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Abstract. In this paper a semantic-based environment for checking
properties of w-calculus agents is presented. The verification environment
exploits a novel foundational model which allows to associate ordinary
finite state automata to a wide class of w-calculus agents, and is built on
top of an efficient model checker that checks the satisfiability of formulae
of a modal logic on finite state automata.

1 Introduction

Mobility is becoming increasingly important in the design and development of
current and future wide area network (WAN) applications. This programming
paradigm has been exploited in the design of several applications ranging from
distributed information retrieval, to wireless-based services and had-hoc net-
working. We refer to [15, 34] for a detailed analysis and discussion of these issues.

Since WAN applications are inherently open and distributed, and exhibit
crucial requirements like security and reliability, effective methods to support
property certification are clearly required. With property certification we mean
the ability of formally expressing and verifying properties (e.g. security levels
of applications, trust in migrating components, safe and authorized resource
accesses, and so on).

Automatic methods for verifying finite state concurrent systems have been
showed to be surprisingly effective [4]. Indeed, finite state verification techniques
have enjoyed substantial and growing use over the last years. For instance sev-
eral communication protocols and hardware designs of considerable complexity
have been formalized and proved correct by exploiting finite state verification
techniques.

The advent of world-wide networks and wireless communications are con-
tributing to a growing interest in dynamic and reconfigurable systems. Unfor-
tunately, finite state verification of these kinds of systems is much more diffi-
cult. Indeed, in this case, even simple systems can generate infinite state spaces.
An illustrative example is provided by the m-calculus [24]. The 7w-calculus is a
paradigmatic example of a name passing process calculus. Its primitives are sim-
ple but expressive: channel names can be created, communicated (thus giving
the possibility of dynamically reconfiguring process acquaintances) and they are



subjected to sophisticated scoping rules. The w-calculus has greater expressive
power than ordinary process calculi, but the possibility of dynamically generat-
ing new names leads also to a much more complicated theory. In particular, the
usual operational models are infinite-state and infinite branching, thus making
verification via semantic equivalence a difficult task.

In the last few years two of the authors have developed a novel foundational
model (and the corresponding proof techniques) to avoid the state explosion
problem in the verification of systems of mobile processes specified in the -
calculus. This work has lead to the introduction of a finite state model, called
History Dependent Automata (shortly HD-automata). HD-automata provides
an adequate operational model for the m-calculus: the theory ensures that finite
state, finite branching automata give a faithful representation of the behaviour
of m-calculus agents [27-29]. As ordinary automata, HD-automata are composed
of states and of transitions between states. However, states and transitions of
HD-automata are enriched with sets of local names. In particular, each transition
can refer to the names associated to its source state but can also introduce new
names, which can then appear in the destination state. Hence, names are not
global and static entities but they are explicitly represented within states and
transitions and can be dynamically created.

More in general, HD-automata are expressive enough to represent formalisms
equipped with mobility, locality, and causality primitives [29]. An important
point is that for a wide class of processes (e.g. finitary m-calculus agents) the
resulting HD-automata are finite state. Furthermore, it is possible to construct
to each HD-automaton an ordinary automaton in such a way that equivalent
HD-automata are mapped into equivalent ordinary automata, and finite state
HD-automata are mapped into finite state ordinary automata. As a consequence,
many practical and efficient verification techniques developed for ordinary au-
tomata can be smoothly adapted to the case of mobile processes.

Formally, HD automata are automata on top of a permutation algebras of
states which describes the effect of name permutations (i.e. renaming) on state
transitions. This information is sufficient to describe in a semantically correct
way the creation, communication, and deallocation of names: all the features
needed to describe and reason about formalisms with name-binding operations.
Recently, several efforts have been devoted to understand naming issues inde-
pendently of any particular formalism [16,17]. The basic ingredients of these
approaches are (again) a set of names and an action of its group of permutations
(renaming substitutions).

This paper describes an environment which supports verification of mobile
systems specified in the w-calculus: the HD Automata Laboratory (HAL). An
overview of the current implementation of the HAL environment is presented.
The HAL environment includes modules which implement decision procedures
to calculate behavioural equivalences, and modules which support verification
by model checking of properties expressed as formulae of suitable temporal log-
ics. The construction of the model checker takes direct advantage of the finite
representation of 7-calculus agents presented in [27]. In particular, we introduce



an high level logic with modalities indexed by m-calculus actions and we pro-
vide a mapping which translates logical formulae into a classical modal logic for
standard automata. The distinguished and innovative feature of our approach is
that the translation mapping is driven by the finite state representation of the
system (the m-calculus process) to be verified.

The paper is organized as follows. Section 2 reviews the w-calculus and the
modal logic we use to express behavioural properties of 7-calculus agents. This
section introduces the main notations and definitions that will be used through-
out the paper. We then proceed to introduce the translation mapping from -
calculus agents to HD-automata and from HD-automata to ordinary automata.
The translation mapping from the higher order logic to the bare logic is pre-
sented in Section 4. Section 5 describes the main modules of the verification
environment. Finally, Section 6 illustrates a verification case study: the Han-
dover Protocol for Mobile Telephones.

2 Background

This section briefly reviews the w-calculus and introduces a basic modal logic
to express properties about the behaviour of w-calculus agents. We start by
reviewing the basic notions and notations of automata.

2.1 Ordinary Automata

Automata (or labelled transition systems) have been defined in several ways.
We chose the following definition since it is rather natural and it can be easily
modified to introduce HD-automata.

Definition 1. An ordinary automaton is a 4-tuple A = (Q, qo, Act, R), where:

— @ is a finite set of states;

— qo 1S the initial state;

Act is a finite set of action labels;

— R C Q x Act x Q is the transition relation. Whenever (g, \,q') € R we will

. Aoy
write ¢ — q' .

