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Abstract

This paper describes the architecture of a toolkit performing state
minimization of labelled transition systems for name passing calculi. The
structure of the toolkit is developed from the co-algebraic formulation
of the partition-refinement minimization algorithm. Indeed, the concrete
software architecture of the minimization toolkit is directly suggested by
the abstract semantical structure of the coalgebraic specification. The
direct correspondance between the semantical structures and the imple-
mentation structures facilitates the proof of correctness of the impemen-
tation. We evaluate the usefulness of the minimization toolkit in practice
by performing finite state verification of pi-calculus specifications.
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1 Introduction

Verification of systems that can be adequately modeled as mobile processes is
difficult because many “source of infinity” can be introduced. For instance, let
us consider transition systems obtained from w-agents, we have that transitions
can generate new names. Indeed, let us consider the (OPEN) rule of w-calculus:

xr
piiq ifx#y. (1)
z(y
(vyp—q

Such rule basically establishes that a state (v y)p can create a new name and
can export it over a channel z. Notice that the state of the transition system
corresponding to (v y)p represents a point of the computation where y “does
not exists”, while the target state of the bound output transition is a point of
the computation where y “becomes available”. Rule (1) introduces an infinite
branching in the automata corresponding to agents that perform bound output
transitions.

The rule for input transition of the early semantics of the m-calculus also
introduces infinite branching because it is necessary to consider a transition for
any name that instantiates the input parameter.

Let us remark that it is of course reasonable (and desirable) to model
m-calculus semantics with rules as (1) or by means of the early semantics be-
cause such rules account for scope extrusion of names that is one of the major
peculiarities of m-calculus and permits to model and reason on many aspects
of mobile systems. On the other hand, since those kind of semantics had been
introduced without considering verification issues, such rules are problematic
when verification purposes are under consideration.

A different phenomenon that produces infinite automata is due to name
extrusion in relation with recursion. A possible “implementation” of name ex-
trusion is to reserve an infinite sequence of names from which a new name can
be taken when a transition extrudes a fresh name. This approach has been
proposed and analyzed in [33, 12]. A drawback of this approach is that an infi-
nite number of states is generated in the case of agents with infinite behaviour.
Indeed, let us consider the agent A(z) = (v y)Ty.A(y). Agent A(x) generates a
new name y, emit it along z and continues as A(y). This behavior is “encoded”
in the approach of [33, 12] as

Ax) 229 A(ze) 2 A(z1) 22 A(ss)...

Hence, to obtain finite state automata also for agents with infinite behaviour,
we need a mechanism to model “resource deallocation”. Let us again consider
agent A; after each bound output &;(z;41) transition, the name z; will never be
used in future transitions, hence we could re-use it provided that a mechanism
for re-stating its freshness is given.

In order to model this kind of evolution in a framework suitable for verify-
ing systems it is necessary to enrich the structure of states and transitions of



Figure 1: A HD-automaton transition

ordinary transition systems.

History Dependent automata (HD-automata in brief) have been proposed
in [32, 27, 28, 11] as a new operational model for history dependent calculi,
namely those calculi whose semantics is defined in terms of a labeled transition
system such that the labels may carry information generated in the past tran-
sitions of the system and this “historical” information can influence the future
behaviour of the system. Probably the simplest history dependent calculus is
CCS with value passing [19], another example is the CCS with locality [6]; fi-
nally, as we have seen m-calculus LTS semantics all have labels that can contain
names generated in past transitions!.

HD-automata aim at giving a finite representation of otherwise infinite label
transition systems. Similarly to ordinary automata, HD-automata are made
out of states and labeled transitions. Their peculiarity resides in the fact that
states and transitions are equipped with names which are no longer dealt as
syntactic components of labels, but become an explicit part of the operational
model. This permits to model name creation/deallocation or name extrusion
that are typical linguistic mechanisms of name passing calculi.

An important aspect of HD-automata to emphasize is that names of a state
have local meaning. For instance, if A(x,y,z) denotes an agent having three
free names x, y and z, then agent A(y, z, z) is different from A(z,y, ), however,
they can be represented by means of a single state ¢ in a HD-automaton simply
by considering a “swapping” operation on the names (corresponding to) x and
y of q. More generally, states that differs only for renaming of their local names
are identified in the operational model.

Local meaning of names requires a mechanism for describing how names
correspond each other along transitions. Graphically, we can represent such
correspondences using “wires” that connect names of label, source and target
states of transitions. For instance, Figure 1 depicts a transition from source
state s to destination state d. The transition exposes two names: Name 2 of s
and a fresh name 0. State s has three names, 1, 2 and 3 while d has two names
4 and 5 which correspond to name 1 of s and to the new name 0, respectively.
Notice that names 3 is discharged along such transition.

As described in Figure 1, HD-automata relies on the fact that names are
local. This allows for a compact representation of agent behaviour by collaps-
ing states that differ only for renaming of local names encompasses the main

1 Also formalism that are not related to process calculi can be considered as history depen-
dent; for instance, Petri nets [15] are a paradigmatic history dependent formalisms.



characteristics of name-passing calculi, namely, creation/deallocation of names.
Indeed, name creation is simply handled by associating in the target state a
name not in the source state.

A computation performed on a HD-automaton associates a “history” to
names of the states appearing in the computation, in the sense that it is possible
to reconstruct the associations which lead to the state containing the name.
Clearly, if a state is reached in two different computations, different histories
could be assigned to its names.

Various families of HD-automata have been introduced. Roughly speaking
each class of HD-automata corresponds to a class of history dependent calculi
or different behavioural semantics. The reader is referred to [32] for details.

In this paper we present Mihda, an implementation of a verification envi-
ronment based on the co-algebraic formulation of the partition-refinement algo-
rithm for HD-automata. The main result of the paper is to show how Mihda
effectively is a refinement of the co-algebraic specification. We prove that the
Mihda corresponds to the implementation of a functor mapping objects from
the category of HD-automata to more concrete ocaml objects.

Another interesting result is the possibility of exploits Mihda as a “mini-
mization” library, in the sense that Mihda exploits the module system of ocaml
that gives the opportunity of applying the same algorithm to different kind of
automata. For instance the minimization algorithm has been uniformly applied
both to HD-automata and to ordinary automata (see [22]).

[4

Outline of the paper. This paper is divided in two parts. The first parts
collects some preliminary definitions and results related to m-calculus, cate-
gory theory and co-algebras which aim at keeping this work self-contained (as
much as possible). The second part introduces Mihda and discussed some im-
plementation choices. We show how the co-algebraic framework can guide the
implementation and helps maintaining strictly connected theoretical definitions
and the corresponding concrete structures and functionalities.

Part I
Backgrounds

This part points out the theoretical frameworks in which we work. We first
report some definitions and discussions on 7-calculus discussing the most rele-
vant aspects of its semantics with respect to verification issues. Then we detail
elementary notions from category theory and co-algebras that will make more
clear the presentation of our results. In particular, we point out how co-algebras
can be suitably exploited for representing automata and for defining a semantic
minimization algorithm. Finally, we report the results presented in [11] where
HD-automata for m-agents and minimization algorithm for them have been in-
troduced.



2 The m-Calculus

The w-calculus [25] is the best known example of core calculus for mobility.
It is centered around the notion of maming: mobility is achieved via name
passing. Channel names can be created, communicated and are subjected to
sophisticated scoping rules. The capability of exchanging channel names gives
m-calculus the ability of dynamically reconfiguring process acquaintances.

Name passing primitives are simple but expressive; indeed w-calculus can
model objects (in the sense of object oriented programming [38]) and higher
order communication [35].

In this section we outline the syntax and the early semantics of the calculus
and refer the reader to [25, 36, 24] for a detailed presentation of the variegated
facets of m-calculus.

2.1 Syntax

We assume as given an infinite set of names N and we let a,b,...,z,y,...
to range over N'. Agents of w-calculus are built over terms generated by the
following productions:

pou= 0 mp | ple | pta| wyp | [e=ylp | Alyzn) o
T = 7 | z(y) | TY

A process can be the void process, a process prefixed with actions, the parallel
composition of processes, the non-deterministic alternative between two pro-
cesses, a process obtained by restricting a name, a process guarded by equality
of names or the recursive invocation of an agent. In (2) we let A to range over
a set of process identifiers and, for each A, we assume that

e there is a unique definition A(y, ...,yn)éq where the y;’s are all distinct
and fn(q) C {y1, -, Yn};

e whenever A is used, its arity is respected;

o if Ay, ...,yn)ép is the definition of A, each process identifier in p is in
the scope of a prefix (guarded recursion).

Actions of m-calculus are

e 7, also called silent action, that represent non-observable or internal com-
putation,

e input action x(y) representing the reception along channel z of a name to
be replaced for y,

e output action Ty represents the output of name y along channel z.

For input and output action we call x the subject and y the object name, re-
spectively.



T fn(w) | bo(w) | n(w)
T 1] 0 0
zy) || {=} | {y} |{=zy}
zy |[{z,y}| 0 |{z,y}

Table 1: Free and bound names of 7-calculus prefixes

The input action and the restriction operator z(y)._ and (v y) _ act as binders
for name y with scope the argument process. However, they have different
nature: in the first case, y indicates the placeholders where the received name
must be placed; in the second case, y is a new, private name. Notions of free
names of a prefix action , fn(r), of bound names of w, bn(w) arise as expected
and are reported in Table 1. Given a process p, we can define free names of p,

fn(p) and bound names of m, bn(w) as done in Table 2, where A(y1, ...,yn)éq.
The set of names of p is the set n(p) = fn(p) Ubn(p). We shall write fn(p, ¢) in

P fn(p) bn(p)
0 0 0
T.q (fn(7) Ufn(q)) \ bn(x) | bn(w) Ubn(g)
@ | @ fn(g1) U fn(go) bn(g1) U bn(gz)
a1+ g fn(q1) U fn(g) bn(g:) U bn(gz)
(vy)a fn(g) \ y bn(g) Uy
[z =ylq fn(q) U {z,y} bn(q)
AT,y ) fn(zy, -+ ,Tn) 0

Table 2: Free and bound names of w-calculus processes

place of fn(p) U fn(q) (similarly for bn(-) and n(-)).

We adopt the following usual syntactic conventions: w.p | ¢ stands for (w.p) |
g, (vx)p | g for (vx)p) | gand (v ...zp)p for (vay)...(va,)p. Moreover,
trailing occurrences of 0 shall usually be omitted.

