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Abstract

Web services allow the components of applications to be highly de-
centralized, dynamically reconfigurable. Moreover, Web services can in-
teroperate easily inside an heterogeneous network environment. The vast
majority of current available verification environments have been built by
sticking to traditional architectural styles. Hence, they are centralized and
none of them deal with interoperability and dynamic reconfigurability. In
this paper we present a verification toolkit whose design and implemen-
tation exploit the Web service architectural paradigm. We describe the
architectural design and the discuss in detail the current implementation
efforts.
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1 History Dependent Automata

Verification of systems that can be adequately modeled as mobile processes is
difficult because many “source of infinity” can be introduced. For instance, let
us consider transition systems obtained from m-agents, we have that transitions
can generate new names. Indeed, let us consider the (OPEN) rule of w-calculus:
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Such rule basically establishes that a state (v y)p can create a new name and
can export it over a channel z. Notice that the state of the transition system
corresponding to (v y)p represents a point of the computation where y “does
not exists”, while the target state of the bound output transition is a point of
the computation where y “becomes available”. Rule (1) introduces an infinite
branching in the automata corresponding to agents that perform bound output
transitions.

The rule for input transition of the early semantics of the m-calculus also
introduces infinite branching because it is necessary to consider a transition for
any name that instantiates the input parameter.

Let us remark that it is of course reasonable (and desirable) to model
m-calculus semantics with rules as (1) or by means of the early semantics be-
cause such rules account for scope extrusion of names that is one of the major
peculiarities of m-calculus and permits to model and reason on many aspects
of mobile systems. On the other hand, since those kind of semantics had been
introduced without considering verification issues, such rules are problematic
when verification purposes are under consideration.

A different phenomenon that produces infinite automata is due to name
extrusion in relation with recursion. A possible “implementation” of name ex-
trusion is to reserve an infinite sequence of names from which a new name can
be taken when a transition extrudes a fresh name. This approach has been
proposed and analyzed in [14, 5]. A drawback of this approach is that an infi-
nite number of states is generated in the case of agents with infinite behaviour.
Indeed, let us consider the agent A(z) = (v y)ZTy.A(y). Agent A(x) generates a
new name y, emit it along x and continues as A(y). This behavior is “encoded”
in the approach of [14, 5] as

Az) 222 A(ze) 2 A(z1) 252 A(ss)...

Hence, to obtain finite state automata also for agents with infinite behaviour,
we need a mechanism to model “resource deallocation”. Let us again consider
agent A; after each bound output &;(z;4+1) transition, the name xz; will never be
used in future transitions, hence we could re-use it provided that a mechanism
for re-stating its freshness is given.

In order to model this kind of evolution in a framework suitable for verify-
ing systems it is necessary to enrich the structure of states and transitions of



Figure 1: A HD-automaton transition

ordinary transition systems. HD-automata aim at giving a finite representation
of otherwise infinite label transition systems. Similarly to ordinary automata,
HD-automata are made out of states and labeled transitions. Their peculiarity
resides in the fact that states and transitions are equipped with names which are
no longer dealt as syntactic components of labels, but become an explicit part
of the operational model. This permits to model name creation/deallocation or
name extrusion that are typical linguistic mechanisms of name passing calculi.

History Dependent automata (HD-automata in brief) have been proposed
in [13,10, 11, 4] as a new operational model for history dependent calculi, namely
those calculi whose semantics is defined in terms of a labeled transition system
such that the labels may carry information generated in the past transitions of
the system and this “historical” information can influence the future behaviour
of the system. Probably the simplest history dependent calculus is CCS with
value passing [9], another example is the CCS with locality [1]; finally, as we have
seen m-calculus LTS semantics all have labels that can contain names generated
in past transitions®.

An important aspect of HD-automata to emphasize is that names of a state
have local meaning. For instance, if A(x,y,z) denotes an agent having three
free names z, y and z, then agent A(y, z, 2) is different from A(z,y, ), however,
they can be represented by means of a single state ¢ in a HD-automaton simply
by considering a “swapping” operation on the names (corresponding to) z and
y of q. More generally, states that differs only for renaming of their local names
are identified in the operational model.

Local meaning of names requires a mechanism for describing how names
correspond each other along transitions. Graphically, we can represent such
correspondences using “wires” that connect names of label, source and target
states of transitions. For instance, Figure 1 depicts a transition from source
state s to destination state d. The transition exposes two names: Name 2 of s
and a fresh name 0. State s has three names, 1, 2 and 3 while d has two names
4 and 5 which correspond to name 1 of s and to the new name 0, respectively.
Notice that names 3 is discharged along such transition.

