APPENDIX 1.3.2

V. Vanackere. The trust protocol analyser, automatic
and efficient verification of cryptographic protocols. In

Verification Workshop - Verify02, 2002.

The TRUST protocol analyser
Automatic and efficient verification of cryptographic
protocols

Vincent Vanackére
Laboratoire d’Informatique Fondamentale de Marseille
Université de Provence,
39 rue Joliot-Curie, 13453, Marseille, FRANCE

vanackere@cmi.univ-mrs. fr

June 2002

Abstract

This paper presents TRUST, a verifier for cryptographic protocols. In our framework, a
protocol is modeled as a finite number of processes interacting with an hostile environment;
the security properties expected from the protocol are specified by inserting logical assertions
on the environment knowledge in the processes.

Our analyser relies on an exact symbolic reduction method, combined with several tech-
niques aiming to reduce the number of interleavings that have to be considered. We argue
that our verifier is able to perform a full analysis on up to 3 parallel (interleaved) sessions
of most protocols. Moreover, authentication and secrecy properties are specified in a very
natural way, and whenever an error is found an attack against the protocol is given by our
tool.

Keywords: cryptographic protocols, symbolic verification, state explosion problem

1 Introduction

The aim of this paper is to present TRUST, a verifier for cryptographic protocols relying on a
symbolic reduction method introduced in [ALOO] and further developed in [ALVO1]. Although
the symbolic reduction system allows us in theory to perform an exact analysis of an otherwise
infinitely branching system, we face the same problem as in most model-checking tools: as the
number of parallel threads goes up, the number of possible interleavings make the verification task
harder - if not impossible - because of the state-space explosion problem. It should be noted that
the verification problem we are discussing here was shown to be NP-complete [ALV01, RT01].

Our primary goals while developing this implementation were efficiency and ease of use. Most
notably we use an eager reduction procedure in order to minimize the number of interleavings that
have to be considered. Together with that, we have explored - and used - several symmetry and
partial order reductions techniques. The end result is that our tool is able to handle up to 2 or
even 3 parallel sessions of most protocols. We found by experience that inserting assertions within
a protocol is a very natural way to specify security properties and is a good way to very quickly
find a flaw. Our verifier handles nonces, symmetric and asymmetric keys; assertions consist of
arbitrary boolean combinations of tests on equality, secrecy and authentication.

2 Theoretical background

Our formal model is presented in details in [ALV01], therefore we will only give a short presentation
here.

We use the common Dolev-Yao model [DY83], where the network is under full control of an
adversary that can analyse all messages exchanged and synthetize new ones. We work under
the perfect encryption assumption, thus messages can be viewed as terms in a free algebra. We
distinguish between basic names (agent’s names, nonces, keys,...) and composed messages (pairs
< _, > and encrypted terms E(_,)), with the restriction that only basic names may be used
as encryption keys. The set of names is denoted by N and the full set of messages by M.

2.1 Analysis and synthesis

The intruder capabilities are formally defined from two operators doing the analysis and synthesis
on a set of messages.
We assume a (computable) relation D C N x A with the following interpretation:

(C,C") € D iff messages encrypted with C' can be decrypted with C".

We define Inv(C) = {C’ | (C,C") € D}. Further hypotheses, on the properties of D allow to
model hashing, symmetric, and public keys. In particular: (i) for a hashing key C, Inv(C) = 0,
(ii) for a symmetric key C, Inv(C) = {C?}, and (iii) for a public key C there is another key C’ such
that Inv(C) = {C'} and Inv(C") = {C}.

Given a set of terms T' we can now define the S (synthesis) and A (analysis) operators as
follows :

e S(T) is the least set that contains T" and such that:

ti,t2 € S(T) = (t1,t2) € S(T)
t1 €S(TM),t2 € TNN = E(t1,t2) € S(T) .

o A(T) is the least set that contains T and such that:

(t1,t2) € A(T) = t; € A(T), i=1,2
E(t1,t2) € A(T),A(T)NInu(t2) # 0 = t1 € A(T) .

