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Abstract

In an attempt to devise a general notion of model for spatial logic, we
have been led to consider transition systems with an additional so-called
spatial structure on the states, with both the transition and the spatial
structures described in coalgebraic terms. In this paper we argue that such
transition systems with spatial structure can be seen as a noninterleaving
model of concurrency, by providing translations to and from a certain
category of Petri nets.

1 Introduction

There has been recently a growing interest in logics that support in a integrated
way both behavioural and so-called spatial properties of concurrent systems
[1, 3,4, 6, 14, 15]. The most basic examples of a spatial operator are probably 0
(void, nullary) and | (composition, binary): 0 is satisfied by any inactive process
and ¢@|v is satisfied by any process which is a parallel composition of a process
satisfying ¢ with a process satisfying 1. Other spatial operators allow to state
properties of systems that deal with private resources like nonces and channels,
but they will not concern us here.

The models for spatial logic that have been considered so far have been
mostly for concrete domains like the ambient calculus [6], the asynchronous
[3] or synchronous [2] w-calculus, semistructured data [5] and mutable data
structures [15], among others. One would like to have an abstract notion of
model to study the properties of the logic in all generality.

Take the example of Hennessy-Milner logic [11], whose models are transition
systems. What could be the models of Hennessy-Milner logic enriched with
the spatial operators void and composition? To be precise, consider the logic
described by the following syntax:

g == T | 2o | dAY | 08 | O | gl
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Thus, we have the propositional constants T for true, — for negation and A
for conjunction; the modality ¢ is associated with an internal transition (for
simplicity we disregard labelled transitions); the remaining two formulas are
the spatial formulas encountered before.

The first four types of formulas are interpreted in a transition system

(S,tr: S = Prin(S))

in the standard way (we used here the coalgebraic formulation of transition
systems using the finite powerset functor Py4,; for material on coalgebras see
[9, 16, 8]). To interpret the spatial formulas we need an additional structure
on the set S of states. Several authors have advocated the use of a mixed
algebraic-coalgebraic approach to deal with such cases (e.g. [10, 7]), leading in
the present situation to endow S with a monoid structure. Here we propose to
describe the spatial structure in coalgebraic terms, since interpreting the logic
requires observing the structure of states rather than buslding new states from
given ones. Thus, to the previous transition structure we add a spatial function

sp:S = {1} + Prin(S x 5)

with the following interpretation: if (s1,s2) € sp(s), then s is a parallel compo-
sition of 81 and ss; if sp(s) = @, then s is inactive; finally, if sp(s) = 1, neither
of the previous cases apply, so s is active but indecomposable until the next
step. Of course, it is expected that the spatial function obey some properties,
for example to capture the idea that parallel composition is commutative, or
to relate the transition and the spatial structures. But that is not required to
interpret the spatial formulas:

e s =0 iff sp(s) = 0.
o s |= ¢|¢ iff there is (s',s") € sp(s) such that s’ |= ¢ and " = 9.

It has sometimes been argued that the logical equivalence of states induced
by spatial logic is perhaps too intensional, being finer than (behavioural) bisimi-
larity. A pleasing consequence of our model, however, is that the corresponding
notion of bisimulation takes into account both the transition and the spatial
structures, and it can be shown that bisimilarity is equivalent to logical equiv-
alence [13], thus extending Hennessy-Milner’s result [11] to the present frame-
work.

A spatial transition system (S, (tr, sp)) is a coalgebra for the functor Py, (—) %
({1} 4+ Pin(— x —)). Since a final coalgebra for this functor exists, an idea that
immediately suggests itself is to define semantics for concurrent languages in
that coalgebra. This is relatively straightforward: it is only necessary to com-
plement the usual operational semantics based on transition systems with the
definition of an appropriate spatial operator; the unique morphism to the final
coalgebra takes care of the rest. We illustrate the process with the semantics of
CCS in the version presented in [12].

We review briefly the main aspects of the syntax and operational semantics
of CCS without pretending to be exhaustive. Let I'd be a set of process identifiers
and Act ¥ N UN U {7} a set of actions, where N is a set of names; process

identifiers will be denoted by A, actions by «, # and names by a, b. The set Proc
of processes is described by the following syntax:



P u= Alar,...,a) | Y P | PP | newaP
icl

where I is a finite index set; if T = (§, the summation is written 0. It is assumed
that every process identifier A has a defining equation A(a) def P4, where Py is
a summation and @ = ay,...,a, is a list of distinct names that comprise all the
free names fn(P4) of P4. We do not distinguish between processes that differ
only in the bound names.

Structural congruence is the least congruence on the set of processes such
that the following conditions hold:

1> seraiPe =3, 0oy Pogy where o - I — I is a bijection.
2. PIo=P, PIQ = Q|P, PI(QIR) = (P|Q)|R.

3. newa(P|Q) = Plnewa( if a ¢ In(P),
new a0 = 0, newabP = new baP.

4. A(B) = {b/ayPy if A@) % Py, where {b/@)} is the substitution of b for

the free occurrences of a.

We write PC if P # 0 and if P = Py|P, implies P, = 0 or P, = 0. For
convenience we also define the spatial congruence =;, by the same conditions
above with the exception of P|0 = P and newa0 = 0. The reason for the
omission is that the equivalence classes of =, are finite sets, which guarantees
that tr(P) and sp(P) are finite sets without having to take the quotient of Proc
by =.

