generation and Set-Based Analysis in the Dolev-Yao Model 511

The set constraints provide a conservative approximation of the collapsed
semantics. The proof proceeds by induction on the length of the reduction
(Ro,To) — (R, T). We will see in example 2 that due to the constraints gen-
erated by rule (i/o,) the analysis is not exact.

Proposition 4. Let o be a solution of the constraints generated according to
table 1. Then:

(1) If (Ro,Tp) = (R, T) then S(A(T)) C a(Tg).
(2) If (Ro, To) = err then a(Ter) # 0.

3.3 Constraints Solving

We say that a constraint @ is in a shallow form if in every expression of the form
f(S1,...,8,), {z |t € S} or ¢S occurring in @ the expressions S, S1,...,S, are
set variables. Any set constraint can be transformed into an equivalent one in
shallow form by replacing every occurrence of a nested subexpression S with a
fresh set variable Xg and adding a conjunct S C Xg. For the rest of this section
we assume that all constraints are in shallow form.

Given a constraint @ in shallow form over a set of variables = and a set of
renamings Sub we construct a constraint ¢’ over a set of variables =/ = {(Y, u) |
Y € Z,u C Sub} and an empty set of renamings. Thus if in @ we have n variables
and k renaming we have n - 2% variables in @'. If X = (Y,u) € =/ and o € Sub
then X7 stands for (Y,u U {c}). Then & is obtained from & by first replacing
all set variables Y by (Y,0) and then all set expressions X by X¢. By this
construction we get rid of the set expressions ¢S and we will see that the least
solution of @ when restricted to the variables (Y, ) gives the least solution of
®.

We say that a constraint @ is in a solved form if all its conjuncts are of
the form f(Xi,...,X,) € X. A constraint in a solved form can be seen as a
transition table of a tree automaton whose states are set variables. The least
solution of such a constraint is then a valuation that assigns to a variable X the
language recognized by this automaton with X as a final state.

Our constraints solving algorithm applies the rules in table 2 starting from
@'. Each consequence is an inclusion between two terms from a set of bounded
size; this is used to show the termination and to derive the upper bound. Then
given the initial constraint & we infer all consequences of @' under the rules and
then simply remove all inclusions that are not in solved form.

Definition 9 (closed and solved form). For a constraint & we denote by
@Y the least set of constraints that contains @ and is closed under all rules in

table 2, and by ®° the restriction of ¢ to the constraints in a solved form
f(Xq,...,X,) CX.

Theorem 3. Let ® be a linear constraint over =, Sub and let &' be the associated
constraint over 5 = 5 x 250,



512 Roberto M. Amadio and Witold Charatonik

Table 2. Saturation rules for linear constraints

1. A, ne(X;) — ne(f(X1,...,Xn))

2. A\;ne({z | ti €Xi}), f(X1,...,Xn) CX —ne({z | f(t1,...,tn) € X})
(provided f(t1,...,tn) occurs in @)
3. ne(S),S C X — ne(X)
4. ne(X) —ne({z |y € X}) (y can be )
5. 9CX,XCY—-SCY
6. {ZC | f(t17.”,ti[$]7...,tn) GX} cy, f(X17...,Xn) CX—
if A\jzine({z|t; € X;}) then {z | ti[z] € Xi} C Y
7. {z]lz2eX}CY —-XCY
8. A\, ne(Si), if A\,ne(S;) then SCX —-SCX

9. f(X1,...,Xn) C X — o(f)(X7,...,X5)C X°

(1) The least solution of &' restricted to the variables (Y,0) of =’ is the least
solution of P.

(2) The least solution of @ can be computed in time poly(n - 2%) where n is the
size of @ and k is the number of renaming operations in P.

4 Precision of the Set-Based Analysis

The use of the collapsed semantics and the related set-based analysis can be
applied to all protocols from [CJ97]. However, most of them violate at least one
of the conditions above (example 1 being an exception) and this leads to a loss of
precision either in the collapsed semantics or in set-based analysis. It turns out
that in general the set based analysis is not precise even under the four syntactic
conditions given in definition 6.

Ezample 2. Consider the initial knowledge Ty = {ABD, ACD} and the system
Ay =7Ax\x.7By.7Cz.err .

The constraints generated do not express that after the first filter is passed either
BD or C'D are known but not both. Consequently, the following two filters are
passed and the erroneous state is reached.

An approach to the characterization of the set-based analysis is to look at
iterated threads without name generation. * A thread is iterated if a new copy of
the thread is spawned as soon as the first input output action is performed. A
system Eq of k iterated threads is then formalized by k equations:”

Ay =008 (A | (Ph.0sh .. 2t Ls) UY) (2)

4 With name generation a simple variant of the example 2 shows that precision is lost.
5 This formalization is equivalent to the standard notion of replication in m-calculus.



On Name Generation and Set-Based Analysis in the Dolev-Yao Model 513

where U can be either the terminated state 0 or the erroneous state err. Since
we do not have generated names, the transformation given in section 2.3 does
not apply and we just require that Var(s}) is a subset of Ui<; F Var(t}) rather
than of FVar(t}).

It turns out that these programs can be flattened so that each thread includes
just one alternation of input and output and it is thus expressed by a tail recursive
definition A =7¢.!s.A. Thus the following theorem 4 is also a result about the
precision of the set based analysis for tail-recursive definitions without name
generation and with one alternation of input and output.