As an example, if T = {E((4,B),K),K~'}, then A(T) = T U {4,B,{(A,B)} and e.g.
E(A,K~') € S(A(T)). Using these definitions, the set of messages that an adversary can de-
rive from T is S(A(T)); a trivial - but quite important - remark is that this set will be infinite as
soon as T is not empty.

2.2 Processes and configurations : semantics

In our framework, a protocol is modelled as a finite number of processes interacting with an envi-
ronment. As our process syntax includes the parallel composition - commutative and associative -
of two processes, we can define a configuration as a couple (P, T") where P is a process and T a set
of terms representing the current adversary knowledge, that is the initial knowledge augmented
with all messages emitted by the participants of the protocol so far.

Figure 1 gives the semantic rules as a reduction system on configurations. Informally, a process
can either:

(1) Write a message : the term is simply added to the environment knowledge.

(?) Read some message from the environment : this can be any message the adversary is able
to build from its current knowledge.

0 (writet.P | P',T) = (P|P,TU{t}) ifte M
(?) (readz.P | P',T) — ([t/z]P | P',T) if t € S(A(T))
(d) (z < dec(E(t,C),C").P| P, T) — (t/z]P|P,T)ifC’ € Inv(C),t e M
(o) (o projy((t,)P | P,T) = (t/P | P, T)if t,¢ € M
, P|P\T) i Fry
(a) (assert(yp).P | P',T) orr i r o
(m1) (t=tP, P | P',T) = (P | P,\T)ifte M
(m2) (t=tP, Py | P,T) S (P | P, T)ift £ttt € M

Figure 1: Reduction on configurations

(d) Decrypt some (encrypted) term with a corresponding inverse key.
(pl) Perform some unpairing (the symmetric rule (pr) is not written).

(m;) Test for equality/inequality of two messages.

(a
Missing from the figure is the terminated process, denoted by 0, as well as the syntax of the
assertion language, that will be presented in the next section. err denotes a special configuration
that can only be reached from a false assertion.
In our model, a correct protocol is a protocol that cannot reach the err configuration - or, put
in other words, a protocol such that all assertions reachable from the initial configuration of the
system hold.

)
)

Check if some assertion ¢ holds.

2.3 Specifying security properties through assertions

The full assertion language we consider is the following:
pu= true| false |t =t' |t # ' | known(t) | secret(t) | w1 A @2 | w1 V 2

This is equivalent to saying that we consider arbitrary boolean combinations of atomic formulas
checking the equality of two messages ¢ = t' and the secrecy of a message secret(t) with respect
to the current knowledge of the adversary. As shown in [ALVOQ1], this language allows to easily
express authentication properties such as aliveness and agreement ([Low97]).

We take as a short example the following 3 message version of the Needham-Schroeder Public
Key protocol:

A— B: {na, A}Pub(B)
B — A: {na,nb}pusa)
A— B: {nb}pub(B)

In our framework, the protocol can be modeled as follows (the open variables are to be instan-
tiated by the process and peer identities before the actual symbolic reduction):

Init(myid, resp) : fresh na.
write E({na, myid), Pub(resp)).
read e. (na’,nb) + dec(e, Priv(myid)). [na
write E(nb, Pub(resp)).
assert(secret(nb) A auth(resp, myid, na,nb)). 0

"' = na).

Resp(myid, init) : read e. (na,a) < dec(e, Priv(myid)). [a = init].
fresh nb.
Writeauth(myz’d,z’m’t,na,nb) E((na, nb)a PUb(’”ut))
read e'. [¢' = E(nb, Pub(myid))].
0

The instruction “write,un(msg)t” is some syntactic sugar to be replaced by “write (E(msg, Kayth), t)”,
whereas the assertion “auth(msg)” is a shortcut for “known(E(msg, Kauh))”- These notations are
actually supported by our tool and their usage reveals itself quite convenient in practice. In our
example, the initiator specifies that at the end of its run of the protocol, the nonce nb must be
secret and expects an agreement with some responder on the nonces na and nb.