A structural congruence relation, =, is defined on w-calculus agents. It is the
least congruence relation that satisfies the axioms in Table 3. The structural

(ALPHA)  processes which differ by a-conversion are equivalent
(PAR) | is associative and commutative, and 0 is its identity
(sum) + is associative and commutative and 0 is its identity
(scopE)  pl(va)g = (va)(plg ifadin(p)

(RES) (va)(wb)p = (vb) (va)p

(NIL) (va)o = 0

(MATCH) [a=al0 = 0

Table 3: m-calculus structural congruence




congruence basically provides an equational algebra for manipulating and re-
arranging processes without affecting their behaviour and simplifying the rules
of operational semantics. For instance, process a(z).Zb | (vy)ay is structurally
equivalent to (v y)(a(x).Zb | ay) because we can enlarge the scope of the v oper-
ator. Moreover, structural congruence performs some garbage collection of dead
processes.

It is worth to add some comments to the syntax of the calculus in order
to give an intuition of the meaning of its terms before giving their formal se-
mantics. Process 0 stands for a process that has no possibility of interacting
with other processes. A process prefixed by an action 7.¢ can evolve after the
action 7 has been fired; if 7 is the silent action, then the process evolves with-
out synchronizing with other processes, otherwise another process must offer a
complementary action? for the synchronization: Until such action is not offered,
the process cannot evolve. Parallel composition of ¢; and ¢z, ¢1 | g2, evolves to
qi | @2 when ¢; evolves to ¢; without interacting with ¢2 (and similarly for g»),
or evolves to ¢ | g5 when ¢; and ¢ synchronize. Differently, if ¢; evolves to ¢
then non-deterministic choice ¢; + g» evolves to ¢ too disregarding the alterna-
tive g2 (and similarly for g2). As stated above, (v y)p hides y to the processes
outside the scope p; we will see that the scope of the restriction can dynamically
change. Matching-guarded process [z = y]p evolves as p only if the condition

x = y holds, otherwise it is stuck. Finally, if A(y, ...,yn)éq, then a recursive
invocation A(z1, ..., ) is the same as ¢[**" = /,, ... 4. ], namely, as the process
obtained by substituting each free occurrence of the formal parameter y; with
the actual parameter z;.

2.2 Early semantics of n-calculus

The early semantics of w-calculus was first introduced in [26]. We report here
a slightly simplified variation given in [32]. The labels of the labeled transi-
tion system for the early semantics of 7-calculus are specified by the following
productions:

p o= 1 | zy | Ty | T(y)

and are respectively called synchronization, free input, free output and bound
output actions. Table 4 reports the definition of free names, bound names and
names of a label u, respectively written as fn(u), bn(u) and n(u). The labeled
transition system for the early semantics of m-calculus is specified by the rules
in Table 5. Let us remark that actions are different from prefixes because the
free input and the bound output actions are not prefixes. Indeed input prefixes
have the form z(y) while free inputs are zy. The notation should be reminiscent
of the fact that input prefixes act as binders for the object variables, instead
the objects in free inputs are the effective received values in input actions.
The bound output transitions are the peculiarity of the w-calculus. A bound
output transition represent the communication of a name that has previously

2if 7 is an output on z the complementary actions are input actions on z, or else output
actions on z, if 7 is an input on x.



p || fo(p) | bn(u) | n(w)
zy | {z,y}| 0 |{=y}
zy |(|{zy}| 0 | {z,y}
z(y) | {z} | {y} |{=zy}

T ] 0 0

Table 4: Free and bound names of w-calculus labels

[tau] T.p = q

[in] @(2).p = p[*/:]

pﬂp

(wy)p Yy

[open]

™ [y gl 5 v

[rec] T
A1,y Tp) = D

. A
if A(y1,-yn)=p

[out] Ty.p Xp

|2 /
_>
[sum] f
p+q—=p
p By (B¢
[comm]
plamp' | d
ﬂ> /
[res] ———— —ifzgn(u
(va)p & (va)p (k)
T ' z(y) ,
p By Mg
[close] — ——if y ¢ fn(q)
ple—= wy)®|d)
I Moy R
[con] b=p p —q q9 =49
g I
—q

Table 5: Early semantics of w-calculus




been restricted and, therefore, it corresponds to the generation of a name new
with respect to “the names of the environment”. This mechanism is called name
extrusion and is formalized by the interplay between rule [open] and rule [close].
Rule [open] reads as: if p can perform a free output transition Zy and continues
as p' then (vy)p can make a bound output transition Z(y) and continues as p',
provided that =z # y. Note that after bound output transition y is no longer
restricted. If a synchronization involving a bound output and a free input action
takes place, after the transition we restrict again the “newly generated” name y.
Side conditions of the rules [par], [open] and [close] are necessary for avoiding
name capture of free names. The remaining rules, are basically the formalization
of their informal description given at the end of Section 2.1.

Observation 2.1 An important aspect concerning early semantics and verifi-
cation of m-agents must be remarked. The peculiarity of early semantics lies
in the rule [in] that instantiates the object name when the input transition is
derived. This implies that a process x(z).p can trigger an infinite number of
transitions (one for each instantiated name y). If we think of m-agents as nodes
in an automaton, this gives rise to infinite branch on any input node. We will
discuss this issues in deeper detail in Chapter 1.

Now we present the definition of early bisimulation for 7-calculus.

Definition 2.1 (Early bisimulation) A binary relation R over m-agents is
an early bisimulation if, whenever pRq then

for each p £ p' such that bn(p) Nfn(p, q) = 0, there is some ¢ = ¢'
such that p'Rq'.

Two w-agents are early bisimilar, written p ~ q, whether there is a bisimulation
R such that pRq.

Condition bn(u)Nin(p, ¢) = @ in Definition 2.1 is necessary to guarantee that the
name chosen to represent the newly created name in a bound output transition
is “fresh” for both agents. The following example should make more clear the
need for name freshness in bound output transitions.

Example 2.1 Let us consider the w-agents p = (v y)Ty.0. It is easy to see that
the transition

(vy)zy.0 W
can be inferred by rules [out] and [open] in Table 5. Intuitively, p should not be
distinguished from
4= (vy)my + (v 2)7w

Indeed, q q:(‘yg 0 is the unique transition that can be inferred for q because, output
on z is prevented by the restriction that violates side conditions of rules [res]
and [open] and therefore, {(p,q),(0,0)} is a bisimulation relation according to
Definition 2.1. However, if we discard condition bn(u) Nfn(p,q) = O we could
chose w for the newly generated name of p that does not fit for q because w is

not new for it. This would prevent g to match the transition p E(—wg 0.

10



Z(y / Tz
[in'] z(y).p =) D [comm!] b ‘2]: 14
pla=pl/l1d
z( z(
[close!] P Wy My
pla= (wy)@'|d)

Table 6: Late semantics of w-calculus

2.3 Late semantics

Late m-calculus, is an alternative semantics given in [25]. The main difference
between late and early semantics is “the moment” at which input names are
instantiated. Rule [in] in Table 5 states that y is substituted for z when the
input prefix is encountered. On the contrary, the late semantics instantiates it
only when a synchronization effectively takes place.

We outline the late semantics of w-calculus “by difference” with respect to
the early semantics reported in Section 2.2. The late actions that an agent can
perform are defined as:

pu=T | m(y) | Ty | .’Z'(y)

The only difference with respect to the labels of the early semantics is the
bound input action. The parenthesis should remind that y does not represent
a name; it will be used as a “placeholder” that indicates where the effectively
received name should be substituted in the continuation. Hence, we have that
in(z(y)) = {«} and bn(a(y)) = {y}.

The transition rules remain the same of the early semantics apart from those
reported in Table 6. The reader can notice that rule [in!] simply declares that
an input action can be performed by a process without instantiating the formal
parameter y to any actual value. Later, when a free output action (rule [comm!])
will synchronize on name x, the actual name z will be substituted for y in the
continuation of the input process. Rule [close!] is similar but it does not requires
any instantiation because bound input and output transitions can always be
renamed such that the bound names are turned into the same name.

An interesting exercise is to compare the natural bisimulation relation that
arises from the late semantics.

Definition 2.2 (Late bisimulation) A binary relation R over m-agents is a
late bisimulation if, whenever pRq then

o for each p 5 p' with p # x(y) and bn(p) N(p,q) = O, there is some
g5 ¢ such that PRy';

e for each p ) p' with y &€ fn(p, q) there is some ¢ ) q such that, for all
2z €N, PIE/IRG /4]

11



Two w-agents are late bisimilar whether there is a late bisimulation R such that
pRq.

The first thing to remark is that for non-input transitions, late and early bisim-
ulation are defined in the same manner, namely, the first clause of Definition 2.2
is the same of the one in Definition 2.1. For input actions definitions differ each
other; indeed, late bisimulation is stronger that early bisimulation because if

p ) p' the choice of a transition ¢ i) q¢' must not depend on the received
name 2. On the contrary, for the early semantics, we choose a free input tran-
sition of ¢ depending on the received name in the transition of p.

Example 2.2 Let us consider the following m-agents:
q=z(y).7.0 + 2(y).0 and  p=q+2z(y).[ly = 2]7.0.

Intuitively, p and q are early bisimilar because p can trivially mimic all transi-
tions of q and q can mimic input transitions of the further addend of p because
when y is substituted for z, we can choose the transition q¢ =5 T.nil, otherwise,
we choose ¢ ©% 0 for the remaining transitions. In other terms, relation

Re = {(p,9), ([z = 2]7.0,7.0)} U {([y = 2]7.0,0) : y # z}

is an early bisimulation that relates p and q.

On the other hand, p and q are not late bisimilar because transition p ;ﬂ;
[y = 2]7.0 cannot be matched by q. Indeed, according to the late semantics,

there are only two possible transitions that we might choose either ¢ zﬁg 0 or

q “W) 10, In the former case, Definition 2.2 requires that ([y = 2]7.0)[*/,] and
0[*/,] must be bisimilar for any w, which is not the case when w is z; whereas,
in the latter case ([y = 2]7.0)[*/,] is bisimilar to T.nil[*/,] only when w = 2.

2.4 Variants of m-calculus

Several variants of the 7-calculus have been proposed to study many aspects of
concurrent and distributed systems. Since m-calculus has been widely used for
modeling many facets of concurrent and distributed computation, pretending
to give a complete list of citations would be too much ambitious. We focus here
on some variants of 7-calculus that are more closely related to our dissertation.

Some presentations of the calculus adopt replication [23], usually written
as !p, in place of recursion. Process !p can be intuitively explained as infinite
copies of p in parallel. As far as expressiveness is concerned, the two methods
for expressing infinite behaviours are equivalent (at the cost of additional silent
actions). However, replication complicates the identification of a syntactic class
of finitary agents. An agent is finitary if the number of parallel components of
all its derivatives is bound. It is not decidable whether an agent is finitary or
not, but it is possible to find syntactic conditions that ensures it. In the case
of m-calculus with recursion, agents that do not have parallel composition in
recursive definitions are finitary. Those agents are called finite control agents [8].