Several notions of behavioral preorders and equivalences have been defined
on automata. Here, we review the notion of bisimilarity [23,31].

Definition 2 (bisimulation on automata). Let A; and Ay be two automata
on the same set L of labels. A relation R C Q1 X ()2 is a simulation for A; and
Az if 1 R qo implies:

for all t, : q 2 q, of A there exists ta : ¢o 2, gh of As such that

@ R g
A relation R C Q1 x Q2 4s a bisimulation for A; and Ay if both R and R~ are
stmulations.

Two automata A; and As are bisimilar, written Ay ~ As, if there is some
bisimulation R for A1 and Ay such that qo1 R qo2-



2.2 The w-calculus

Given a denumerable infinite set A of names (denoted by a, .. ., 2), the w-calculus
agents over N are defined by the syntax!:

Pu=nil |a.P | P[P | Pi+ P, | (z)P | [z =y]P | A(zy,...,2Tr4))

o = tau | zly | z?(y),

where r(A) is the range of the agent identifier A. The occurrences of y in
z?(y).P and (y)P are bound; free names are defined as usual and £n(P) indi-
cates the set of free names of agent P. For each identifier A there is a definition
A1, -, Yra)) == Pa (with y; all distinct and fn(Pa) C {y1 ...y, }) and we
assume that each identifier in P4 is in the scope of a prefix (guarded recursion).
The actions that agents can perform are defined by the following syntax:

pu=tau | zly | 2!(z) | 2?y;

where z and y are free names of p (fn(u)), whereas z is a bound name (bn(u));

finally n(p) = £n(u) Ubn(w).
The structural rules for the early operational semantics are defined in Table 1.

TAU tau.P 2% P OUT zly.P 2% p IN 2?(y).P 255 P{z/y}
13 / M /
suMm —HL—=F PAR — L2 PL ey ngn(Py) = 0
P+P, — P P1||P2 —)P1||P2
zly z?Y z!(y) z? ’
comBb=h _B—=F oo & — 5 PzTy”? if y ¢ £n(P)
Pi||P; — Py||P; Pi||P; = (y) (P11 P2)

13 ! zly /
S % if £ ¢ n(p) OPEN 1;;* 1,’ if £y, 2 ¢ £n((y)P)
(z)P — () (y)P — P {z/y}
MATCH —P—= P op Palyn/en g /T = P
[CL‘:J)]PL)P’ A(yl,...,yT(A))L)P’
Table 1. Early operational semantics.

Several bisimulation equivalences have been introduced for the w-calculus
[33]. They can be strong or weak, early [25], late [24] or open [36]. We now
introduce the early bisimulation.

Definition 3. A binary relation B over a set of agents is a strong early bisim-
ulation if it is symmetric and, whenever (P, Q) € B, we have that:

! For convenience, we adopt the syntax of the agents we use to input agents in the
environment. We use (z)P for the restriction, x?(y).P for input prefixes and z!y.P
for output prefixes. The syntax of the other operators is standard.



— if P X5 P’ and £n(P,Q)Nbn(u) = 0, then there exists Q' such that Q -~ Q'
and (P',Q") € B.

Two terms are said strong early bisimilar, written P ~ @), if there exists a
bisimulation B such that (P, Q) € B.

2.3 A temporal logic for m-calculus agents

Some programming logics have been proposed [6,25] to express properties of -
calculus agents. These logics are extensions, with w-calculus actions and names
quantifications and parameterizations, of classical action-based logics [19, 20].

We now introduce the logic we use to specify behavioural properties of -
calculus agents. The logic, called 7-logic, extends the modal logic introduced
in [25] with some expressive modalities. Indeed, together with the strong next
modality EX{u} defined in [25], the m-logic also includes a weak next modal-
ity <pu> whose meaning is that a number of unobservable tau actions can be
executed before p.2.

Moreover, to express general liveness and safety properties, the eventually
temporal operator (notation EF ¢) is introduced. The meaning of EF' ¢ is that
¢ must be true sometime in a possible future.

The syntax of the w-logic is given by:

¢ u=true | ~¢ | ¢ & ¢' | EX{u}o | <u>¢ | EF ¢.

The interpretation of the logic formulae is the following:

P = true holds always;

P = ~¢ if and only if not P = ¢;

PEo¢& ¢ if and only if P = ¢ and P = ¢/;

— P = EX{u}¢ if and only if there exists P’ such that P £+ P’ and P’ |= ¢;

— P = <p>¢if and only if there exist P, ..., P,,n > 1, such that P = Py =
P..2p,_, % P, and P, E ¢;
P = EF ¢ if and only if there exist P, ..., P, and p1,..., s, with n > 0,

such that P = Py 2% Py ... £% P, and P, = ¢.

As usual, the following derived operators can be defined:

— ¢ | ¢' stands for ~(~¢ & ~¢');

— [p]¢ stands for ~<pu>~¢. This is the dual version of the weak nezt operator;

— AG ¢ stands for ~EF ~¢. This is the always operator, whose meaning is
that ¢ is true now and always in the future.

% The notation <_> is generally used in the framework of modal logics to denote the
strong nezt modality, while <_>> is used for the weak nezt modality. Here we denote
instead the the strong next by EX and the weak nezt by <_>



Theorem 1. [18] The 7-logic is adequate with respect to strong early bisimula-
tion equivalence.