Definition 10. The system of iterated threads (2) satisfies, respectively, the
LINEARITY and INDEPENDENCE conditions if for all equations i = 1,...,k the
term (ti,...,t} ) is linear and the i/o action ?(t},... t; ).Ns,... s} ) is inde-
pendent in the sense of definition 6(3).

Theorem 4. Let n be the size of the system of iterated threads (2), ¢ be the
number of different keys, and k be the number of key variables. Suppose the
system satisfies the INDEPENDENCE condition 10. Then the control reachability
problem is DEXPTIME-hard and decidable in time exp(n - c*). Moreover, under
the additional LINEARITY condition it is decidable in time poly(n - c¥).

We expect that the factor c¥ can be reduced, but the exponential blowup
in the non-linear case is unavoidable as we can reduce the satisfaction of unary
definite set constraints (see [CPT00]) to control reachability for the class of
iterated systems considered even when neither pairs nor key variables are used
(see [AC02] for details).

The upper bound relies on the flattening transformation mentioned above. By
this transformation every input-output action can be repeated in every reachable
configuration. This property coupled with the INDEPENDENCE condition allows
to match the constraint generated by the rule (i/o,).

As a particular instance of this result, one can obtain yet another polynomial
time decision procedure for ping-pong protocols which satisfy LINEARITY and
do not contain variables in key position (see [DEIK&2] and [ALVO01] for another
decision procedure based on prefix-rewriting). Of course, the DEXPTIME lower
bound implies that the class of decidable protocols considered in the theorem 4
above is strictly more expressive than the class of ping-pong protocols.

Acknowledgement

The first author is partly supported by ACI VERNAM and IST PROFUNDIS.

References

[ALVO01] R. Amadio, D. Lugiez, and V. Vanackere. On the symbolic reduction of
processes with cryptographic functions. Theoretical Computer Science (to
appear). Also RR 4147, INRIA. 499, 513



514 Roberto M. Amadio and Witold Charatonik

[AC02]

[AMO1]

[CPYT]
[CPT00]

[CCMOT]

[CJ97]

[DEKS2]

[DLMS99)]

[DYS3]
[GKO0]
[Gou00]
[FLJ90]

[HJ94]

[Mon99]

[RTO1]
[Sto99]

[TDTO00]

[Wei99)]

R. Amadio, W. Charatonik. On name generation and set-based analysis
in the Dolev-Yao model. RR-INRIA 4379, January 2002. 499, 501, 513
R. Amadio, C. Meyssonnier. On the decidability of fragments of the asyn-
chronous m-calculus. Journal of Nordic Computing (to appear). Also RR-
INRIA 4241.

W. Charatonik and A. Podelski. Set constraints with intersection. In Proc.
12th IEEE LICS, 1997. 500, 508

W. Charatonik, A. Podelski, and J.-M. Talbot. Paths vs. trees in set-based
program analysis. In Proc. 27th Annual ACM POPL, 2000. 513

H. Comon, V. Cortier, and J. Mitchell. Tree automata with one memory,
set constraints, and ping-pong protocols. In Proc. I[CALP, Springer Lecture
Notes in Comp. Sci. 2076, 2001. 501

J. Clark and J. Jacob. A survey of authentication protocol litera-
ture: Version 1.0. Available at http://www-users.cs.york.ac.uk/~jac/
papers/drareview.ps.gz, 1997. 506, 512

D. Dolev, S. Even, and R. Karp. On the security of ping-pong protocols.
Information and Control, 55:57-68, 1982. 499, 513

N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of
bounded security protocols. In Proc. Formal methods and security proto-
cols, FLOC Workshop, Trento, 1999. 499

D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans.
on Information Theory, 29(2):198-208, 1983. 499

T. Genet and F. Klay. Rewriting for cryptographic protocol verification.
In Proc. CADE, Springer Lecture Notes in Comp. Sci. 1831, 2000. 501
J. Goubault. A method for automatic cryptographic protocol verification.
In Proc. FMPPTA, Springer-Verlag, 2000. 501

N. Heintze and J. Jaffar. A decision procedure for a class of set constraints
(extended abstract). In Proc. 5th IEEE LICS, 1990. 508

N. Heintze and J. Jaffar. Set constraints and set-based analysis. In Proc.
Workshop on Principles and Practice of Constraint Programming, Springer
Lecture Notes in Comp. Sci. 874, 1994. 508

D. Monniaux. Abstracting cryptographic protocols with tree automata.
In Proc. Static Analysis Symposium, Springer Lect. Notes in Comp. Sci.,
1999. 501

M. Rusinowitch and M. Turuani Protocol insecurity with finite number of
sessions is NP-complete. RR INRIA 4134, March 2001. 499

S. Stoller. A bound on attacks on authentication protocols. TR 526,
Indiana University, CS Dept., july 1999. 500

J.-M. Talbot, Ph. Devienne, and S. Tison. Generalized definite set con-
straints. Constraints: An International Journal, 5(1-2):161-202, January
2000. 500, 508

C. Weidenbach. Towards an automatic analysis of security protocols in
first-order logic. In Proc. CADE 99. Springer Lect. Notes in Comp. Sci.
(LNAI) 1632, 1999. 501



	AmadioConcur02.pdf
	On Name Generation and Set-Based Analysis  in the Dolev-Yao Model
	Introduction
	Model
	The Dolev-Yao Model
	Tail-Recursive Processes
	Undecidable Fragments
	Collapsed Semantics

	Set Based Analysis
	A Family of Set Constraints
	Constraints Generation
	Constraints Solving

	Precision of the Set-Based Analysis