12



The asynchronous m-calculus [17, 5, 4] is a simple variant of the w-calculus
where asynchrony is achieved by imposing the void continuation to the output
actions. In other words, the (synchronous) m-calculus uses both input and
output actions as prefixes while its asynchronous counterpart does not allow
output prefixes: Outputs are processes of the form Zy.0. Although from a
theoretical point of view asynchronous m-calculus is less expressive than its
synchronous version [30], it is still enough expressive in practice [17], and, in
many respects, more adequate for modeling distributed computing.

The join-calculus [13] is an “extended subset” of asynchronous 7-calculus
which combines the three operators for input, restriction and replication into a
single operator, called definition, that has the additional capability of describ-
ing atomic joint reception of values from different communication channels. The
Distributed join-calculus [14] adds abstractions to express process distribu-
tion and process mobility.

Another linguistic extension is the introduction of polyadicity introduced
in [23]. The polyadic version of the allows one to send and receive tuples of
names instead of one single name along channels.

A significant variation of polyadic w-calculus is constituted by the Fusion
Calculus introduced in [31]. The interesting aspect of Fusion Calculus is the
complete symmetry between input and output actions. Indeed, input prefixes
do not bind their object names. The effect of the synchronization of comple-
mentary actions is that object names are (globally) identified as shown in the
communication rule below

PRy By

[5=2]
pla’=7p|d

where [§ = Z] stands for [y1 = 21,..., Yyn = 2n].

Another extension of the polyadic calculus is Distributed 7-calculus [16, 34].
This extension defines an explicit notion of locality that also affects channels
that are allocated. Distributed m-calculus models distributed computations and
access control policies. Locations reflect the idea of having administrative do-
mains and located channels can be thought of as channels under the control of
certain authorities. Moreover, distributed w-calculus provides a form of process
mobility because processes can move from through localities.

3 Categories and Functors

It is quite common to consider concurrent and distributed systems as reactive,
namely as systems which are plugged and executed into an environment that
can interact with them by means of some stimuli to which systems react. In
this context the behaviour of a system can be represented as the ability of the
system of reacting to a given class of stimuli. Hence, a natural question is: when
two systems have equivalent behaviours? The ability to answer this question
is quite important. For instance, it implies that a system S can be unplugged

13



and substituted with a system S’, provided that S’ is equivalent to S, namely,
provided that the rest of the environment cannot distinguish the behaviour of
S’ from the behaviour of S. Another reason is related to “efficiency”. We can
replace S with a “smaller” system S’, provided that they are equivalent. Among
the wide number of theories for representing systems and their behaviours that
have been proposed, w-calculus and bisimulation equivalences probably are the
most famous and applied.

A very natural and elegant way of describing transitions systems is provided
by coalgebras, that are the dual concept of algebra. Duality between algebras
and coalgebra can be precisely stated in a categorical setting. This section
aims at formally reviewing elementary notions of coalgebras. Indeed, we re-
cap only minimal notions necessary for presenting the coalgebraic version of
HD-automata. The reader can skip this section if (s)he is already acquainted
with the notions of category, functor and co-algebra and with the elementary
(polynomial) functors over Set. The interested reader is referred to [18, 1] for
a deeper study of coalgebras.

We first introduce the concept of category.

Definition 3.1 (Category) A category C is class of objects Oc (ranged over
by a, b ,...) together with a class of arrows Ac (ranged over by by f, g ,...)
such that the following properties hold:

e Each arrow f has a domain dom(f) (also called source and a codomain
cod(f) (also called target) which are objects. We write f : a — b when f
is an arrow whose domain is a and whose codomain is b.

e Given two arrows f and g such that cod(f) = dom(g), the composition

of f and g, written f;g, is an arrow with domain dom(f) and codomain
cod(g).

e composition is associative, namely, whenever f, g and h can be composed,

fi(g:h) = (f;9); b

e For any object a there is an identity arrow id, : a — a. All identity arrows
engjoy the following properties:

iddom(f); f=f= f;idcod(f)-

Essentially, a category is a collection of objects having a given structure and a
collection of transformations of objects that preserve the structure of objects.
We avoid the details of the general theory of category and we limit our presen-
tation to the restricted setting of sets and functions among them.

Observation 3.1 The category of sets, denoted by Set, is the category having
sets as objects and (total) function on sets as arrows. Domain and codomain
are the domain and codomain of a function, composition of arrows is the usual
function composition, while identities are the identity functions. It is a simple
exercise to show that Set is an instance of Definition 3.1.
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Figure 2: Functor over Set

The most important concept from category theory that we need is functo-
riality. Informally, an operation on sets is “functorial” when it can be lifted
to functions preserving function composition and identities. Functoriality is a
familiar concept in many fields of computer science.

Example 3.1 Let L : A — A* be the function that associates to a set A,
the set of the finite lists over A, given a function f : A — B, we can define
L(f) : L(A) — L(B) as the function such that

L(f): [e1,---,en] = [fle1), ..., f(en)]-

Notice that L(f) is the usual map operation on lists exploited in functional pro-
gramming. It is easy to prove that L is functorial, indeed, L(f;g) = L(f); L(g)
(if f and g can be composed) and that L(ids) = idpa)-

The following definition formalizes this concept:

Definition 3.2 (Functor over Set) An (endo-)functor F over Set maps sets
to sets and functions to functions such that

e for each function f: A — B, F(f) : F(A) - F(A);
o for each set A, F(ida) = idr(a);

e for all composable functions f : A — B and g : B — C, F(f;9) =
F(f); F(g)-

Figure 2 gives a graphical representation of how a functor acts on objects and
arrows. In particular, the figure shows how relations among objects and arrows
of the starting category are maintained in the target category.
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Observation 3.2 The general definition of functor is given for any two cate-
gories C and C'. Figure 2 remains the same also in the general case apart that
Set is substituted by C on the left and with C' on the right of F.

By simply applying Definition 3.2 it is possible to show that the identity
mapping of sets and functions, or the mapping that associates a constant set L
to any set A are functors overs Set. Other examples of functor over sets can be
given.

Example 3.2 This example defines two of most useful functors over Set, namely
product and co-product (or disjoint union).

Let A x B the cartesian product of sets A and B. It is possible to define two
functions m : AX B = A and ' : A x B — B that behaves as the projection
function, i.e.

7 (a,b) = a 7' : (a,b) — b.

Given two functions f : Z — A and g : Z — B, there exists a unique pair
function (f,g): Z — A x B such that the following equalities hold:

(frgysm=f (frg);m' =g.

It is worth to give a graphical representation of the above relations between T,
@', f, g and (f,g). More precisely, such relations express that the following

diagram “commutes”
VA
U e

A<—"—AxB——=B

Commutativity of the diagram means that any two paths starting from the same
vertex and ending in the same vertex are equal if interpreted as composition of
the arrows composing the paths. Moreover, observe that (w,7') = idaxp and
that h; {f,q) = (h; f, h; g) for any function h such that cod(h) = Z.

We can lift the cartesian product to functions. Indeed, if f : A — B and
f' A" = B', we can define fx f' : Ax A" — BxB' as the function (m; f,='; f'),
namely, the function that maps (a,a’) into (f(a), f'(a’)). It is easy to verify that
the product is functorial, in other words,the following equalities hold:

ida X idg = idaxar (f:9) x (f'59') = (f x f); (g x ¢).
Let A+ B denotes the disjoint union of sets A and B:

A+B ¥ {0} x A U {1} x B.

In some sense, disjoint union is the dual of product, from which its synonym
co-product derives: Instead of projections, we can define co-projections k : A —
A+ B and k' : B— A + B which are defined by

k:a+— (0,a) k' b (1,b).
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Informally, k and k' inject elements of A and B (respectively) into A + B,
while, on the contrary, projections w and 7' “extract” elements of A and B
(resp.) from A x B. Moreover, analogously to what is done for products, given
functions f : A — Z and g : B — Z, we can built the “co-product function
[f,9] : A+B — Z as the unique function such that k; [f,9] = f and ';[f, 9] = g.
It is possible to define [f,g] by case:

_ [ f@),if 2=(0,a)
£ 9)(=) = { g(b),if == (1,b)

Finally, we lift the co-product to functions by defining f + g = [f; K, 9; k']. Ob-
serve + on functions preserves identities and compositions, i.e. it is a functor.

Another functor that will be very important in defining co-algebras is the pow-
erset functor.

Example 3.3 Let us consider the operation A — (A), i.e. the function that
associates to a set the set of all its subsets and, for a function f : A — B, let
us consider

p(f) : p(A) = p(B) p(f): U {f(u) |ueU}.
Then, by definition,
o p(ids)(U) = {ida(u) | u € U}, for any U C A hence, p(ida)(U) =U;

* p(f;9)(U) = {9(f(u)) | u € U}, for any U C dom(f), hence, by defini-
tion, p(f;9)(U) = p(9)(p(f)(U)), for all U C dom(f) which amounts to

o(f;9) = o(f); p(g)-

This proves that the powerset operation is functorial.

We conclude this section by claiming that the above functors are part of the
so called polynomial functors that are those functors that can be obtained by
combining sums, products, powerset, constant and exponentiation functors. In-
deed, it is possible to prove that any combination of this functors is a functor
(in fact categories and functors among them form a category) [39, 3].

4 Algebras and coalgebras

Before introducing coalgebras, we show how it is possible to rephrase the more
familiar concept of algebra into a categorical framework. This approach also
permits us to state the duality of algebras and coalgebras.

Given a signature ¥ that, for the sake of simplicity we consider one sorted.
We can easily define a Y-algebra, namely a structure over a given set A that
associates functions to any symbol in ¥. The only constraint being the fact that
such functions must preserve arity of operations®.

3In the general case of multisorted signatures, also sorting must be preserved.
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Example 4.1 If ¥ = (nat,z :— nat, s : nat X nat — nat), then a X-algebra is
the algebra of natural numbers: Namely, nat is interpreted as the set of natural
numbers w, the element O interprets constant z and sum function interprets s.

Referring to Example 4.1, signature ¥ “resembles” the functor
NX)=1+X x X,

where 1 is a singleton set. A N-algebra is a pair (4,a) where A is a set and
a: N(A) — A is a function that given a set A either returns the element in 1
or a “new” element built out of two elements in A.