As described in Figure 1, HD-automata relies on the fact that names are
local. This allows for a compact representation of agent behaviour by collaps-
ing states that differ only for renaming of local names encompasses the main
characteristics of name-passing calculi, namely, creation/deallocation of names.

1 Also formalism that are not related to process calculi can be considered as history depen-
dent; for instance, Petri nets [7] are a paradigmatic history dependent formalisms.



Indeed, name creation is simply handled by associating in the target state a
name not in the source state.

A computation performed on a HD-automaton associates a “history” to
names of the states appearing in the computation, in the sense that it is possible
to reconstruct the associations which lead to the state containing the name.
Clearly, if a state is reached in two different computations, different histories
could be assigned to its names.

Various families of HD-automata have been introduced. Roughly speaking
each class of HD-automata corresponds to a class of history dependent calculi
or different behavioural semantics. The reader is referred to [13] for details. In
the next sections we will present a coalgebraic definition of HD-automata for -
calculus for the early semantics. The coalgebraic presentation of HD-automata
for m-agents has been introduced in [11]. In order to make this part of the
dissertation self-contained, we report (with slight variations on the notation) the
presentation appeared in [4] of the minimization algorithm for HD-automata.

2 Preliminaries: HAL

HD-automata provide a finite state, finite branching representation of the be-
haviour of name passing calculi. The finiteness property given by the HD-
automata has been exploited to automatize the check of behavioral properties.
Recently a coalgebraic minimization algorithm for HD-automata has been pro-
posed in [4] and a verification, Mihda, environment based on this coalgebraic
framework has been implemented [6]. This section briefly reviews HAL the
reader is referred to [6] for the description of Mihda.

A semantic-based verification environment for the w-calculus, called HD Au-
tomata Laboratory (HAL) has been implemented and experimented [2, 3]. HAL
is written in C++ and compiled with the GNU C++ compiler (the GUI is
written in Tcl/Tk), and runs on SUN stations (under SUN-OS).

HAL supports verification of logical formulae expressing properties of the
behaviour of w-calculus agents. The construction of the HAL model checker
facility has been done in two stages. First a high level logic with modalities
indexed by m-calculus actions has been introduced and then a mapping which
translates logical formulae into a classical modal logic for standard automata
has been defined. The distinguished and innovative feature of the approach
is that translation mapping is driven by the finite state representation of the
system (the w-calculus process) to be verified.

HAL has been used to perform the verification of several case studies as,
for example, the GSM handover protocol [12]. However, a main limitation of
the current implementation of HAL is due to the state explosion problem that
arises when dealing with real systems. A way to overcome this problem is to
extend the environment with a minimization facility which provides the minimal
HD-automata of a given w-calculus processes.

The work reported in [4] tackles the problem of minimizing LTS for name
passing calculi in the abstract setting of coalgebraic theories. The main result



of the paper is to provide a concrete representation of the terminal coalgebra
giving the minimal HD-automaton.

3 Verification as a Web-Service

In the last few years distributed applications over the WEB have gained wider
popularity. The main advantages of exploiting the WEB as underlying plat-
form can be summarized as follows. The WEB provides uniform mechanisms
to handle computing problems which involve a large number of heterogeneous
components that are physically distributed and inter-operate autonomously.

Recently, several software engineering technologies have been introduced to
support a programming paradigm where the WEB is exploited as a service
distributor. Rather than a monolithic application, a WEB server should be in-
tended as a component available over the WEB that can possibly be exploited
by others (human users or software applications) to develop new services. Con-
ceptually, WEB services [8] are stand-alone components that reside over the
nodes of the network and are network accessible through a network interface
and standard protocols. Applications over the WEB are developed by combin-
ing and integrating WEB services together. WEB service has no pre-existing
knowledge of what interactions with other WEB services may occur. Moreover,
WEB services are highly portable and can easily be adapted to a variety of
infrastructures.

In a WEB service scenario, the development of applications can be charac-
terized in terms of the following steps:

1. Publishing WEB services;

[\]

. Finding the required WEB services;

w

. Binding the WEB services inside the application;
4. Running the application assembled from WEB services.

Indeed, in the next few years evolutionary in-development technologies based
on HTTP/XML plus

1. remote invocation (e.g. XML-RPC SOAP),
2. directory and service binding (e.g. UDDI, trader),
3. language to express service features (e.g. WSDL)

will become the standard functional platform to programming applications over
the WEB.