2.4 Symbolic reduction

The main difficulty in the verification task is the fact that the input rule (?) is infinitely branching
as soon as the environment is not empty. In [AL00, ALV01] it was shown that it is possible to solve
this problem by using a symbolic reduction system that stores the constraints in a symbolic shape
during the execution. As an example, the input rule (read z.P,T) — ([t/z]P,T),t € S(A(T))
becomes (readz.P,T,E) — (P,T,(E; x : T)). The complete description of the symbolic reduction
system can be found in [ALV01]. The main property we rely on is the fact that the symbolic
reduction system is in lockstep with the ground one and provides a - sound and complete - decision
procedure for processes specified using the full assertion language described in section 2.3.

3 Techniques for an efficient verification

Although the symbolic reduction system is satisfying from a theoretical point of view, an inherent
limitation is that it does not handle iterated processes (as the general case for iterated processes
is undecidable). Thus, in order to verify a protocol against replay attacks and/or parallel sessions
attacks, it is quite important to handle cases where there is a finite - even if small - number of
participants playing each role.

Of course, as the number of parallel threads goes up, the number of possible interleavings make
the verification task harder - if not impossible - because of the state explosion problem. The main
techniques that have been used/introduced in our tool are:

Depth-first search: this strategy brings here a lot of advantages, the main one being that no
state needs to be explicitly saved (as all the necessary information indeed lies within the
continuation of the program). As a consequence, the memory requirement of our tool is
almost constant and quite low.

Carefully chosen data structures: substitutions are heavily used during the symbolic reduc-
tion process. By using a representation of terms as DAGs (directed acyclic graphs) where all
variables are shared, substitutions on variables are done in O(1) time. Other data structures
(such as the one representing the environment knowledge) were chosen in order to allow
for incremental computation whenever possible. These classical algorithmic optimizations
do make a huge difference on the execution time: namely, the speed-up of our current tool
w.r.t. our first prototype - mesured by the number of reductions per second - is greater than
500.

Pruning of equivalent schedulings of parallel processes: it is quite important not to ex-
plore all interleavings, but only those that have a significance. For this purpose, we have
introduced an eager reduction technique that allows in some cases huge savings on the com-
putation time. Aside from that, symmetry in the system is also exploited in order to further
cut the state space.

We will now proceed in giving more details on our eager reduction procedure (section 3.1) and
on the way we handle symmetry in the system (section 3.2). We then give a small note on other
partial reduction techniques that may be applied.

3.1 Eager reduction

When verifying a system of parallel processes, only a small number of all possible interleavings
need to be explored, because a lot of reduction steps are independent from each other!. While
conceptually simple, the eager reduction procedure we introduced in our verifier has - to our
knowlegde - never been described in the literature; this section is devoted to a high-level description
of our method. Technical details and proofs can be found in appendix A.

In the following, we study the reduction of a configuration (P; | ... | Pp,T), denoted by
(TIP;, T). We will not allow the rewrite of P | as Q | P, therefore we can define the relation —,
as a reduction on the z-th process of the parallel composition.

The eager reduction procedure relies on the fact that when considering a sequence of reductions
(HPi(l),Tl) — e (HPZ.("),Tn) where S(A(T1)) = S(A(T,)) (i-e. the adversary knowledge does
not increase during the reductions), then all reductions on the different processes are independent
from each other. This leads to define a “big step” reduction that amounts to reducing one process
until it writes some term that was previously unknown to the environment, thus we define the
algorithm for an eager reduction as follows:

Algorithm 3.1 Step of eager reduction of (ILP;,T):
1. Choose j € [1,n].
2. ¢:= (IP;, T)
3. Choose ¢ such that ¢ —; .
4. If ¢/ = (IP!,T") and S(A(T")) = S(A(T)) then { c:= ' ; go to step 3 } else return ¢’

A more formal definition, together with a proof of correctness and completeness, is given in
appendix A.