More generally, if ¥ = {04, ...,05} is a signature such that each operation o;
has arity n;, we can associate a functor

Fe(U)=U™+ ..+ U™

(where U? is a singleton set containing an element of U) such that a $-algebra
with carrier A, can be represented by a function Fx(A) — A.

We have now all the ingredients for defining coalgebras and point out their
duality with respect to algebras. We restrict our definition to coalgebras over
endo-functors of Set.

Definition 4.1 (F-coalgebra) Let F be an endo-functor on the category Set.
A F-coalgebra consists of a pair (A, a) such that a : A — F(A).

This definition makes clear also the duality between F-algebras and F-coalgebras.
Indeed they are functions whose domain and codomain are “reversed”, namely,
are arrows between the same objects but with opposite directions. Different di-
rections can be interpreted as “construction” and “observation”. An F-algebra
with carrier set A is a function F(A4) — A and says how to “construct” elements
of A by applying operations detailed by F. On the other hand, a F-coalgebra
is a function A — F(A) which, given an element of A, returns informations on
the element. For instance let us consider 7(X) = L x X, where L is a fixed set,
then the coalgebra a : Q — L x @) can be though of as an automaton such that,
for each state ¢ € Q, if a(q) = (I,¢') then ¢’ is the successor state of ¢ reached
with a transition labeled [.

5 Transition Systems as Coalgebras

This section gives the preliminary definitions and notations on automata. We
present a formal framework that, starting from ordinary automata, introduces
the coalgebraic version of automata theory and the coalgebraic definition of
HD-automata. Essentially we report here definitions and notations from [11].

In the following we will use terms ’automaton’ and ’transition system’ inter-
changeably.

Definition 5.1 (Automata) An automaton A is a triple (S,L,—) where S
is the set of states, L the set of actions or labels and -C S x L x S is the
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transition relation. Usually, one writes s 4 d to indicate (s,£,d) €—; s is the

source state and d is the destination or target state. Transition s L d is also
called ‘arrow’.

Observation 5.1 Classical automata theory an initial state 5 € S is specified
for automata. For the moment, we ignore initial states that will be specified
when necessary.

Depending on the transition relation, we can distinguish various classes of au-
tomata. For instance, deterministic automata are those automata having a

transition relation which is functional, i.e. s Ldands S d if, and only if,
d = d'. Deterministic automata have one possible successor state for each state
s and each label £. Non-deterministic automata are automata which admit more
than one possible successor for a state and a label.

We aim at developing a coalgebraic description of the minimization proce-
dure, hence, we rephrase coalgebras in terms of structures that are more concrete
than functors. Indeed, we provide a (concrete) representation of the terminal
coalgebra (of an endofunctor over Set) in terms of sets and quadruples which
will yield the minimal transition system. In particular, we define bundles as
the concrete structures that are associated by the co-algebraic functor to states
that will be (concretely) represented as objects of Set. In this way it is possible
to express the functional aspect of the functor (at each step of the minimiza-
tion algorithm) by means of particular structures that will be introduced in the
following.

Before introducing bundles it is worth to give some notations that are here-
after used:

e () : Set denotes a set and ¢ : Q denotes an element in the set @);

e Fun is the collection of functions among sets (the arrows of category Set).
The function space over sets will have the following structure:

Fun ={H |H =(S:Set ,D:Set ,h:S — D)}.

By convention we use Sy, Dy and hgy to respectively denote domain,
codomain and mapping of an element of Fun.

Let H and K be functions (i.e. elements of Fun), then the composition of H
and K (H;K) is defined provided that Sk = Dp and it is the function given
by Sa;x = Su, D,k = Dk, and hg,k = hi o hg. Sometimes, we shall need
to work with surjective functions. Hence we let H be the function given by
S =Su, Dg ={q¢ : Du | 3¢ : Su,hu(q) = ¢'} and hgy = hy, where H is

a function. Hereafter, h : A “'B (h : A B) denotes a bijective (injective)
function from A to B.

A finite-state transition system can be coalgebraically described by employ-
ing two ingredients: A set (), that represents the state space, together with a
function K : Q — pg. (L X @) that represents the “behaviour” of the transition

system: K(q) is the set of pairs (£,q") such that ¢ 4 q.
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Definition 5.2 (Bundles) Let L be the set of labels (ranged over by £), then
a bundle 8 over L is a structure (D : Set, Step : pu(L x D)). We call the first
component of a bundle B the support of 3. Given a fized set of labels L, by
convention, BL denotes the collection of bundles and 3 : BY means that 3 is a
bundle over L.

Intuitively, the notion of bundle has to be understood as giving the data struc-
ture representing all the state transitions out of a given state. It details which
states are reachable by performing certain actions.

Once a set of labels L has been fixed, we can consider the polynomial end-
ofunctor A(X) = @g.(L x X) in Set. Functor A operates on both sets and
functions, and characterizes a whole category of labeled transition systems, i.e.
of coalgebras. The following clauses define 4.

e AQ)=1{8": BT | Dg = Q}, for each @ : Set;
e For each H : Fun, A(H) is defined as follows:
- SA(H) = A(SH) and DA(H) = .,él(_DH)7
— ha) (B - A(SH)) = (Du, {{{, hu(q)) | (£,q) : Steps}).

Definition 5.3 (Transition systems as coalgebras) Let L be a set of la-
bels. Then a labeled transition system over L is a coalgebra for functor A,
namely it is a function K such that Dg = A(Sk).

Note that the convention of functions allows us not to mention the carrier of a
coalgebra K it is implicitly given by Sgk.

Example 5.1 A coalgebra K for functor A represents a transition system where
Sk is the set of states, and hk (q) = B, with Dg = Sk. Let us consider a finite-
state automaton and its coalgebraic formulation via the mapping hy.

ot D = (509,008 0.0)
S&N~——' K = ks W\ » \0, » \Yy
NS NS hi(2) = (S {(a, 1), (b, 4)})
SN E.
c c hi (4 = S 5 C,5
5 hi(5) — S 0

Note how, for each state q € {0,...,5}, hx(q) yields all the immediate successor
states of q and the corresponding labels. In other words, (£,q") € Stepy, (q) i,

and only if, q N q.

We can rephrase the concepts of coalgebras homomorphism and finality for
transition systems:

Definition 5.4 (Homomorphism and finality of transition systems) Let
K and F be two transition systems. A function H is a homomorphism of tran-
sition system if

Sy = Sk, Dy = SF, H;F = K; A(H).
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Which can be represented by the following commuting diagram:

SKLSF

| |+

A(SK) m .A(SF)

A transition system F' is final if, for any other transition system K, there is a
unique homomorphism from K to F.

As usual, homomorphisms correspond to the idea of functions which commutes
with the coalgebraic operations while finality encompass the idea of minimality.
Indeed, final transition systems are those transition systems that are image of
all other transition systems in a certain class through functions which preserves
their “behaviour”. General results (e.g. [2]) ensure the existence of the final
coalgebra for a large class of functors. These results apply to formulation of
transition systems in Definition 5.3. In particular, it is interesting to see the
result of the iteration along the terminal sequence [39] of functor A.

Let K be a transition system, and/let\Ho, Hy,...,H;11,... be the sequence
of functions computed by H;+1 = K; A(H;), where Hy is the unique function
from Sk to the one-element set {x} given by Sm, = Sk; Dn, = {*}; and
hiy(q : Su,) = *. Finiteness of pg, ensures convergence of the iteration along
the terminal sequence. In [11], the following result is stated:

Theorem 5.1 Let K be a finite-state transition system. Then,

e The iteration along the terminal sequence converges in a finite number of
steps, i.e. Dy, , = Dp,,

e The isomorphism mapping F' : Dy, — Dp, ., yields the minimal realiza-
tion of transition system K.

6 A comparison

Comparing the coalgebraic construction with the standard algorithm [20, 9]
which constructs the minimal labeled transition system we can observe:

e at each iteration ¢ the elements of Dy, are the blocks of the minimization
algorithm (i.e. the i-th partition). Notice that the initial approximation
Dy, contains a single block: in fact Hy maps all the states of the transition
system into {*}.

e at each step the algorithm creates a new partition by identifying the split-
ters for states g and ¢'. This corresponds in our coalgebraic setting to the
fact that H,(q) = Hz(q’) but Hz—}-l(q) ;é Hi+1 (ql)
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Figure 3: Minimal labeled transition system

e the iteration proceeds until a stable partition of blocks is reached: then
the iteration along the terminal sequence converges.

We now apply the iteration along the terminal sequence to the coalgebraic
formulation of the transition system of Example 5.1. The initial approximation
is the function Hy defined as follows

Hy = <SH0 = Sk,Du, = {*}ahHo g *)
We now construct the first approximation H;. We have that

hi, = @+ (Do {6 bty (@) = g 5 4'})

In our example we obtain the function hy, and the destination state Dg, =
{B1, B2, B3} as detailed below.

i < (eae
e = elos ool 52 R
Hy = * £, 140G, * _ i
hu,(4) = Hh ey B o= ({*},0)
ha, (5) = ({*}, 0)

th(O) = (DHlv{(a7B1)7(b7ﬂ2)})
hu,(1) = (Dmy,{{a,B1),(b,B2)})
hH2(2) = (DHla{<a:ﬂ1>7(b,ﬁ2)})
hu,(3) = (Day,{{c, Bs)})
hu,(4) = (Day,{{c, Bs)})
h, (5) = (DH1,ﬁ3)

Since Dy, = Dp, the iterative construction converges, thus providing the
minimal labeled transition system illustrated in Figure 3, where ¢; = {0, 1,2},
o, = {3,4} and o3 = {5}.
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7 HD-automata for m-agents

Names appear explicitly in the states of an HD-automaton: the idea is that
the names associated to a state are those names which may play a role in the
state evolution. Let N be an infinite countable set of names ranged over by v
and let N* be the set N'U x, where * € N is a distinguished name and will be
used for modeling name creation. We also assume that < is a total order on
N* (for instance, it can be the lexicographic order on A" and Vv € N : x < v).
Given a state ¢ of a HD-automaton, a set {vi,...,vjq} C N of local names
and a permutation group G, are associated with g. Elements of G, are those
permutations of names of ¢ that leave unchanged the behaviour of q. Moreover,
the identity of names is local to the state: States which differ only for the order
of their names are identified. Due to the usage of local names, whenever a
transition is performed a name correspondence between the name of the source
state and the names of the target state is explicitly required.
Now we introduce the notion of named sets.

Definition 7.1 (Named set) A named set A is a structure

A=(Q:Set,| |1 Q —w, < p(@xQ),G: [ p({v1.v4q} = {v1.v0})
€Q

where ¥q : Q4, Ga(q) is a permutation group and <4 is a total ordering.