For this logic we will show later on in this paper it is possible to provide
a classical model checking algorithm to verify the satisfiability of the w-logic
formulae on 7-calculus agents. The construction of the model checker for the 7-
logic will exploit and re-use the model checker implemented for the AcTL logic
[9,8]. The branching time temporal logic ACTL is the action based version of
CTL [10]. AcTL is well suited to describe the behavior of a system in terms of
the actions it performs at its working time. In fact, ACTL embeds the idea of
“evolution in time by actions” and is suitable for describing the various possible
temporal sequences of actions that characterize a system behavior. The complete
definition of ACTL syntax and semantics is presented in the Appendix.

3 From m-calculus agents to ordinary automata

In this section, we outline the translation steps that permit, given a w-calculus
agent, to generate the finite state and finitely branching ordinary automaton
representing the agent’s behaviour. The generation of the ordinary automaton
associated with a w-calculus agent consists of two stages. The first stage con-
structs an intermediate representation of agent’s behaviour taking advantage of
the notion of HD-automaton. The second stage builds the ordinary automaton
starting from the HD-automaton. The generation of the ordinary automaton has
been split into these two steps to achieve modularity in the structure of the ver-
ification environment. Moreover, the intermediate representation allows a more
efficient implementation of the second translation step.

3.1 From m-calculus agents to HD-automata

HD-automata have been introduced in [27], with the name of m-automata, as a
convenient structure to describe in a compact way the operational behaviours
of m-calculus agents. HD-automata have been further generalized to deal with
name passing process calculi, process calculi equipped with location, causality
and Petri Nets [29, 28].

Due to the mechanism of input, the ordinary operational semantics of the
m-calculus requires an infinite number of states also for very simple agents. The
creation of a new name gives rise to an infinite set of transitions: one for each
choice of the new name. To handle this problems in HD-automata names appear
explicitly in states, transitions and labels. Indeed, it is convenient to assume that
the names which appear in a state, a transition or a label of a HD-automaton are
local names and do not have a global identity. In this way, for instance, a single
state of the HD-automaton can be used to represent all the states of a system
that differ just for a bijective renaming. However, each transition is required to
represent explicitly the correspondences between the names of source, target and
label.



Definition 4. A history-dependent automaton (HD-automaton) is a structure
A= (Q: qo, ACtha q %) ql); where:
,T

— @ is a finite set of states;

qo s the initial state;

Act is a set of action labels;

w is a function associating (finite sets of local) names to states:

w:Q — pr(N);

- q N q' is the transition relation where:

O

o (€ w(q) is the name referred to in the transition;
o 0:w(q) — w(q)U{x} is the (injective) embedding function, and x is a
new name.

Function o embeds the names of the target state in the names of the source
state of the transition. The distinguished symbol * is used to handle the creation
of a new name: the name created during the transition is associated to *. Notice
that the names that appear in the source and not in the target of the transition
are discarded in the evolution. HD-automata require name creation must be
handled explicitly, whereas name discarding can behave silently.

As pointed out in [27] the usage of local names allows modeling execution of
input prefixes by a finite number of transitions: it is enough to consider as input
values all the names which appear free in the source state plus just one fresh
name. In other words, in the case of the HD-automata it does not make sense
to have more transitions which differ just in the choice of the fresh name.

Ezample 1. Consider agent P(in,out) := in?(z).out!z.nil. Figure 1 illustrates
the corresponding HD-automaton.

Here, we adopted the following notational conventions. Local names of states
(i-e. the result of function w) are graphically represented by the finite set called
names. The names which are used as input values are in and out (i.e. the local
names of the initial state) and the fresh name x (to simplify reading of the graph-
ical representation, we avoided usage of the distinguished symbol ). Moreover,
labels of the form in?(x) are used to denote the input of a fresh name.

The meaning of names of state changes (i.e. the embedding function from
the names of the target state to the name of the source state) is represented by
the function map labelling the transition. For instance, consider the transition

in?(g)

P(in, out) alb.nil

map:{a—out,b—z}

of Figure 1. The corresponding embedding function o, o : {a, b, *x} — {in,out}
is defined to be o(a) = out,o(*) = in. Finally, in the HD-automaton of Figure 1,
the targets of two input transitions originated from the initial state (namely the
input of a new name, and the input of the name in) are merged: the correspond-
ing agents, in fact, just differ for an injective substitution.



P(in, out)
names : {in, out}

n?(x)
map : {a — out,b— z}
in?out
map : {a — out}

nlin
map : {a —> out,b — in}

@ ala.nil
names : {a}

nil
names : {}

Fig. 1. The HD-automaton corresponding to the agent P(in, out) := in?(z).out!z.nil.



In [27] it has been proved that finite state HD-automata can be built for the
class of finitary agents: an agent is finitary if there is a bound to the number
of parallel components of all the agents reachable from it. In particular, all the
finite control agents, i.e. the agents without parallel composition inside recursion,
are finitary.

Due to the private nature of the names appearing in the states of HD-
automata, bisimulations cannot simply be relations on the states; they must
also deal with name correspondences: a HD-bisimulation is a set of triples of the
form (g1, 9, ¢2) where ¢; and g» are states of the HD-automata and 4 is a partial
bijection between the names of the states. The bijection is partial since we allow
states with different numbers of names to be equivalent (in general equivalent
m-calculus agents can have different sets of free names).

Suppose that we want to check if states ¢; and ¢, are (strongly) bisimilar via
the partial bijection é. Furthermore, suppose that ¢; can perform a transition

t1:qq %} qi- Then we have to find a transition ¢ : ¢o %) ¢, that matches ¢,
»0 'a!

i.e., not only the two transitions must have the same label, but also the names
associated to the labels must be used consistently. In [27,29] it has been showed
that the definition of HD-bisimilarity applied to HD-automata obtained from
m-calculus agents induces over 7 agents an equivalence relation which coincides
with strong early bisimilarity.