From ground eager reduction to symbolic eager reduction

We stress on the fact that although the eager reduction procedure has been described and proved
here only on the ground reduction system, our verifier in fact relies on the symbolic counterpart
of it. The symbolic eager reduction procedure matches closely the ground one, the only difference
being that we (symbolically) reduce a process until it reaches error or writes a term symbolically
unknown to the environment. Completeness of the symbolic eager reduction procedure follows
from the completeness of the ground reduction (but is beyond the scope of this paper).

3.2 Exploiting symmetry

When studying several parallel sessions of protocols, it is useful to define protocol roles, which are
parametric processes. All parameters will range over a finite set of principals names {Ido, ..., ld,}.
In our verifier, the identifier Idy is reserved to name a compromised participant, whereas all the
names {ldq,...,|d,} are supposed to play a symmetric role in the protocol: then, we instanciate
the parameters using basic injective renaming in order to generate all possible cases.

As a consequence of the completeness of eager reduction, we only need to consider “eager
traces”; therefore, whenever some role is involved in a reduction to error, there is one process
among those of that role that will do a step of eager ground reduction at first. Thus we can
start the reduction by using only one process of each role, and add another process of some role
only after the last introduced process of the same role has performed a full step of eager reduction.
Although this may look simplistic, this allows a very important reduction in the number of states
having to be explored, even when considering only 2 parallel sessions of a protocol.

1As a trivial example, consider two processes in parallel, one performing a decryption, and the other one an
equality test: the order in which the two reduction steps are done does not affect at all the reachability of an error.

3.3 Going further...

We have also investigated some more advanced partial order techniques in order to further reduce
the size of the state-space to be explored: it is namely possible, at the symbolic level, to detect that
some eager reduction step was indeed independent from a previous one in the same trace. Then
we can restrict the search to only explore traces that are in some (lexicographical) normal form
(see [DM96]). Unfortunately, the proof of completeness for these methods become quite involved,
and the gain observed in practice was not as important as expected: further investigation in this
area is still needed.

4 Experimental results

TRUST was written in OCAML, and the syntax it accepts is very close to the one of the example
from section 2.3 (see appendix B for a real example). This section provides some experimental
results for our tool. Reassuring is the fact that our tool successfully found all known flaws on all
protocol we have tried so far - even thoses the author was not yet aware of.. .

Benchmarks

Figure 2 gives some figures for the full analysis of some typical protocols. For each protocol, we
detail the number of roles involved and give the time to do a full search depending on the number
of parallel (interleaved) sessions. In that benchmark, all roles parameters ranged over a set of
3 names {ldg,ld;,ld2}, Idg being the name of a compromised principal whose private keys were
initially known by the environment. All measures were done on a Pentium IIT at 733MHz, on
which the tool performs more than 750.000 basic reductions per second. The total time spent is
more or less proportional to the number of reductions done and, for instance, when verifying 3
interleaved sessions of the Needham-Schroeder protocol (with a key server), the verifier indeed
performs around 88.000.000 reductions, checking more than 2.900.000 assertions.

Protocol # roles | # sessions time
yahalom 3 1 < 0.01s
yahalom 3 2 12s
needham-schroeder 2 3 0.50s
needham-schroeder 2 4 22s
needham-schroeder (with a key server) 3 2 0.11s
needham-schroeder (with a key server) 3 3 115s
otway-rees 3 1 < 0.01s
otway-rees 3 2 1.90s
otway-rees 3 3 1940s
kerberos v5 4 1 < 0.01s
kerberos v5 4 2 15s
kerberos v5 4 3 ~ 3d

Figure 2: Times for the analysis of various protocols

Of course, we do not avoid the state explosion problem, but nevertheless the verification task
stays practical up to at least 2 or 3 parallel sessions for all the protocols we have tried so far.
Moreover, an interesting feature is that the memory usage of our analyser is almost constant and
quite small (around 1MByte, for all protocols tested so far).