A named set represents a set of states equipped with a mechanism to give local
meaning to names occurring in each state. In particular, function | _ | yields the
number of local names of states. Moreover, the permutation group G 4(q) allows
one to describe directly the renamings that do not affect the behaviour of ¢, i.e.,
symmetries on the local names of ¢q. Finally, we assume that states are totally
ordered. By convention we write {g : Qa} to indicate the set {v1,...,v }
and we use NSet to denote the universe of named sets.

In Definition 7.1 and in the following, the general product [] is employed (as
usual in type theory) to type functions f such that the type of f(q) is dependent
on q.

Definition 7.2 (Named function) A named function H is a structure

H=(S:NSet,D : NSet,h: Qs — Qp,% : Qs — p({Ma)}p —> {q}s))
where Vq : Qs , Vo : Xu(q),
1. Gpy(hu(q));o =Zu(q) and

2. 0;Gs4(q) CXul(q).

As in the case of standard transition systems, functions are used to determine
the possible transitions of a given state. The idea is that for each state ¢ in
SH, hi(q) yields the behaviour of g, i.e. the transitions departing from ¢. Since
states are equipped with local names, a name correspondence (the mapping Hy,)
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is needed to describe how names in the destination state are mapped into names
of the source state, therefore we must equip H with a set Ly (q) of injective
functions. However, names of corresponding states (¢, hg(q)) in hy are defined
up to permutation groups and name correspondence must not be “sensible” to
the local meaning of names, therefore, the whole set ¥ 5 (¢) must be generated by
saturating any of its elements by the permutation group of hg(q), and the result
must be invariant with respect to the permutation group of ¢q. Condition (1)
in Definition 7.2 states that the group of hg(q) does not change the meaning
of names in hgy(g), while Condition (2) states that the group of ¢ does not
“generate meanings” for local names of ¢ that are outside hg(q)-

Named functions can be composed in the obvious way. Let H and K be
named functions. Then H; K is defined only if Dy = Sk, and

Sw.x = SH, Du,x = Dk, hax : Qsy — @by = hm;hk,
Yuk(q: Qsy) =Xk (hu(9));Xu(q)
Let H be a named function, H denotes the surjective component of H:

e Sg=Sgand Qp, ={¢ : Qpy | 3¢ : Qs -hu(q) =q'},

lalp_. = ldlp,>
Gp.(9) = Gp,(9),
hg(a) = ha(q),
E5(9) = Zu(q)

7.1 Bundles over w-calculus actions

We want to represent the transition system for the early semantics of m-calculus
reported in Section 2. The notion of bundle must be enriched. First we have
to fix the set of labels of transitions. Labels of transitions must distinguish
among the different meanings of names occurring in 7-calculus actions, namely
synchronization, bound/free output and bound/free input.

The set of w-calculus labels L, is the set {T' AU, BOUT,OUT,BIN,IN}.
We specify two different labels for input actions: Label BIN is used when the
input transition acquires a new name, namely a name that was not previously
known to the agent, while IN corresponds to an input transition that acquires
an already known name.

Since names are local to states, it is necessary to specify how label names
are related to names of states. For instance, no name is associated to synchro-
nization labels, whereas one name, is associated to bound output labels. Let
|-| be the weight map associating to each w-label the set of indexes of distinct
names the label refers to. The weight map is defined as follows:

|TAU| =0 |BOUT|=|BIN|={1} |OUT|=|IN|={1,2}
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Definition 7.3 (Bundles) A bundle § consists of the structure
B = (D : NSet,Step : p(qd D) )

where qd D is the set of quadruples of the form (£, m,0,q) given by

gdD = {{{:Ly,m:|{ ingy {v1..},0: H {¢}p nd Qlq:Qp)}.

{EL R

d
" g {xv,..} ifl€{BOUT,BIN}
@=1\ {u,.} ift¢{BOUT,BIN}

under the constraint that Gp,(q); Sq = Sq, where S; = {({{,7,0,q) € Stepg}
and p; (¢, m,0,q) = ({,m, p;0,q).

As above, the intuition is that the Step component of a bundle describes the set
of successor states for a given source state. More precisely, if (¢, 7,0,q) € qd D,
then ¢ is the destination state; £ is the label of the transition; 7 associates to
the label the names observed in the transition; and o states how names in the
destination state are related with the names in the source state. Notice that the
distinguished element * belongs to the names of the source state when a new
name is generated in the transition.

In order to exploit named functions for representing HD-automata it is nec-
essary to equip the set of bundles B with a named set structure. In other words
we must define a total order on bundles, a function that maps a bundle to its
number of names and a group of permutations over those names.

Definition 7.4 (Bundle names) Let 8 be a bundle. Function { -} : B — N,
mapping each bundle to the set of its names, is defined by

8= U rng(m) Urng(o) \ {x}

(¢,m,0,q)EStepg

where rng yields the range of functions. We only consider bundles 5 such that
{8} is finite and we let |B] to indicate the number of names which occur in

the bundle 8 (i.e. |B] = |{B[})-

The minimization algorithm necessitates of a mechanism for determining the
representative element of a given class of equivalent states. Intuitively, two
states are equivalent when they have the “same” bundles, hence, the choice of a
canonical state turns in the choice of a canonical bundle. We are interested in
class of bundles defined on a given set of labels and states. For those bundles
we can assume that a total order on states and labels exist. Hence, quadruples
are totally ordered, e.g. assuming the lexicographic order of labels, states and
names. The order over quadruples yields an ordering C over bundles. This
ordering relation will be used to define canonical representatives of bundles.
The ordering on quadruples can be defined non ambiguously only assuming an
ordering on bundles support.
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Finally, the group of a bundle can be defined once we define how a permuta-

tion is applied to a bundle. Given a bundle § and a permutation 8 : {5} big, {
B}, bundle ;6 is defined as Dg,g = Dg, stepg,p = {({,7;0,0;0,q) | ({,7,0,q) :
8}

The most important construction on bundles is the normalization operation.
This operation is necessary for two different reasons. The first reason is that
there are different equivalent ways for picking up the step components (i.e.
quadruples (¢, 7,0,q)) of a bundle.

The second, more important, reason for normalizing a bundle is for removing
from the step component of a bundle all the input transitions which are redun-
dant. Indeed, redundant transitions occur when an HD-automaton is built from
a m-calculus agent. During this phase, it is not possible to decide which free
input transitions are required, and which transitions are covered by the bound
input transition®. The solution to this problem consists of adding a superset
of the required free input transitions when the HD-automaton is built, and to
exploit a reduction function to remove the ones that are unnecessary. Consider
for instance the case of a state ¢ having only one name v; and assume that the
following two tuples appear in a bundle:

<IN,.Z'y,{U1 _)y}aq) and <BIN7'T7 {vl _)*}7q>

Then, the first tuple is redundant, if y is not an active in ¢ as it expresses exactly
the same behaviour of the second tuple, except that a “free” input transition
is used rather than a “bound” one. Hence, the transformation removes the
first tuple from the bundle. During the iterative execution of the minimization
algorithm, bundles are split: this means that the set of redundant components
of bundles decreases. Hence, when the iterative construction terminates, only
those free inputs that are really redundant have been removed from the bundles.

The normalization of a bundle 3 is done in different steps. First, the bundle
is reduced by removing all the possibly redundant input transitions. Reduction
function red(f) on bundles is defined as follows:

L4 Dred(ﬂ) = Dﬂa

o Stepreas) = Steps \ {{IN,zy,0,q) | (BIN,z,0",q) : Stepg Ao’ = o5 {y — x}}.
where o; {y — *} is the function equal to ¢ on any name different from y and
that assigns * to y. Once the redundant input transitions have been removed,
it is possible to associate to bundle 3 the set of its “active names” ang = {
red(8) [}. These are the names that appear either in a destination state or in
a label of a non-redundant transition of the bundle. Finally, the normalization
function norm(8) is defined as follows:

e Dno’rm(ﬂ) = DB

A Stepnorm(ﬂ) = m'mg (Stepﬁ \ {(IN7 zy,o, q) | Y ¢ anﬂ}):
where minc is the function that, when applied to Stepg, returns the step of the
minimal bundle (with respect to order C) among those obtained by permuting

4In the general case, to decide whether a free input transition is required it is as difficult
as to decide the bisimilarity of two 7-calculus agents.
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names of 3 in all possible ways. More precisely, given a bundle 3, mingﬁ is the

minimal bundle in {5;0 | 6 : {B[ 2% {|B[}}, with respect to the total ordering
C of bundles over D. The order relation C is used to define the canonical
representatives of bundles and relies on the order of quadruples. For this reason
we introduced an ordering relation on named sets in the first place. In the
following, we use perm() to denote the canonical permutation that associates
Stepnorm(s) and Steps \ {{IN,zy,0,q) | y & ang}.

We remark that, while all IN transitions covered by BIN transitions are
removed in the definition of red(3), only those corresponding to the reception
of non-active names are removed in the definition of norm(3). In fact, even if
an input transition is redundant, it might be the case that it corresponds to the
reception of a name that is active due to some other transitions.

Finally, we need a construction which extracts in a canonical way a group
of permutations out of a bundle. Let 8 be a bundle, define Gr 3 to be the set
{p | Stepg; p* = Stepg}. Where, given a function f, f* is its x-extension and is
defined as: "

« * it x =%

otherwise

Proposition 7.1 Gr 8 is a group of permutations.

7.2 The minimization algorithm

We are now ready to introduce the functor 7 that defines the coalgebras for
HD-automata. The action of functor 7 over named sets is given by:

® Q1) ={B: Bundle | Dg = A,  normalized},

hd |ﬁ|T(A) = 8],

* Gr(a)(B) =Gr B,

e 51 <7(a) B2 iff Stepg, C Stepg,,
while the action of functor 7 over named functions is given by:

* Sty =T(Su), Drmy = T(Du),

* hran(B: Qr(sm) t @T(py) = norm(B'),

o Sran(B : Qresay) = Gr(norm(8); (perm(8) Y jinj : { norm(8) |} —

{/B}T(SH) where ﬁ’ = (DH’ {<£’ Us OJ; a, hH(q» | (é, ™0, q) : Stepg, o' EH(‘I)})

Notice that functor 7 maps every named set A into the named set 7 (A)
of its normalized bundles. Also a named function H is mapped into a named
function 7 (H) in such a way that every corresponding pair (¢, hg(q)) in hy
is mapped into a set of corresponding pairs (3,norm(3')) of bundles in hy(gy.
The quadruples of bundle ' are obtained from those of 3 by replacing ¢ with
hm(q) and by saturating with respect to the set of name mappings in ¥ g(q).
The name mappings in Y7(;) are obtained by transforming the permutation
group of bundle norm(3’) with the inverse of the canonical permutation of S’

and with a fixed injective function inj mapping the set of names of norm(3")
into the set of names of 8, defined as i < j, inj(v;) = vy and inj(v;) = vy
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implies i’ < j'. Without bundle normalization, the choice of 8’ among those
in A';0 would have been arbitrary and not canonical with the consequence of
mapping together fewer bundles than needed.