3.2 From HD-automata to ordinary automata

The theory of HD-automata ensures that HD-automata provides a finite state
faithful semantical representation of the behaviour of w-calculus agents. Indeed,
it is possible to extract from the HD-automaton of a m-calculus agent its early
operational semantics. This is done by a simple algorithm (basically a visit of the
HD-automaton) which maintains the global meaning of the local names of the
reached states. Intuitively, the algorithm behaves as follows When a fresh name is
introduced by a transition of the HD-automaton, a global instantiation has to be
chosen for that name. For instance, suppose we are visiting the HD-automaton
of Figure 1 starting from the initial state. Furthermore, assume that the global
meaning of local names is the identity function (i.e. the function mapping local
names in and out into global names in and out, respectively). If we choose the
transition in?(x), we have to give a global meaning, say v, to the fresh name
2. Then, we reach the state alb.nil, where the global meaning of names a and
b is out and v, respectively. It is immediate to see that this corresponds to the

early transition P(in,out) 1% outly.nil. Clearly, we have a transition for all
the possible choices of the fresh name v. In other words, this procedure yields an
infinite state automaton. To obtain a finite state automaton it suffices to take as
fresh name the first name which has been not already used. In this way, a finite
state automaton is obtained from each finite HD-automaton.

The ordinary automaton obtained from the HD-automaton of Figure 1 is
displayed in Figure 2. In the ordinary automata labels of transitions appear in
quotation marks, to stress the fact that they are just strings.



“n?(a)”

outla.nil out!in.nil outlout.nil
@) © ©

“outlin”

“outla” “outlout”

Fig. 2. The ordinary automaton corresponding to the HD-automaton of Figure 1

To sum up, we outlined a procedure to map (a significant class of) w-calculus
agents into finite state automata. It is not true in general, however, that equiva-
lent (i.e. strong or weak bisimilar) 7-calculus agents are mapped into equivalent
(i.e. strong or weak bisimilar) ordinary automata. In fact, due to the mechanism
for generating fresh names, this is true only if we can guarantee that two bisimilar
agents have the same set of free names. To this purpose, the HD-automaton has
to be made irredundant in a pre-processing phase. The irredundant construction
discards all the names which appear in the states of the HD-automaton but which
do not play any active role in the computations from that state. In [27] a sim-
ple and efficient algorithm is described to make irredundant the HD-automata
corresponding to m-calculus agents without matching. The same algorithm also
works for the m-calculus with a restricted form of matching.

To conclude this section we show the expressiveness of HD-automata in han-
dling bisimilarity. Consider the 7-calculus agent Q(in, out) = (2)(in?(x).zlz.nil ||
2?(y).outly.nil). The standard w-calculus early operational semantics yields an
infinite state and infinite branching labelled transtion system (see Figure 3 (A)).
The ordinary automaton, instead, which results from the HD translation steps
is displayed in Figure 3(B). It is straightforward to notice that agent Q(in, out)
is weakly bisimilar to agent P(in,out) of Example 1.
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outlin outlout outla outla; .
outlin outlout
[e] (e} (e} [} [e]
(A) (B)
Fig. 3. State space representation of agent Q(in,out) = (2)(in?(x).z!z.ni ||

27(y)-outly.nil)

4 From m-logic to ACTL

Our purpose was to define an automatic verification procedure to model check
the satisfiability of a formula of the 7-logic over a w-calculus agent. In Section 3
we have shown that it is possible to derive an ordinary automaton for finitary
m-calculus. Hence, if we were able to translate formulae of the w-logic into “or-
dinary” logic formulae, it should be possible to use existing model checking
algorithms to check the satisfiability of “ordinary” logic formulae over ordinary
automata. As “ordinary” logics, we mean all the action-based logics that have
been defined starting from the Hennessy-Milner logic [19]. Among these, we
have chosen the ACTL logic [9], for which an efficient model checker has been
implemented [14] and for which a sound translation exists.

In the rest of this section we present the translation function that associates
an ACTL formula with a formula of 7-logic. The translation is defined by having
in mind a precise soundness result: we want a m-logic formula to be satisfied by a
m-calculus agent P if and only if the finite state ordinary automaton associated
with P satisfies the corresponding ACTL formula. The translation of a formula
is thus not unique, but depends on the agent P. Specifically, it depends on the
set S of the fresh names of the ordinary automaton associated with the agent P.
Correctness properties (as well as other foundational results) of the translation
are discussed in [18].

Definition 5. Let § = {a/y}. We define uf as being the action p' obtained
from p by replacing the occurrences of the name y with the name a. Moreover,
we define trued = true, (¢1&p2)0 = ¢10& P26, (~ ¢)8 =~ @b, (EX{u}¢)d =
EX{ub}gl, (< p> @) =< pb > ¢ and (EF$)0 = EF 0.

11



Definition 6 (Translation function). Given a w-logic formula ¢ and a set
of names S, the ACTL translation of ¢ is the ACTL formula Ts($) defined as
follows:

— Ts(true) = true

= Ts(p1&pa) = Ts(d1)&Ts(¢2)

— Ts(~ ¢) =~ Ts(¢)

— Ts(EX{tau}¢) = EX{tau}Ts(¢)

- Ts(EX{aly}¢) = EX{aly}Ts()

— Ts(EX{z!(y)}9) = V oe s EX{2()}T5(90), where 6 = {a/y}

- F(/Eff{wr’y}éﬁ) = EX{27y}T5(9) V VaesEX{27()}Ts(40), where 6 =
ajy

— Ts(< tau > ¢) =< tau > Tg5(9)

- Ts(< aly > ¢) =<aly > Ts(¢)

— Ts(< 2l(y) > ¢) = Vaes < 2l (@) > Ts(40), where § = {a/y}

- ’{73(/<}x?y > ¢) =< 2% > Ts(¢) V Vaes < 2?(a) > Ts(¢0), where 6 =
aly

_ T3(EFg) = BFT3(9)

In the above definition we have assumed that when S = @ then \/ _q¢ =
false.