Remark on the eager reduction: it should be noted that, depending on the protocol,
experimental results have shown that our eager reduction procedure - compared to the more
classical input/output interleaving semantics - gives improvements ranging from a factor of 2 to
more than 100. ..

Finding attacks. ..

Here follows an example of an attack as reported by our tool. This particular one was on a
(bad) variant of the Otway-Rees protocol introduced in [Pau97|, whose full specification is given
in appendix B:

0:Init(Id1,Id2) sends <N1,Id1,Id2,Crypt(<N1,Id1,Id2>,K(Id1))>

1:Resp(Id1,Id0) gets <na,Id0,Idl,e>
1:Resp(Id1,Id0) sends <na,Id0,Idl,e,N2,Crypt(<na,Id0,Id1>,K(Id1))>

2:Serv(Id0,Id1) gets <na,Id0,Idl,Crypt(<nal,Id0,Id1>,K(Id0)),N1,Crypt(<na,Id0,Id1>,K(Id1))>
2:Serv(Id0,Id1) sends <na,Crypt(<na,N3>,K(Id0)),Crypt(<N1i,N3>,K(Id1))>

0:Init(Id1,Id2) gets <N1,Crypt(<N1,N3>,K(Id1))>
0:Init(Id1,Id2) sends Crypt(N4,N3)

0:Init(Id1,Id2) assert (Id2=Id0 or secret(N4))

A short explanation of the above example follows: Idg is the identity of a compromised prin-
cipal whose key K (ldg) is initially known by the environment, and the initiator makes the (false)
assertion that either it wanted to communicate with Idg (in that particular trace leading to error,
the initiator has identity Id; and wants to communicate with lds), or the data it sent at the last
step must stay secret. This is actually not the case as clearly shown by the given attack.

It should be noted that by directly checking the secrecy of the key that the initiator gets at
the end of its protocol run, we get the following - much shorter - error:

0:Init(Id1,Id2) sends <N1,Id1,Id2,Crypt(<N1,Id1,Id2>,K(Id1))>

0:Init(Id1,Id2) gets <N1,Crypt(<N1,Id1,Id2>,K(Id1))>
0:Init(Id1,Id2) assert (Id2=Id0 or secret(<Idi,Id2>))

This is a typical example of a type-flaw attack; although complex keys are not directly handled
by our tool (namely, in our model, the pair <ld1,ld2> cannot be used as a valid encryption key),
it is nevertheless possible to find some of those attacks with our tool.

5 Conclusion

We have presented the TRUST protocol analyser, a fully automatic verifier for cryptographic
protocols. Our tool relies on a sound and complete symbolic reduction procedure: protocols are
specified by the use of logical assertions on secrecy and authentication, and whenever an assertion
is found to be invalid, an attack against the protocol is given. Our personal experience is that
the description and specification of protocols using roles (parametric processes) and assertions is
manageable even for non specialists, and is an easy way to find flaws in the protocols.

TRUST makes use of several techniques in order to alleviate the state space explosion problem.
Most notably, it takes advantage of an eager reduction procedure, together with some basic sym-
metry reduction techniques. Experimental results show that - although the verification problem
is actually NP-hard - our tool is able to handle efficiently 2 or even 3 interleaved sessions of most
protocols from the literature.

As a sidenote, we believe that the idea behind our eager reduction procedure is simple and
general enough to easily be adapted to other verification techniques such as those relying on tree
automatas [Mon99, Gou00].

More information on our tool can be found at [Trust]. We are currently working on extending
the symbolic decision method to particular cases when some processes - like a key server - can be
iterated.