Definition 7.5 (Transition systems for m-agents) A transition system over
named sets and m-actions is a named function K such that Dx = T (Sk).

HD-automata are particular transition systems over named sets. Formally, an
HD-automaton A is given by:

e the elements of the state Q 4 are m-agents p(v1, ..., v,) ordered lexicograph-
ically: p1 <a p2 iff p1 <iez p2

L4 |p(’l)1, "'7UH)|A =n,
o Gag={id:{q}a — {q}a}, where id denotes the identity function,

o h:Qa — {B | Dsg = A} is such that ({,7,0,q') € Step,(,) represent the
m-calculus transitions from agent g.

We remark that bundle Stepy,(,) should not contain all the transitions from g,
but only a representative subset. For instance, it is not necessary to consider a
free input transition where the received name is not active provided that there is
a bound input transition which differs from it only for the bound name. Finally,
by using renaming o in the element of the bundles, it is possible to identify all
those m-agents that differ only for an injective renaming. In the following, we
represent as q bmg q' the “representative” transitions from agent ¢ that are used
in the construction of the HD-automaton.
We can now define the function K.

L] SK = A,
® hi(q) = norm(h(q)),
* Tr(q) = Gr(hk(q)); (perm(h(q)))~ 5ing : {{h(@) [} — {q}a

We now construct the minimal HD-automata by an iterative procedure. We
first need to define the initial approximation. Given a HD-automata K, the
initial approximation Hj is defined as follows:

o Sy, = Sk, Dg, = unit where Qunit = {*}, |[*| = 0 (and hence

{*} = ¢)7 Gunit * = ¢7 and * Sunit *,
* hp,(q: QSHO) =%
* Yp,q= {¢}

The formula which details the iterative construction is given by

unit

——

Hip1 = KT (H;).
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Theorem 7.1 Let K be a finite state HD-automaton. Then

o The iteration along the terminal sequence converges in a finite number of
steps: m exists such that Dy, ,, = Dy,

e The isomorphism mapping F' : Dy, — Dp,,, yields the minimal realiza-
tion of the transition system K up to strong early bisimilarity.

The following functional expression (in a extended A-calculus) makes the itera-
tion step of the normalization algorithm explicit.
Lo

hiyyy = (Agnorm (A, {{{,m,0,4) | ¢ == ¢'}));
AB.norm (D, {(£,m,0";0,hu; (q)) | (€, 7,0,q9) : Stepg, 0’ : T (q)})

Lm0

ha; 1, (q) = norm (Du;, {{¢,7,0";0,hn,(q)) | ¢ == ¢, 0" : Zu, (d)})-

Notice that the normalization on the transition system is absorbed by the nor-
malization on the resulting bundle.

Part 11
Mihda: A Verification
Environment

This part presents Mihda, a verification environment centered around the min-
imization algorithm presented in Section 7. Mihda is written in ocaml [7] and
the most relevant implementation choices are discussed also with respect to the
ocaml features. We discuss the architectural aspects of the environment in Sec-
tion 8, while the principal data structures are detailed in Section 9. Section 10.1
contains the main result of the part which is the correctness of the implemen-
tation of the minimization algorithm described in 7. In all these sections the
emphasis is on tight connection between the formal co-algebraic specification
of the framework and the ocaml implementation which nicely represents the
interplay between theory and practice. Indeed, Mihda can be seen as the ex-
perimental validation of the theoretical framework proposed in [28, 11], ocaml
features interestingly permit to prove correctness with respect to the theoret-
ical framework and the experimental environment also suggests new issues for
theoretical investigation.

Mihda can be downloaded from http://jordie.di.unipi.it:8080/mihda,
where also an interactive interface (detailed in [10]) is available.

8 Architectural Aspects of Mihda

The main features of ocaml exploited in our realization are polymorphism and
encapsulation. Polymorphism is one of the intrinsic peculiarity of ML-language
family, while encapsulation may be obtained in ocaml in two different ways; the
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Figure 4: Mihda Architecture

first way is by using the object oriented features of the language, the second
way is provided by modular programming features. More precisely, the module
system separates the definition of interface specification, called signatures (i.e.
definition of abstract data types) from their realizations, called structures. A
structure may be parameterized using functors. An ocaml functor constructs
new modules by mapping modules of a given signature on structures of other
signatures.

Observation 8.1 Object oriented programming simply adds to polymorphism
and encapsulation (features already present in functional programming) hierar-
chical relations among abstract data types. However, in our case, those relations
does not play any role and, therefore, have not been exploited.

Language ocaml has been chosen also for other reasons. As detailed in Section 7,
the algorithm has been specified in a “type-theoretic” style and the underlying
type system makes use of parametric polymorphism. The type system of ocaml
offers all the necessary features for handling those kind of type. As a further
benefit, Mihda remains tightly close to its specification as we will prove later.

Figure 8 reports (part of) the modules of Mihda and represents the relation-
ships and dependencies among those modules. Nodes of the graph represent
both Mihda modules and their principal types, e.g. State is the module for
states and contains a declaration State_t of its main type that declares the type
of the states of the automata. Two modules in Figure 8 are connected when
the upper module declares a type to be the same as the lower module. For in-
stance, the arc connecting Bundle and Transitions states that in module Bundle
is declared a type that must be State_t declare in State.
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Mihda allows the user to specify automata type and, after having imple-
mented some functionalities on such data structures, a general minimization
algorithm is applied and the minimal realization of the automaton is returned.
This choice gives the opportunity of applying the same algorithm to different
kind of automata that can be defined, provided that they are specified in a
manner that respects the constraints imposed by functors. Those constraints
expresses equalities that types must satisfy as said before. Notice that this
mechanism also aids in implementing different semantic minimization. Let us
consider a scenario where, modules of Mihda have been specified for a given class
of automata. Later, we decide that the equivalence relation that must be con-
sidered should be changed. Conceptually, the algorithm and type declarations
for states and automataremain unchanged. Indeed, it would be reasonable to
modify only the module Domination (and perhaps Transitions®) that is the Mihda
module where the (type of) semantic relation is declared. Mihda architecture
allows programmer in the scenario depicted above to write new code only for
the module Domination.

An easy exercise that we have done is exploit the architecture of Mihda to
adapt minimization of HD-automata to minimization of ordinary automata (we
refer the interested reader to the web page of the Mihda project for detailed
comments).

9 Main data structures

We discuss here the main data structures used in Mihda together with their most
important properties. Moreover, their relations with the “theoretical” objects
they implement is pointed out.

In the following sections we will use typewriter symbols to denote names for
ocaml functions and variables. A list 1 is written as [e;;...; e] while 1; denotes
its i-th element (i.e. e;). Finally, we write e € 1 to indicate that e is an item of
list 1.

As a general remark, we point out that finite sets will be generally repre-
sented as lists. We say that a list x corresponds to a finite set X if, and only if,
for each element e in X there exists e € x such that e corresponds to e. Later,
we will define various correspondence relations over elements which depend on
the type they live in. Note that, for each element e € X, many instances of e
can occur in x. However, we will often apply the function Utils.unique which
removes multiple occurrences of items in a list.

In the following we will exploit two auxiliary functions that are reported
here. We also state and prove some properties that will be used in the proof of
the correctness of Mihda.

list rem el list returns the list obtained from list by removing all the
occurrences of items equal to el. Its definition is

5Tn general, transition types depend on the semantic relation because the new relation
might require information that must be added on the labels.
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let rec list_rem el = function
[0 -1
| eres =
if (compare e el) == 0
then list_rem el es
else e :: (1ist_remel es)

Each element occurring in the list is not removed if different from el. Indeed,
the following lemma, holds:

Lemma 9.1 Va.Vb.Vls #bAa € 1s = a € (Utils.list.remb 1s)

Proof. We proceed by induction on the length of 1s. If 1s = [] then the
implication trivially holds because the antecedent is false. If 1s = e :: es then,
by definition,

if (compare e b) == 0
then list_rem b es
else e ;1 (list_remb es)

If e = b, then the result of the function is 1ist_rem b es and also a € es because
a # b and a € 1s. Therefore, by applying the inductive hypothesis, we have
the thesis. In e # b, then the result of list rem b 1s is e :: (list_rem b es)
then the thesis holds because, either a = e or else a € es and, by inductive
hypothesis a € (1ist_rem b es) which gives the proof. O

list diff 1 m returns the list obtained by subtracting m from 1 and is defined
as

let rec 1list_diff 1 = function
|7 =1
| ees — list diff (list.reme 1) es

Function 1list_diff enjoys the following property:
Lemma 9.2 Let 1 and m be two lists. Then Vel € mel ¢ (1ist diff 1 m).

Proof. We reason by induction on the length of m. If m = [] then the proposition

trivially holds. Let m be e::es, then the result of the function is 1ist diff (list reme 1) es.
If el = e then, by Lemma 9.1, el ¢ (list rem el 1) and the thesis follows by

the fact that the recursive call never adds anything to the result (avoiding the

possibility of re-introducing el). On the other hand, if el # e then el € es,

and the inductive hypothesis concludes the proof. O

9.1 HD-automata states, labels and transitions

A generic automaton (see Definition 5.1) is made of four ingredients: States,
initial state, labels and arrows. As far as finite state automata are concerned,
it is possible to represent automata by enumerating states and transitions.
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Observation 9.1 We assume that 1,..,n are the names of a state having n
names. This assumption does not imply any loss of generality because names
are local to states. We reserve 0 for denoting name x, the symbol used for
denoting name creation in transitions (see page 23). A symmetry over n names
may be simply expressed by means of a list of distinct integers, each belonging
to segment 1,...,n; for instance if p is the permutation

1 ... n

11 e i
then the list [i1;...;in) is a representation in terms of list of integers of p. For
instance, [2;1; 3] represents a permutation of 3 elements: Namely, the permuta-

tion that exchanges 1 and 2, and leaves 3 unchanged.
In this case we say that [i1;...; 4] corresponds to p.