Note that the complexity of the translation has a worst case complexity which
is exponential in the number of names appearing in set S.
This translation guarantees that if P is a w-calculus agent, with associated an
ordinary automaton 4 and ¢ is a w-logic formula, then we have that P |= ¢ if
and only if | P |= Ts(¢), where S is the set of fresh names of A [18].

Ezample 2. Let us consider agent P(in,out) introduced in Example 1. Agent
P satisfies the w-logic formula ¢ = EX{in?u}EX {out!u}true for each name

u, since P % for each name u and then it performs an out! action with the
corresponding name. We want to verify whether the ACTL translation of the
formula holds in the ordinary automaton associated with P, hence we have to
consider the ACTL translation of the formula with respect to the set of fresh
names S used in the ordinary automaton of P, that is {a}. The translation of
the formula is:

EX{in?(a)}EX{outla}true

Note that the resulting AcTL formula holds in the ordinary automaton of P.

5 Model checking m-calculus agents

The translation procedures described in the previous Sections have been imple-
mented on top of the JACK environment [1]. JACK is an environment based
on the use of process algebras, automata and temporal logic formalisms, which
supports many phases of the system development process.

12



The idea behind the JACK environment® was to combine different specifi-
cation and verification tools [21,35,2,14], around a common format for repre-
senting ordinary automata: the FC2 file format [3]. FC2 makes it possible to
exchange automata between JACK tools. Moreover, tools can easily be added to
the JACK system, thus extending its potential. Figure 4 illustrates the top-level
interface of the JACK environment.

An ordinary automaton is represented in the FC2 format by means of a set
of tables that keep the information about state names, arc labels, and transition
relations between states.

The editing tools integrated in JACK allow specifications be described both
in textual form and in graphical form, by drawing automata. Moreover, the tools
provide sophisticated graphical procedures for the description of specifications
as networks of processes. This supports hierarchical specification development.

Once the specification of a system has been written, JACK permits the con-
struction of the global automaton corresponding to the behaviour of the overall
system. Moreover, automata can be minimized with respect to various (bisim-
ulation) equivalences. ACTL can be used to describe temporal properties and
model checking can be performed to check whether systems (i.e. their models)
satisfy the properties.

Besides facilities offered by the JACK environment for the specification and
verification of concurrent systems it provides also facilities for the specification
and verification of mobile systems. In particular it is possible to construct the
HD-automata of m-calculus agents, and to map HD-automata into ordinary au-
tomata represented in the FC2 format through the functionalities offered by the
HAL tool. HAL includes modules which implement decision procedures to calcu-
late behavioural equivalences, and modules which support the model checking of
properties expressed as formulae of the 7-logic. The HAL architecture is displayed
in figure 5;

By exploiting the HAL facilities m-calculus agents are translated into ordinary
automata. Hence, the JACK bisimulation checker can be used to verify (strong
and weak) bisimilarity of w-calculus agents. Automata minimization, accord-
ing to weak bisimulation is also possible, by using the functionalities offered in
JACK by the FC2tools tools. HAL also supports verification of logical formulae
expressing desired properties of the behaviour of w-calculus agents. The ACTL
model checker AMC available in JACK can be used for verifying properties of
m-calculus agents, after that the 7-logic formulae expressing the properties have
been translated into ACTL formulae.

The complexity of the model checking algorithm is due to the construction
of the state space of the w-calculus agent to be verified, which is, in the worst
case, exponential in the syntactical size of the agent.

The current implementation of HAL consists of five main modules all inte-
grated inside the JACK environment. Three of these modules handle the trans-
lations from 7-calculus agents to HD-automata, from HD-automata to ordinary

3 Detailed information about JACK are available at:
http://ghost.iei.pi.cnr.it/projects/JACK.
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behavioural verification = = model checking

Fig. 5. The logical architecture of the HAL environment.

automata, and from w-logic formulae to ACTL formulae. The fourth module
provides several routines that manipulate the internal representation of HD-
automata. The last module provides HAL with a user-friendly Graphical User
Interface (GUI). The HAL user interface is splitted in two sides: the Agent side
and the Logical side. The Agent side allows a m-calculus agent to be transformed
into a HD-automaton and then into an ordinary automaton (options Build and
Unfold). The Logic side allows a 7-logic formula to be translated in the corre-
sponding AcCTL formula taking into account the particular ordinary automaton
on which then it will be checked.

Several optimizations have been implemented. These optimizations reduce
the state space of HD-automata, thus allowing a more efficient generation of the
ordinary automata associated with w-calculus agents. An example of optimiza-
tion is given by the reduction of tau chains (that are unbranched sequences of
tau transitions) to simple tau transitions (option Reduce).

Another optimization consists of the introduction of constant declarations.
Constant names are names that cannot be used as objects of input or output
actions (for instance, names that represent stationary communication topologies,
namely communication topologies which cannot be modified when computations
progress). Since constant names are not consider as possible input values, the
branching structure of input transitions is reduced. The semantic handling of
constants is presented in [29]. Constants must be declared at the beginning of
m-calculus agent specification.
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HAL is written in C++ and compiles with the GNU C++ compiler (the GUI
is written in Tcl/Tk). It is currently running on SUN stations (under SUN-OS)
and on PC stations (under Linux).