The vast majority of currently available semantic-based verification environ-
ments have been designed and implemented by sticking to traditional paradigms.
Basically, verification environments are monolithic specialized servers which do
not easily support interoperability and dynamic reconfiguration. We argue that



the research activity in the field of formal verification can take advantage of the
shift from the traditional development paradigms to other paradigms which bet-
ter accommodate and support WEB services. We intend to explore the following
issue:

Can we simplify the design, development and maintenance of semantics-
based verification environments in a modular fashion by exploiting
WEB services?

A preliminary answer to this question is given by presenting the prototype
version of a verification toolkit which directly exploits the WEB as a service
distributor. The toolkit has been conceived to support reasoning about the
behaviour of mobile systems specified as w-calculus processes and it supports
the dynamic integration of several verification techniques.

Finally, the toolkit has been developed by targeting also the goal of extending
an available verification environment (HAL [2, 3]) with new facilities provided as
WEB services. This has given us the opportunity to verify the effective power
of the WEB service approach to deal with the reuse and integration of “old”
modules.

4 Service Coordination

This section describes the issues related to the development of a verification
toolkit which exploits the WEB as a service distributor. Here, we consider only
two services, namely HAL and Mihda; however the same techniques can be ex-
ploited to integrate in a modular fashion a variety of services. The fundamental
techniques which enables the dynamic integration of services is the separation
between the service facilities (what the service provides) and the mechanisms
that coordinate the way services interact. The main advantage of this approach
consists of making service coordination usable in the context of formal verifica-
tion.

HAL and Mihda provide several functionalities. The main issue to face with is
the definition of WEB interfaces that make these toolkits accessible and usable
on the Internet. This is done into two steps:

1. the first step defines the WEB coordination interface which, independently
from the implementation technologies, describes the WEB interaction ca-
pabilities. In other words, the WEB coordination interface describes what
a service can do and how to invoke it;

2. the second step transforms the program facilities which correspond to
publish the coordination interface on the WEB.

The main programming construct we exploit to program service coordination
is XML-RPC. XML-RPC is a protocol that defines a way to perform remote
procedure calls using HTTP as underlying communication protocol and XML for
encoding data. XML-RPC ensures interoperability among components available
over the WEB at the main cost of parsing and serializing XML documents.



4.1 Service Creation

In our running example, the WEB coordination interface of Mihda provides three
interaction capabilities: compile, reduce and Tofc2. The first interaction ca-
pability takes a m-calculus agent as input and yields as output the corresponding
HD-automaton. The capability reduce performs minimization. Finally, the ca-
pability Tofc2 transforms the Mihda representation of HD-automata into the
FC2 format used inside HAL. The WEB coordination interface of HAL provides
the check capability to perform model checking, the capability unfold which
generates a standard automaton out of an HD-automaton, and the capability
visualize allowing to graphically operate over HD-automata.

The publication on the WEB of the coordination interfaces has been per-
formed by exploiting the facilities of Zope that is a web application server; it
provides mechanisms to ”publish” information on the WEB. However, Zope is
much more. Indeed, Zope provides a comprehensive framework for management
of web contents ranging from simple HTML pages to complete components. In
particular, through Zope mechanisms the calls to the capabilities of the coor-
dination interface are dynamically transformed into calls of the corresponding
programs (e.g. via XML-RPC). Figure 2 illustrates the WEB interface of Mihda
as provided by the Zope implementation.

4.2 Programming Service Coordination

In our experiment, the service coordination language is python, an interpreted
object oriented scripting language which is widely used to connect existing com-
ponents together. Expressiveness of python gives us the opportunity of program-
ming service coordination in the same way traditional programming languages
makes use of software libraries. In particular, services are invoked exactly as
“local” libraries and all the issues related to data marshaling/unmarshalling and
remote invocation are managed by the XML-RPC support.

An example of service coordination is illustrated in Figure 3 to verify a
property of a specification, i.e. to test whether a w-calculus agent A is a model
for a formula F'. We can briefly comment on the coordination code of Figure 3.
First, XML-RPC connections with the Mihda server and with HAL server are
created and respectively recorded in variables mihda and hal. Then, a service
of Mihda is invoked. More precisely, the result of executing the service compile
is stored in the variable hd.

Next, hd is minimized, by invoking the service reduce of Mihda; and, by
applying the Mihda service Tofc2, the minimal automaton is transformed into
the FC2 format. Variable reduced_hd_fc2 contains a HD-automaton in a for-
mat suitable for being processes by the HAL service unfold that generate an
ordinary automaton from a HD-automaton represented in FC2 format.