We adopt this conventions on names and permutations also for representing
other functions on names. In particular, if ¢gd = (¢, 7,0, q) is a quadruple, 7 is
represented by means of a list of integers pi whose length is | £ | and whose i-th
position contains 7 (i) (for ¢ = 1,...,| £ |). Finally, o is a list of integers sigma
whose length is m, the number of names of ¢ and whose i-th element is o (i) (for
i=1,...,m). We say that pi (sigma) corresponds to = (o).

As discussed in Section 1, HD-automata are an extension of ordinary au-
tomata in the sense that states and labels have a richer structure carrying in-
formation on names. A state may be described as a triple

type State_t =
| State of id: string #* names: int list * group: (int list) list

Where id is the name of the state; names are the local names of the state
and are represented as a list of integers. The third component of a state is its
group which contains those permutations that leave the state unchanged. By
the previous observation, we can represent it as a list of list of integers.

Definition 9.1 (States correspondence) An element State(q, names, group)
corresponds to a state ¢ of a named set A ={Q,|_|,<,G) if, and only if,

*qeQ
e | ¢|=List.length names

e group corresponds to Group in terms of correspondence between lists and
sets (i.e. reciprocal element-wise correspondence, as described in Sec-
tion 9).

We remark that, since, we concretely represents names as integers we exploit
the integer order to induce an order to states; therefore, we do not explicitly
mention it in Definition 9.1. Notice also that the first component of bundles is
not represented. This is possible because a main design choice is that we always
deals with bundles that are obtained by applying the iterative construction
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H;, 1 = K;T (H;). Therefore, the first component of these bundles always is Sk,
the set of states of the initial automaton.

Arrows are represented as triples with a source state, a label and a destina-
tion state.

type labeltype = string * int list * int list

type Arrow_t = Arrow of
source: State_t % label: labeltype * destination: State_t

Type of arrows relies on type for labels which are triples whose first components

are the name of the action (for m-agents, a string among T AU, BOUT,OUT,BIN,IN);
the second component of a label is the list of names exposed in the transition;
finally, the last component of a label is a function mapping names in the des-
tination to names of the source state. An simpler alternative definition could

have been obtained by embedding the labeltype in Arrow. Although more
adherent to Definition 7.3, this solution is less general than the one adopted,
because different transition systems have different labels.

Now we can give the structure which represents automata:

type Automaton_t =
start: State_t x*
states: State_t list =
arrows: Arrow_t list

The first component is the initial state of the transition system, then the list of
states and arrows are given.

Bundles rely on quadruples over named sets (see Definition 7.3). Basically,
a quadruple describes state transitions. Transitions are labeled and, our imple-
mentation represents part of information carried by quadruples into labels:

type quadtype = Qd of Arrow.labeltype * State_t

type Bundle_t = quadtype list

Type quadtype and Observation 9.1 allows us to state a precise connection
between quadruples and objects that populate quadtype.

Definition 9.2 (Quadruple correspondence) Given a quadruple qd = (¢, 7, 0,q),
we say that Qd((lab, pi, sigma), q) corresponds to qd, if, and only if,

e lab is a string with value £,
e pi corresponds to m,
e sigma corresponds to o,

e q corresponds to q.
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Definition 9.3 (Automata correspondence) Let K = (Q,7(Q),k: Q = T(Q))
be a named function representing an automaton for a m-agent. We say that
(q,9s,as) corresponds to K iff, qs corresponds to @ and, for each qd € k(q)

there exists a € as such that, ifa = (s, (1ab,pi,sigma),t), then Qd((1ab,pi,signma),t)
corresponds to qd.

Previous definition allows us to easily compute k(q) for each state ¢. Indeed,
let us consider the function Automaton.bundle defined as

let bundle hda q =
Bundle.from_arrow_list (List.filter
(fun x — 0 = State.compare (Arrow.source x) s) (arrows hda))

Proposition 9.1 If hda and s are an HD-automata and o state which respec-
tively correspond to k and s, then bundle hda s corresponds to k(s).

Proof. All arrows in hda are first filtered in order to select those of them whose
source state is s, then function Bundle.from arrow_list transforms each of
them in the quadruple obtained by discharging the source from the arrow. O

Our representation of bundles, symmetries and function of names allows a
simple representation of operation on bundles in terms of list manipulation. For
instance, let us consider the function

{8 = U rng(m) Urng(o) \ {x}

(¢,m,0,q)EStepg

which yield the names of a bundle 8 and is implemented by function bundle names,
reported below.

let names = function Qd((lab,pi,sigma),target) — (pi @ sigma)

let bundle_names bundle =
Utils.unique (Utils.list_rem 0 (List.flatten (List.map names bundle)))

Function bundle_names applies names to each quadruple in the list bundle cor-
responding to § (List.map names bundle). This returns a list whose items are
the names appearing in the quadruples of bundle that are obtained by merging
the lists pi and sigma. Finally, all those lists of names are merged together
(List.flatten), if present, 0 is removed (Utils.list.rem) and multiple oc-
currences are collapsed into a single occurrence (Utils.unique). It is easy to
see that the following proposition hold:

Proposition 9.2 If bundle corresponds to a bundle 3 then a € { 3} if, and
only if, a occurs in bundle names bundle.

Proof. By definition, a € {| 8|} if, and only if, there exists a quadruple gd =
(¢,pi,0,q) in Stepg such that a € rng(m)Urng(o)\*. Let Qd((1ab, pi, sigma), q)
be a quadruple in bundle which corresponds to #. Then, by definition pi =
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[7(1);...;m(] £])] and sigma = [6(1);...;0(m)], where m = card(rng(c)) then
a € pi@sigma. By observing that pi@sigma € (List.map names bundle).
Then, since the flattening operation on lists corresponds to set union, we have
that

a € Utils.unique (Utils.list rem0 (List.flatten (List.map names bundle))).

Finally, by hypothesis, a # * and, therefore, by Lemma 9.1. O

As stated in Section 7.1, normalization is the most important operation on
bundles. It needs red function to be computed. Function red is implemented
as follows:

let red bundle =
let dominated =
List.filter
(fun qd — None <> (Domination.dominated qd bundle))
bundle in
list_diff bundle dominated

Proposition 9.3 If bundle corresponds to a bundle B then red bundle corre-
sponds to red(B).

Proof. First, let us observe that dominated is the list of quadruples which
corresponds to the set of input quadruples that are redundant. Indeed, bundle
is filtered according to the function Domination.dominated, that returns None
only if qd is not redundant. Finally, by Lemma 9.2, Utils.list diff removes
from those transitions from bundle. O

let normalize red bundle =
let w_bundle = red bundle in
let an = bundle_names w_bundle in
rename (list_diff bundle (List.filter (remove_in an) bundle))

Proposition 9.4 Ifbundle corresponds to a bundle § then normalize red bundle
corresponds to norm(f).

Proof. First, active names an are computed in order to filter bundle ob-
taining all redundant transition covered by some bound input transition. By
Proposition 9.2 and Lemma 9.1 we can conclude that an corresponds to { 3 [}.
Lemma 9.2 and the fact that list filtering corresponds to test of set member-
ship, ensure that from bundle all redundant transitions are removed. Indeed,
remove_in is defined as

let remove_in an =
function Qd((Iab,pi,sigma),target) as qd —
(Iab = ”in”) && (not (List.mem (obj qd) an))
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which computes exactly the redundancy condition. The last function applied to
the so computed bundle is rename which shifts the local active names of a state
with their position in the list of active names. Note that this is a safe operation
because only the active names of a state are important and their meaning is local
to the state, moreover, such renaming amount to compute the permutation of
names that returns the normalized bundle as defined in Section 7.1. O

9.2 Block

The most important data structures are blocks. They represents action of the
functor on states of the automata and contains all those information for comput-
ing the iteration steps of the algorithm expressed in a set theoretic framework.
They represent both (finite) named functions and partitions of an automaton (at
each iteration of the algorithm). Hence, at the last iteration a block corresponds
to a state of the minimal automaton. A block has the following structure:

type Block_t =
Block of
id : string  *
states : State_t list *
norm : Bundlet *
names : int list *
group : int list list *
b)) : (State_t — (int * int) list list) =*
©~! : (State_t — (int * int) list)

Field id is the name of the block and is used to identify the block in order
to construct the minimal automaton at the end of the algorithm. Field states
contains the states which are considered equivalent with respect the equivalence
relation used in the algorithm®: In this case the early bisimulation relation.
Remaining fields respectively represent

e the normalized bundle with respect to the block considered as state (norm),
e names is the list of names of the bundle in norm,
e group is its group,

e the functions relative to the bundle (¥), last field, ©1, is the function
that, given a state g, maps the names appearing in norm into the name
of q. Basically, ®~1(q) is the function which establishes a correspondence
between the bundle of ¢ and the bundle of the corresponding representative
element in the equivalence class of the minimal automaton.

We draw (some components of) a block as in Figure 5: The upper elements
are the states in the block, while the element x is the “representative state”,
namely it is a graphical representation of the block as a state. For each state g

8We recall that Mihda is parametrized with respect to the equivalence relation.
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X

Figure 5: Graphical representation of a block

e p— e — e,

Figure 6: Graphical representation of an iteration step

a function 64 maps names of x into the names of q. Function 8, describes “how”
the block approximates the state q at a given iteration. The circled arrow on x
aims at recording that a block also has symmetries on its names. Bundle norm
of block x is computed by exploiting the ordering relations over names, labels
and states.

A graphical representation of an iteration step of Mihda is given in Figure 6.
The idea is that each block in the list of current blocks is first splitted, as far
as possible, into a number of buckets, i.e. quasi-blocks defined later. Then
each bucket is transformed in a new block, namely, the lacking components are
uniformly computed at the end of the splitting phase.

The main operation on a block is the operation which splits a block into
buckets. A list of blocks is returned as result of each iteration. Such blocks
represent the states of the current approximation of the minimal automaton.
A bucket has the same fields of a block apart from the name, the group of
symmetries and the functions mapping names of destination states in name of
source states. Essentially, the split operation checks if two states in a block are
equivalent or not. States which are no longer equivalent to the representative
element of the block are removed and inserted into a bucket.
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Given a bundle bl, a predicate over states pred and a block block, function
Block.split returns a bucket and a block. The bucket collects the states
of block which violate pred, while the returned block contains the remaining
states.

let Block.split bl pred block =
let eqv_chk = List.map (fun q — q, (pred q)) (states block) in
let (eq_states, non_eq_states) =
List.partition (fun (q,th) — th != None) eqv_chk in
let new_states = (fst (List.split eq-states)) in
let old_states = (fst (List.split non_eq_states)) in
let new_inv_thetas = fun q —
try
invert ((function Some x—x) (List.assoc q eqv_chk))
with Not_found — failwith "new_inv_thetas: exception” in
(Bucket(new_states, bl, (Bundle.active_names bl), new_inv_thetas),
(create
(id block)
old_states
(norm block)
(names block)
(group block)
(sigmas block)
(inv_thetas block)))

It is worth to detail much more on the parameter pred. It is a function that,
given a state q, returns an optional value that, roughly speaking, yields “the
proof” for equivalence of q with respect to the other states of the bucket. More
precisely, pred returns None if the equivalence does not hold, otherwise, a func-
tion § mapping names of q into names of bl such that each arrow in the bundle
of q appears in bl (and viceversa). Function 6 is the function ©® 1 associates
to q when the bucket is turned into a block.