References

[AL0O]

[ALVO1]

[DMY6]

[DY83]

[Gou00]

[Hui99]

[Low97]

[Mon99]

[Pau97]

[RTO1]

[Trust]

R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols. In
Proc. CONCURO00, Springer LNCS 1877, 2000. Also RR-INRIA 3915.

R. Amadio, D. Lugiez and V. Vanackére. On the symbolic reduction of processes
with cryptographic functions. RR-INRIA 4147, March 2001. To appear in Theoretical
Computer Science.

V. Diekert and Y. Métivier. Partial commutation and traces. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, Vol. 3, Beyond Words, pages
457-534. Springer-Verlag, Berlin, 1997

D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans. on
Information Theory, 29(2):198-208, 1983.

J. Goubault. A method for automatic cryptographic protocol verification. In Proc.
FMPPTA, Springer-Verlag, 2000.

A. Huima. Efficient infinite-state analysis of security protocols. In Proc. Formal meth-
ods and security protocols, FLOC Workshop, Trento, 1999.

G. Lowe. A hierarchy of authentication specifications. In Proc. 10th IEEE Computer
Security Foundations Workshop, 1997.

D. Monniaux. Abstracting cryptographic protocols with tree automata. In Proc. Static
Analysis Symposium, Springer LNCS, 1999.

L. Paulson. Proving properties of security protocols by induction. In Proc. IEEE
Computer Security Foundations Workshop, 1997.

M. Rusinowitch and M. Turuani Protocol insecurity with finite number of sessions is
NP-complete. RR INRIA 4134, March 2001.

http://www.cmi.univ-mrs.fr/~vvanacke/trust/

A Appendix

Eager reduction : proof of correctness and completeness

For a ground configuration k = (ILP;,T), we define p(k) = S(A(T)). wp(err) = 0. We note
k(j) = P;.
We will first state the main lemma on which all the eager reduction process is based :

Lemma A.1 If ki —; ko —; ks and p(k1) = p(ks), ks # err then 3ky(kv —; ky —; k3) and
p(ks) = p(ks).

PRrROOF. We assume ¢ # j (else the result is trivial) and do a basic case analysis on the rules used
to reduce P; and P;. All rules but (?), (a) and (!) do not depend at all from the environment nor
modify it and thus the result holds whenever —;¢ {(a), (?), (1)} or —;¢ {(a),(?),(!)}. On the 9
cases remaining, we can distinguish 4 relevant sub-cases by denoting (r;) € {(a),(?)} :

Loky S ko 35 ks
2. ky =i ky —>; ks
3. ky i ky =55 ks

4 ky ik S ks

Cases (1), (2) and (3) are straightforward. Note that case (3) when r = (?) is folklore and used very
broadly in the literature. Case (4) is where the eager reduction procedure will take advantage:
namely we can perform the input/assert rule first and then reach ks after an output from the
process number ¢, due to the fact that u(k;) = p(k2) and that the input/assert rule does not
depend on the environment T' but only on the knowledge S(A(T)) = u(k). O

Any sequence of reductions k —* k' such that u(k) = p(k') will preserve the environment
knowledge : from the previous lemma, those reduction have the (nice) property that the order
in which we reduce each process in the parallel composition does not matter. We will now an-
notate sequences of reductions to include the order in which the different processes modify the
environment knowledge.

Definition A.2 We write:

0
1) k-*F iff k—*k and pk") = p(k)
z 0
(2) k->*FK iff Fki |k —=* k1 =, K oand p(k') # p(k:)
P1y--5Pn D1 P2 Pn
3) k —=* K iff k—=*k —>*---2*FK

0 P
Informally, 5 denotes any sequence of reductions that preserves the environment knowledgef*)
means that the environment knowledge was not modified until the last step, where the process
numbered z either performs an output of a previously unkown term, or reaches error.

— is just syntactic sugar in order to shorten the notations.

Remark A.3 Ifk 5 k', then there exists a sequence py,...,pn such thatk > k.