Finally, a message on the standard output is printed. The message depends
on whether m-calculus agent A satisfies formula F' or not. This is obtained by
invoking the HAL model checking facility check. Notice that the coordination
code can transparently handle both local and remote exceptions.
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from xmlrpclib import *
import sys

try:
mihda = Server( "http://jordie.di.unipi.it:8080/mihda/hd" )

hal = Server( "http://bladerunner.iei.pi.cnr.it:8080/hal" )
hd = mihda.compile( A )
reduced_hd = mihda.reduce( hd )
reduced_hd_fc2 = mihda.Tofc2( reduced_hd )
aut = hal.unfold( reduced_hd_fc2 )
if hal.check( aut, F ):
print ’ok’
else:
print ’ko’
except Exception, e:

print "*x** error ¥¥x*"

Figure 3: Orchestrating HAL and Mihda services
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Figure 5: Minimizing

Figure 4 and Figure 5 illustrate the compiling of the m-calculus process
specifying the GSM handover protocol, and the minimization step. Notice that
the service coordination program runs under WindowsXP, thus pointing out the
interoperability nature of the toolkit. Indeed, we recall that Mihda is written in
ocaml and runs over linux machines, HAL is a GNU C++ application executed
in SUN-OS and both are used by executing the code in Figure 4

We remark that the only part of the coordination code in Figure 3 that
includes network dependencies is

mihda = Server( "http://jordie.di.unipi.it:8080/mihda/hd" )

hal = Server( "http://bladerunner.iei.pi.cnr.it:8080/hal" )

namely, the operation that opens connections with the HAL and Mihda servers.
However, this network dependency can be removed by introducing a further
module, namely the directory of services together with a simple trader facility.
A directory of services is a structure that maps the description of the WEB
services represented by suitable types into the corresponding network addresses.
Moreover, the directory of services performs the binding of services. In other
words, the directory of services can be thought of as being a sort of enriched
DNS for WEB services. The directory has two facilities. The publish facility
is invoked to make available WEB service. The query facility which is used by
applications to discover which are the available services. Hence, the trader can
be used to obtain a WEB service of a certain type and to bind it inside the
application.
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The directory of services and the trader allow us to avoid specifying the ef-
fective names (and localities) of services into the source code and to dynamically
bind services during the execution only on demand. Moreover, this mechanism
makes transparent the distribution of services: when writing the coordination
code the programmer is not aware of the localities of services. Hence, a service
can also be replicated or re-allocated into a new locality without requiring any
change into service coordination programs.

In our running example, to use a trader it is sufficient to substitute the
assignments to mihda and hal variables with the following code:

import Trader

offers = Trader.query( "reducer/mihda" )
mihda = offers[ 0 ] # choose the first
offers = Trader.query( "hal" )

hal = offers[ O ] # choose the first

The invocation of the query procedure of the Trader library yields the list of
services that match the parameter (i.e. the string describing the kind of services
we are interested in).

Directories and traders permits to hide network details in the service coor-
dination code. A further benefit is given by the possibility of replicating the
services and maintaining a standard access modality to the WEB services un-
der coordination. For instance, by substituting the assignment to offers in the
previous code with

offers = Trader.query( "reducer" )

we obtain a polymorphic coordination code that, at run-time, is able to find,
bind and finally invoke any service registered as “reducer”.

5 Lessons Learned

We started our experiment with the goal of understanding whether the WEB
service metaphor could be effectively exploited to develop in a modular fashion
semantic-based verification environments. In this respect, the prototype imple-
mentation of a toolkit supporting verification of mobile processes specified in
the w-calculus is a significative example.

Our approach adopts a service coordination model whose main advantage
resides in reducing the impact of network dependencies and of dynamic ad-
dition/removal of WEB services by the well-identified notions of directory of
services and trader. To the best of our knowledge, this is the first verification
toolkit that specifically addresses the problem of exploiting WEB services.

The service coordination mechanisms presented in this paper, however, have
some disadvantages. In particular, they do not exploit the full expressive power
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of SOAP to handle types and signatures. For instance, the so called “version
consistency” problem (namely the client program can work with one version of
the service and not with others) can be solved by types and signatures.

SOAP is well integrated inside the .NET framework which provides other
powerful mechanisms to deal with types and metadata (i.e. description of
types). In particular, metadata information can be extracted from programs
at run time, and supplied to the emitter to generate the corresponding data
structures together with their operations. Furthermore, the Just-in-time com-
piler turns them into native code. We plan to investigate and experiment the
NET framework to design “next generation” semantic-based verification envi-
ronments.
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