Note that, the new block has the same component of the old one because at
the end of the splitting phase, all the states of the initial block will be assigned
to a bucket without considering the information contained in those fields.

Definition below states the correspondence between a list of blocks and a
coalgebra.

Definition 9.4 (Block correspondence) Let K = (Q,T(Q),h:Q — T(Q))
be a transition system over named sets and mw-actions. A list of blocks blocks
corresponds to K when given q,q' € Q and their ocaml representation q and q’,
then h(q) = h(q') if, and only if

o there exists bl € blocks such that q and q’ are in bl
and

e bl.norm corresponds to Steph(q)
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10 The main cycle

Let us recall the iterative step introduced at the end of Section 7.2:

hHi+1 (q) = norm <DH1 J {(ﬁa T UI? g, hHi (ql» | q m qla o' EHi (ql)}> (3)

For each state g of the automaton, hg,,,(¢q) determines the normalized bundle
associated with to ¢. Following equation (3), we can compute hg,,, over a finite

it1
state automaton in the following steps:
a. determine the bundle of ¢ in the automaton;

b. for each quadruple (¢, 7,0,q') in this bundle, apply hg, to ¢', the target
state of the quadruple (yielding the bundle associated in the previous step
to ¢');

c. left-compose this ¢’ € X(¢') with o;

d. normalize the resulting bundle.

This intuitive idea must be refined because Mihda represents hg, as a list of
blocks. In this representation, hg,(¢) corresponds to field norm, namely the
bundle of the block containing q, the state corresponding to ¢. A graphical
representation of those steps in terms of blocks is depicted in Figure 7.

Step (a) is computed by the facility Automaton.bundle that filters all arrows
of the automaton whose source corresponds to ¢g. Figure 7(a) shows that a state
q is taken from a block and its bundle is computed.

Step (b) is obtained by applying Block.next to the bundle of q. Block.next
substitutes all target states of the quadruples with the corresponding current
block and computes the new mappings as described in Figure 7(b).

Step (c) seems not correctly adhere to the corresponding step of equation 3, but
if we consider that € functions are computed at each step by composing o’s we
can see that they exactly play the role of o’s.

Finally, step (d) is represented in Figure 7(d) and is obtained via the function
Bundle.normalize. Observe that redundant transitions must be removed and
other components of the new block must be computed as defined by 1.

In order to give an intuitive understanding of the split operation, we describe
how states are separated. Let us assume an automaton and an equivalence
relations over states (e.g. early bisimilarity) have been fixed. Let pred be a
function such that, given a bundle bundle and a state q, returns None if the
normalized bundle of q in the automaton is not equivalent to bundle according
to the equivalence relation between states pred. Then we can divide the states
of a given block with respect to bundle and pred into two different lists of
states. More precisely, this operation relies on the Block.split function and
returns a pair whose first component is a bucket and whose second component
is a block. The bucket contains those states whose normalized bundle is not
equivalent to bundle, while the block component contains the remaining states.
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The main part of Mihda consists of the cycle that computes the partitions
of each iteration. Each block is splitted by iterating the application of function
split.

let split blocks block =
try
let minimal =
(Bundle.minimize red
(Block.next
(h-n blocks)
(state_of blocks)
(Automaton.bundle aut (List.hd (Block.states block))))) in
Some (Block.split
minimal
(fun q —
let normal =
(Bundle.normalize
red
(Block.next (h_n blocks)
(state_of blocks)
(Automaton.bundle aut q))) in
Bisimulation. bisimilar minimal normal)
block)
with Failure e — None

Let block be a block in the list blocks, function split computes minimal
by minimizing the reduced bundle of the first state of block, and returns the
optional value Some(bk, block’) if Block.split applied to minimal, to the
bisimilarity relation and to block returns (bk,block’); otherwise None is re-
turned.

Observation 10.1 The choice of the state for computing minimal is not im-
portant: Without loss of generality, in fact, given two equivalent states q and
q’, it is possible to map names of q into names of q° preserving their associated
normalized bundle if, and only if, a similar map from names of q’ into names
of q exists.

Moreover, we also point out that, minimization of a bundle with n names
corresponds to nmormalize the bundle and replace each name with a name in
1,...,n preserving the convention that names of a state are an initial segment of
natural numbers.

Once minimal has been computed, split invokes Block.split with parame-
ters minimal, block; the second argument of Block.split is a function that
computes the (current) normalized bundle of each state in block and checks
whether or not it is bisimilar to minimal.

This computation is performed by function Bisimulation.bisimilar. If
bisimilarity holds through 6, then Some 6, is returned, otherwise None is re-
turned.

We are now ready to comment on the main cycle of Mihda.

42



let blocks = ref [ (Block.from_states states) | in
let stop = ref false in

while not ( Istop ) do
begin
let oldblocks = !blocks in
let buckets = split_iter (split oldblocks) oldblocks in
begin
blocks := (List.map (Block.close_block (h_n oldblocks)) buckets);
stop :=
(List.length !blocks) = (List.length oldblocks) &&
(List.for_all2
(fun x y — (Block.compare x y) == 0)

Iblocks
oldblocks)
end
end
done ;
Iblocks

Let k = (start, states, arrows) be a HD-automaton which corresponds to the
coalgebra K. Initially, blocks is the list whose only item is a block containing
all the states of k.

Observation 10.2 By definition, initially, k corresponds to Hy, indeed, func-
tion Blocks.from states puts all the states in the same block and assign the
empty list to the field norm of such block.

At each iteration, the list of blocks is splitted, as much as, possible by split_iter
that returns the list of buckets. Then, by means of Block.close block, all
buckets are turned into blocks which are assigned to blocks. Finally, the ter-
mination condition stop is evaluated. Note that Theorem 7.1 states that D; 1
must be isomorphic to D;. This condition is equivalent to say that a bijection
can be established between oldblocks (that corresponds to D;) and blocks
(corresponding to D;11). Moreover, since order of states, names and bundles
is always maintained along iterations, both lists of blocks are ordered. Hence,
the condition reduces to test whether blocks and oldblocks have the same
length and that blocks at corresponding positions are equal. More formally, the
following theorem holds:

Theorem 10.1 For each iteration i, at the end of the main cycle of Mihda,
blocks corresponds to hy;,.

Proof. The proof is given by induction on the iteration step. The base of
induction is trivial.

Let assume that, at the end of the i-th iteration, the theorem holds and,
by contradiction, that, at the end of the (i + 1)-th iteration blocks does not
correspond to hg;,,. Then, by Definition 9.4, there are two states q and ¢’ such
that either
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1. g and q’ lies in different blocks
or else

2. both q and q’ are in the same block bl but bl.norm does not corresponds
to Stethi (@)

Let us first consider Case (1). By hypothesis, hgk, ,(¢) = hk,,,(¢') then
hk,(q) = hk,(q') because it is not possible that states distinguished in a given
iteration later become bisimilar. By inductive hypothesis, blocks at i-th it-
eration corresponds to hg,, hence q and q’ are in the same block at the i-th
iteration. States q and q’ can be separated at the (i + 1)-th iteration, if, by
construction, split assigns them to different buckets. This can happen only if
there exists a state whose minimized bundle computed in minimal can be put
in correspondence by Bisimulation.bisimilar with the normalized bundle of
q but not with the normalized bundle of q’. Since minimize simply renames
bundles preserving the order of names, then, at the (i + 1)-th iteration, the
normalized bundle of q corresponds to hg,.,(¢) = hk,,,(q') but the normalized
bundle of q’ does not correspond to hg;,,, (¢'). This contradicts Proposition 9.4
that ensures that normalize correctly implements function norm.
Following the final part of the proof of Case (1), we can simply observe that
Case (2) is not possible by construction. Indeed, the field Block.norm is built
out from the normalized bundle of its states that, by Proposition 9.4, it must
correspond to normalized bundles of the corresponding states of the automaton.
O

Theorems 10.1 and 7.1 also ensure that the termination condition is correctly
computed because, by Theorem 7.1, a fix-point is reached and, at the terminal
iteration blocks corresponds to the fix-point (Theorem 10.1). The successive
iterations will not change any block therefore, the length of blocks and each
block in it will not change. As stated above, blocks and its elements are
maintained ordered along each iteration and therefore, checking whether blocks
change or not can be executed, as expressed by the assignment to stop in the
main cycle, checking if blocks; equals oldblocks; for any block blocks; €
blocks.

11 Concluding Remarks

The choice of implementing Mihda in ocaml has been driven by the functional
and type-theoretic flavour of the co-algebraic specification. Both features fit well
with ocaml programming characteristics. At a first glance, one can think that
performance is undertaken: Surprisingly our benchmarks suggest that Mihda is
not inefficient. For instance, we have considered the specification of the core of
the handover protocol for the GSM Public Land Mobile Network proposed by
the European Telecommunication Standards Institute [29]. The HD-automaton
obtained by the m-calculus specification has 506 states and 745 transitions. The
minimization of the handover protocol takes almost 9 seconds on an Athlon
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1800+ under Linux RedHat 7.2, while 21 seconds are necessary on a Pentium
IIT 500Mhz under Linux RedHat 7.1. The resulting HD-automaton consists of
105 states and 197 transitions.

The phase where Mihda spends the most part of computation time is the
calculation of symmetries of names. For the time being Mihda trivially computes
symmetries by generating the permutations and checking whether or not they
change the behaviour of blocks. In this way the computational cost is factorial in
the number of names. This implementation choice was suggested by the goal of
producing a prototype of Mihda rapidly. However, the number of names remains
very low in real cases. For instance, the specification of the GSM protocol
initially consists of m-agents with 11 names. Instead, the average number of
names per state in the compiled HD-automaton is 2.4: only two states have five
names and more that three hundred states have only two names. We plan to
enhance the efficiency of symmetries computation. Indeed, by considering that
symmetries on new names added to a block does not affect already computed
symmetries, we can compute new symmetries and “multiply” them with the old
ones.
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