6 Verification Case Study

In this section we illustrate the Model Checking facilities of HAL by presenting
a simple but expressive case study.

6.1 The Handover Protocol for Mobile Telephones

The case study concerns the specification of the core of the handover protocol
for the GSM Public Land Mobile Network proposed by the European Telecom-
munication Standards Institute. The specification is borrowed from that given in
[37], which has been in turn derived from that in [30]. The specification consists
of four modules:

— a MobileStation (Car) mounted in a car moving through two different geo-
graphical areas (cells), that provides services to an end user;

— a Mobile Switching Centre (Centre) that is the controller of the radio com-
munications within the whole area composed by the two cells;

— the Base Station modules (Base and IdleBase) that are the interfaces between
the Mobile Station and the Mobile Switching Centre.

The observable actions performed by the Mobile Switching Centre are the
input of the messages transmitted from the external environment through the
channel in. The observable actions performed by the Mobile Station are the
transmissions, via the channel out, of the messages to the end user. The commu-
nications between the Mobile Switching Centre and the Mobile Station happen
via the base corresponding to the cell in which the car is located. When the car
moves from one cell to the other, the Mobile Switching Centre starts a proce-
dure to communicate to the Mobile Station the names of the new transmission
channels, related to the base corresponding to the new cell. The communication
of the new channel names to the Mobile Station is done via the base that is
in use at the moment. All the communications of messages between the Mobile
Switching Centre and the Mobile Station are suspended until the Mobile Station
receives the names of the new transmission channels. Then the base correspond-
ing to the new cell is activated, and the communications between the Mobile
Switching Centre and the Mobile Station continue through the new base. The
m-calculus specification of the GSM is reported below.
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define Car(talk,switch,out) =
talk? (msg) .out !msg.Car(talk,switch,out) +
switch?(t) .switch?(s) .Car(t,s,out)

define Base(talkcentre,talkcar,give,switch,alert) =
talkcentre? (msg) .talkcar!msg.
Base(talkcentre,talkcar,give,switch,alert)
+
give?(t).give?(s) .switch!t.switch!s.give!give.
IdleBase(talkcentre,talkcar,give,switch,alert)

define IdleBase(talkcentre,talkcar,give,switch,alert) =
alert?(empty) .Base(talkcentre,talkcar,give,switch,alert)

define Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap) =
in?(msg) .tca!msg.Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap)
+
tau.ga!tp.ga!sp.ga?(empty) .ap'!ap.Centre(in,tcp,tp,gp,sp,ap,tca,ta,ga,sa,aa)

define GSM(in,out) =
(tca) (ta) (ga) (sa) (aa) (tcp) (tp) (gp) (sp) (ap)
| (Car(ta,sa,out),
Base(tca,ta,ga,sa,aa),
IdleBase(tcp,tp,gp,sp,ap),
Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap))

There are two kinds of correctness checking that can be performed by exploit-
ing HAL facilities. One is the checking that the specification of the the Handover
Protocol is bisimilar to a more abstract service specification, that models the
intended behaviour of the system. The other is the (model) checking of some
interesting properties, expressed as w-logic formulae.

The abstract service specification (a three position buffer where the messages
are queued) is described by the m-calculus agent GSMbuf fer given below.

define SO(in,out) =
in?(v). S1(in,out,v)
+
tau. SO0(in,out)
define S1(in,out,vl) =
in?(v). S2(in,out,vi,v)
+
out!vil. S0(in,out)
+
tau. out!vi. SO(in,out)
define S2(in,out,vi,v2) =
in?(v). S3(in,out,vi,v2,v)
+
out!vl. S1(in,out,v2)
+
tau. out!vl. out!v2. SO0(in,out)
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define S3(in,out,vl,v2,v3) =
out!vl. S2(in,out,v2,v3)

define GSMbuffer(in,out) = SO(in,out)

We expect that both the specifications above satisfy the requirement that no
messages are lost, that is whenever a message msg is received from the external
environment through the channel in then it will be eventually retransmitted to
the end user via the channel out. The formula AG([in?msg|EF < out!msg >
true) represents this property. Moreover, we require that the formula

AG([in?msg0][in?msgl][in?msg2] < out!msg0 > true)

holds. Namely, whenever three messages msg0, msgl and msg2 are received in
sequence through the channel in, then msg0 can be soon retransmitted to the
end user through the channel out.

AG([in?msg0][in?msgl][in?msg2] < out!msg0 > true)
We also expect that the formulae:
AG([in?msg] < outlmsg > true) AG([in?msgl][in?msg2] < out!msgl > true)

are not satisfied. Indeed, it may happen that a message msg, just received
through the channel in, cannot be soon given in output through the channel
out: there can be other messages received before msg that are waiting for being
transmitted through out. Similarly, it can be false that if two messages msgl and
msg2 are received in sequence through the channel in then msgl can be soon re-
transmitted through the channel out. This is because another message (that has
been received before msgl) may exist and still waiting for being retransmitted
via out.

An account of the verification activities (performed on a Sun Workstation
Ultra 1) is presented below.

Figure 6 illustrates the generation of the HD-automata for both the specifi-
cations, i.e. GSM and GSMbuf fer.

Figure 7 shows the construction of the ordinary automata (represented in
the FC2 format) associated to the specifications. Then GSM and GSMbuf fer
have then been shown to be equivalent using the bisimulation checking facilities
offered by HAL through the use of FC2tools.

Figure 8 illustrates the translation of the high level property into the low level
property expressed as a ACTL formula. Notice that the translation mapping is
driven by automata representation.

Figure 9 and Figure 10 illustrates the model checking of the ACTL formulae,
obtained in the previous step, by exploiting the AMC model checker.