Definition A.4 (Eager reduction) We define —,, a step of eager reduction on the process
numbered x, as follows:

ks, K iff k=t &

We will write k <p, ... p, k' whenever k —,, ki <=y, - =, k.
Informally, eager reduction on the process & means that we reduce only the process z in the
configuration until either a term unknown to the environment is written, or we reach error.

Lemma A.5
T 0
1. k—=*K and k' # err implies 3k k —, ky =* k'
2. k —* err implies k —, err

PRrROOF.

z 0 0
1. k —* k' implies I&" | k —»* k" —; k' and p(k') # p(k"). All reductions in k —* k" preserve
the environment knowledge, and thus by iterating lemma A.1 we can move all reductions on
z to the beginning of the sequence (details are left to the reader).

z 0
2. By the same reasoning : k —* err implies 3k’ | k —=* k' —, err. Then we can use lemma A.1

0 0
to prove that 3k" | k =% k" =* k' —, err and such that there is no reduction on = between
k" and k'. Then k' —, err means that k'(x) is a false assertion w.r.t. u(k’) (recall that an
assertion in the environment 7" only depends on S(A(T"))), and as we have k" (z) = k'(z)

0 0
and p(k") = p(k), it implies k" —, err. Thus k =% k" =, err and k =% k" >* k' —, err
O

Theorem A.6

P1ye-sPn 0
1.k —=* K implies 3" k >, p k' >* K

P1,--,Pn
* 3 - "
2.k —* err implies k" k —,, 5, err

n

Proor.

1yeee

1 sPn—1 Pn

Ply-yPn P
1. Case (n = 1) was done in the previous lemma. Else & —* k' implies k
0 0 Pn
and by induction : 3k,—1 k <, p._y kn—1 —* k. Thus k,_1 =* k" >* k' and we can
Pn
write more directly: k,_; —* k'. By using the previous lemma, we have 3k, k,—1 —p,

0
k, —* k'. QED.

0 Dn Pn
2. By (1) : Jkn, k" k —p,. . p._s kn =* k" =% err. Thus k, =* err and k, —,, err.

Corollary A.7 Correctness and completeness of the eager reduction method.

Proor. Completeness is stated in theorem A.6(2). Correctness comes trivially from < ,C—*. O

10

B An Otway-Rees variant
The protocol we wish to verify is the following:

A—B: N, A B,{N,, A B}k,

B—S: Na,A,B,{NG,A,B}KE,Nb,{Nb,A,B}Kb
S— B: Na;{NaaKab}Kay{Nb;Kab}Kb

B— A: Na;{NaaKa,b}Ka

...and the raw protocol description as fed to our tool is:

Principals:

Init(me,him):
[me!=him] ; [me!=Id0]
fresh na
write <na,me,him,E(<na,me,him>,K(me))>
read <m,e>
[m=na] ; <na2,kab><-decrypt(e,K(me)) ; [na2=nal
fresh confidential
write E(confidential,kab)
assert((him=Id0) or secret(confidential))
nil

Resp(me,him) :
[me!=him] ; [me!=Id0]
read <na,a,b,e>
[b=me] ; [a=him]
fresh nb
write <na,a,b,e,nb,E(<na,a,b>,K(me))>
read <na2,el,e2> [na2=na] <nb2,kab><-decrypt(e2,K(me)) [nb2=nb]
write <na,el>
nil

Serv(init,resp):
read <na,a,b,el,nb,e2>
[a=init] [b=resp] [a!=b]
k1<-K(init)
k2<-K(resp)
<nal,al,bi><-decrypt(el,kl) ; [<nal,al,bl>=<na,a,b>]
<na2,a2,b2><-decrypt(e2,k2) ; [<na2,a2,b2>=<na,a,b>]
fresh kab
write <na,E(<na,kab>,k1),E(<nb,kab>,k2)>
nil

Environment:

140 ; K(IdO)

11