In the following tables we summarize the figures (states, transitions and
times) of the different steps of a typical session of verification for the handover
protocol (we report in the table the invocation of the functionalities of the main
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HAL modules). We also describes the number of states and transitions of the
automata that are built in the different steps.

We have considered first the original specifications of GSM and GSMbuf fer
as given previously (see Table 2 and Table 3). We then have added to the speci-

fication 4n and out as constants obtaining hence better figures (see Table 4 and
Table 5).

Table 2. Performance issue (1)

command states|transitions| time
hdaut := buildHD GSM.pi 506 745|37.52 sec.
hdaut-red := reduceHD-red GSM.hd 245 484| 1.19 sec.
aut := buildFC2 hdaut-red 545 1062| 1.54 sec.
min-out := minimize aut 49 91| 3.45 sec.
verify no-loss-of-messages on min-aut| — 6 sec.

Finally, we report the figures (see Table 6 and Table 7) also in the case of the
original m-calculus specification of handover protocol for the GSM Public Land
Mobile Network as given in [30]. Notice that in this case, we were not able to
build the HD-automaton without constant declarations (due to state explosion).
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Table 3. Performance issue (2)

command states|transitions| time
hdaut := buildHD GSMbuffer.pi 65 131(0.46 sec.
hdaut-red := reduceHD-red GSMbuffer.hd 65 131{0.13 sec.
aut := buildFC2 hdaut-red 164 320(0.54 sec.
min-aut := minimize qut 49 91/1.88 sec.
verify no-loss-of-messages on min-aut — — 6 sec.
Table 4. Performance issue (3)
command states|transitions| time
hdaut := buildHD GSM-const.pi 124 172]9.43 sec.
hdaut-red := reduceHD-red GSM-const.hd 52 100( 0.3 sec.
aut := buildFC2 hdaut-red 188 358(0.59 sec.
min-aut := minimize aut 49 91| 2.5 sec.
verify no-loss-of-messages on min-aut — — 6 sec.
Table 5. Performance issue(4)
command states|transitions| time
hdaut := buildHD GSMbuffer-const.pi 12 23| 0.1 sec.
hdaut-red := reduceHD-red GSMbuffer-const.hd 12 2310.03 sec.
aut := buildFC2 hdaut-red 49 92(0.18 sec.
min-qut := minimize aut 49 91|0.57 sec.
verify no-loss-of-messages on min-aut — — 6 sec.
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Table 6. Performance issue

command states transitions|time
hdaut := buildHD handover.pi state explosion — sec.
hdaut-red := reduceHD-red handover.hd — — sec.
aut := buildFC2 hdaut-red — — sec.
min-aut := minimize aut — — sec.
verify no-loss-of-messages on min-aut — — sec.

Table 7. Performance issue

command states|transitions| time
hdaut := buildHD handover-const.pi 37199 47958| 4473 sec.
hdaut-red := reduceHD-red handover-const.hd| 11015 21774| 81.44 sec.
aut := buildFC2 hdaut-red 32263 62990(101.71 sec.
min-aut := minimize qut 49 91 10 sec.
verify no-loss-of-messages on min-aut — — 6 sec.

7 Concluding Remarks

We presented an automata-based verification environment for the w-calculus.
Our approach requires the construction of the whole state space of the agents.
Hence, the complexity of our methodology is given by the construction of the
state space of the m-calculus agent to be verified, that is, in the worst case,
exponential in the syntactical size of the agent.

Our current work on the HAL environment is proceeding on two fronts. On the
one hand, we are extending the environment with new modules. In particular, we
are developing a minimization module. Minimal automata play a central role in
the theory and the practice of finite state verification. The theory guarantees that
the minimal automaton is indistinguishable from the original one with respect
to many behavioral properties. Moreover, the problem of deciding observational
equivalences is reduced to the problem of computing the minimal automaton.
Foundational results on the basic model [28,12] are driving the design and the
implementation of a module able to directly minimize HD-automata (without
mapping them into ordinary automata). On the other hand, we are working
on experimenting the environment to deal with specification and verification of
WAN applications.

In particular, we are adddressing the problem of verifyng properties of secu-
rity protocols. The creation of nonces to identify sessions in security protocols
is an instance of the idea of having dynamic name generation. In the last years,
several techniques for finding flaws of security protocols have been developed (we
refer to [22] for a critical review of the state-of-the-art on verification of security
protocols). All of these techniques are basically based on the analysis of finite
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state systems, and typically can ensure error freedom only for a finite amount
of the behaviour of protocols. Even if many protocols do not include iterations,
an unbound number of principals may take part into the interleaved sessions of
the protocol; moreover, many known attacks exploit the mixed interleaving of
different sessions of the same protocol [26]. In general, it is not possible to deduce
the safety of the protocol from the safety of a bounded number of interleaved
sessions.

Another issue we are approaching consists of the development of a design
methodology for composition of software components based on the notion pro-
grammmable coordination via naming. Coordination is a key concept for mod-
eling and designing WAN applications. Coordinators are the basic mechanisms
to adapt components to the network environment changes. For instance, coordi-
nators are in charge of supporting and monitoring the execution of dynamically
loaded modules. The main idea of our approach is to identify all the principals
(e.g. authorities, software components) involved within a coordination activity
by naming schemes. A programmable coordination policy is modeled as a struc-
tured operation acting over names. For instance, the coordination policy which
redirects bindings to resources of mobile agents roaming the net is naturally de-
scribed by a structured action over names (bindings) of resources. Similarly, the
coordination policy which detects the accessible resources (namely the current
execution environment) of incoming mobile agents fits in this framework.

To end the paper we make a more detailed comparison with related works.
The Mobility Workbench [37] (MWB in short). In the MWB the verification of
bisimulation equivalence between (finite control) m-calculus agents is made on the
fly [13], that is the state spaces of the agents are built during the construction
of the bisimulation relation. Checking bisimilarity is, in the worst case, expo-
nential in the syntactical size of the agents to be checked. The model checking
functionality offered by the MWB is based on the implementation of a tableau-
based proof system [6, 7] for the Propositional u-calculus with name-passing (an
extension of p-calculus in which it is possible to express name parameteriza-
tion and quantifications over the communication objects). The main difference
between our approach and the one adopted in the MWB is that in our envi-
ronment the state space of a m-calculus agent is built once and for all. Hence,
it can be minimized with respect to some minimization criteria and then used
for behavioural verifications and for model checking of logical properties. It has
to be noticed that the 7-logic we use, although expressive enough to describe
interesting safety and liveness properties of m-calculus agents, is less expressive
than the Propositional p-calculus with name-passing used in the MWB.
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Appendix: ACTL: Action Based CTL

ACTL [?] is a branching time temporal logic suitable to express properties of
reactive systems whose behaviour is characterized by the actions they perform.
Indeed, ACTL embeds the idea of “evolution in time by actions” and logical
formulae take their meaning on labelled transition systems. ACTL can be used
to define both liveness (something good eventually happens) and safety (nothing
bad can happen) properties of concurrent systems.

Definition 7 (Action formulae). Given a set of observable actions Act, the
language AF (Act) of the action formulae on Act is defined as follows:

X:::true|b|—ux|x&x

where b ranges over Act.
ACTL is a branching time temporal logic of state formulae (denoted by ¢), in
which a path quantifier prefizes an arbitrary path formula (denoted by ).

Definition 8 (AcTL syntax). The syntaz of the ACTL formulae is given by
the grammar below:

¢ = true | ¢&¢| ~¢ | Ex | Arm

™= X{x}¢ | X{tau}¢ | [p{x}U¢] | [6{x3U{x'}¢]

where x,x' range over action formulae, E and A are path quantifiers, and X
and U are the next and the until operators respectively.

In order to present the ACTL semantics, we need to introduce the notion of
paths over an ordinary automaton.

Definition 9 (Paths). Let A = (Q, qo, ActU{tau}, R) be an ordinary automa-
ton.

— 0 is a path from rg € Q if either o = ro (the empty path from rq) or o is a
(possibly infinite) sequence (rq, a1,71)(r1,az,72) - .. such that (r;, ajp1,7i41) €
R.

— The concatenation of paths is denoted by juzrtaposition. The concatenation
0102 18 a partial operation: it is defined only if o1 is finite and its last state
coincides with the initial state of oo. The concatenation of paths is associative
and has identities. Actually, o1(0203) = (0102)03, and if ro is the first state
of o and T, is its last state, then we have roo = or, = 0.

— A path o is called maximal if either it is infinite or it is finite and its last
state has no successor states. The set of the maximal paths from rq will be
denoted by II(ro).

— If o is infinite, then |o| = w.

If o =g, then |o| = 0.
If 0 = (ro,01,7r1)(r1,2,72) ... (*n,Qng1,"nt1), n > 0, then |[o| = n + 1.
Moreover, we will denote the it" state in the sequence, i.e. r;, by o(i).
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Definition 10 (Action formulae semantics). The satisfaction relation |=
for action formulae is defined as follows:

a = true always

aEb iffa="b

aE~x iffnotalx

aEx&x iffalEx anda = X

As usual, false abbreviates ~ true and x V x' abbreviates ~ (~ x &~ x').

Definition 11 (AcTL semantics). Let A = (Q, go, ActU {tau}, R) be an ordi-
nary automaton. Let s € QQ and o be a path. The satisfaction relation for ACTL
formulae is defined in the following way:

— s |= true always

sk okd iffsEands ¢

—sE~¢iff notskE ¢

— s |= Em iff there exists o € II(s) such that o =7

—sEAniffforalloe€l(s),c =7

— ol X{x}é iff o = (0(0), a1,0(1))o", and a1 = x, and (1) =

— o0 = X{tau}¢ iff 0 = (¢(0),tau,o(1))o’, and o(1) = ¢

-0k [qb{x}Uqﬁ’] iff there exists i > 0 such that o(i) |= ¢', and for all 0 <
Jj<i:o=0"(0()),aj1,0(j +1))o" implies 0(j) = ¢, and aj41 = tau or
ajy1 X

— o E [¢{xIU{x'}¢'] iff there existsi > 1 such that o = o'(0(i—1), ;,0(i ))a”,
and o(i) E ¢, and o(i — 1) E ¢, and o; = X', and for all 0 < j < i
o=0j(0(j —1),a;,0(j))o] implies o(j —1) = ¢ and a; = tau or a; | x

As usual, false abbreviates ~ true and ¢ V ¢' abbreviates ~ (~ ¢ &~ ¢').
Moreover, we define the following derived operators:

EF¢ stands for E[true{true}Ud¢].

AG¢ stands for ~ EF ~ ¢.

— < a > ¢ stands for E[true{false}U{a}d].
< tau > ¢ stands for E[true{false}U¢].

AcTL logic can be used to define liveness (something good eventually hap-
pens) and safety (nothing bad can happen) properties of concurrent systems.
Moreover, ACTL logic is adequate with respect to strong bisimulation equiva-
lence on ordinary automata [9]. Adequacy means that two ordinary automata
A1 and A, are strongly bisimilar if and only if F; = F», where F; = {4 €
AcTL: A; satisfies ¢}, i =1,2.
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