The transition function tr : Proc — Py;n(Proc) is characterized by reaction
rules that define the transition relation —C Proc x Proc. Tn the reaction rules
that follow, P, P',Q,Q" are arbitrary processes, M, N are summations and a is
a name:

e TP+ M —= P.
(a.P + M)|(@.QQ + N) = P|Q).
e P — P'implies P|Q — P'|Q.

P — P"implies newaP — newalP’.
P=,,Q— Q =, P imply P — P'.
The spatial function sp : Proc — {1} 4+ Py;n{Proc x Proc) is defined by:

oy =1 if PO,
P | {(P,P): P=s, Pi|P2} otherwise.

An unexpected benefit of this approach is that spatial transition systems
are a noninterleaving model of concurrency—in particular, the previous con-
struction gives a noninterleaving model of CCS. The remainder of the paper
is devoted to support this statement. It will be shown how to translate spa-
tial transition systems to Petri nets and Petri nets back to spatial transition
systems. Furthermore, these translations are shown to be an adjunction for
appropriate notions of morphism in the two categories. The morphisms we use,
especially for Petri nets, do not coincide with the usual ones, and owe much to
the coalgebraic approach followed throughout the paper.



2 Transition systems with spatial structure

The notion of spatial transition system that will be used in the comparison
with Petri nets differs slightly from the one presented in the introduction in
that instead of spatial functions with the format sp : S — {1} + Prin(S x 5)
we shall consider spatial functions sp : S — M(S) that map elements of S to
(finite) multisets of elements of S. Thus, before embarking on our programme
we recall basic notions of multisets; in an appendix we show how under certain
conditions our previous notion of spatial transition system gives rise to the new
one.

A (finite) multiset M over a set S is a function M from S to the set of
natural numbers such that M (z) = 0 for all but a finite set of elements z € S.
If M(x) > 0 we sometimes write x € M, otherwise z ¢ M. If z1,...,x, are the
elements in M, possibly repeated, we write M = [z1,...,z,]. If fis a function
defined on a finite set or multiset M, the image of f counting repetitions is a
multiset, denoted [f(z) : € M]. The empty multiset, [], maps every x to 0. Tf
M and N are multisets, their union M & N maps every x to M(z) + N{xz). Tf
N(z) < M(z) for every z, in which case we write N C M, then M — N maps
every z to M(z) — N(z). We have  M@®N)— N =M, hence M N=P®dN
implies M = P. Thus, if N C M, there is a unique P such that N® P = M.

The set of all (finite) multisets over S will be written M(S). Moreover,
(M(S),]],®) is the free commutative monoid generated by the singletons [s]
fors € S. If f : § — T is a function and M € M(S), we define the function
M(f) : M(S) = M(T) by M(fY(M) = [f(z) : x € M]; this is nothing but the
unique monoid morphism that maps each generator [s] to [f(s)].

A spatial transition system, or just STsystem, is a triple

§ = (S, (tr,sp)),
where S is a set of states and tr, sp are functions

tr: S = Prin(S),
sp: S — M(S)

that describe the transition and the spatial structures of S. These functions
are required to satisfy axioms ST1 through ST3 below, but first we introduce
some definitions and notations.

We abbreviate sp(s) to |s| for readability and call it the extent of s. A local
state is a state whose extent reduces to itself, that is, an s for which |s| = [s].
The set of local states is written Loc(S). If s, ¢ are states and ¢ € tr(s), we write
s — t and call — the transition relation of S and s — t a transition. The set of
all transitions is written T'r.

For convenience, we define a transition relation on M (Loc(S)), also denoted
by —., as follows: P — @ if, and only if, there exist a transition s — ¢ and
M € M(Loc(S)) such that P = |s| & M and Q = |t| & M. Note that s — ¢
implies |s| — |t|; the converse is not true, but a weaker form is implied by axiom
(ST3) below.

We can now state the axioms of STsystems:

(ST1) |s| € M(Loc(S)).
(ST2) P C |s| implies P = |t| for some .



(ST3) |s| = P implies s — ¢ for some ¢ such that |t| = P.
These axioms have the following intuitive reading:
e The extent of any state consists of local states only.

e Any choice of elements in the extent of a state is itself the extent of another
state (a “substate” of the former).

e Any transition of a substate determines a transition of the superstate.

Remark 2.1 Additional axioms may be needed for different purposes. For
example, in some cases it may make sense to require that |s| =[] only if s 4,
which means that states with empty extent have no transitions. Also, if we
have labelled transition systems, where transitions have names and conames as

labels as in CCS, we require that if |[s| = M ® P, M % N and P % (, then
there exists  such that s 5 ¢t and |t = N @ Q.

Proposition 2.2 If s —» t and |s| = |§'|, there exists t' such that 8" — t' and
[t = [#'].

Proof. Tf s — ¢, then |s| — |t|, hence |s'| — |¢|. By axiom (ST3), s’ — ¢’ for
some #' such that |t] = |¢']. O

Thus, the relation sp(—) = sp(—) on S of having the same extent is a
behavioural bisimulation.

To turn the class of STsystems into a category STsys we must define the
corresponding morphisms. Since STsystems are coalgebras, a morphism f :
S = & from § = (S, {tr,sp)) to &' = (S, {tr',sp'})) is a function f : S — 3’
such that

* sp’o f=M(f) osp,
o tr'o f =P(f)otr.

Thus, we must have, for every s € S,

[f() = [F®) -t els]],
tr'(f(s)) = {f(t) : € tr(s)},

where we used the same notation |—| for both sp(—) and sp’(—). The second
condition unfolds unto two subconditions:

s>t = f(s)—> f(t),
f&)=>t = Fis—>t& f(t)=1t.

Note that morphisms preserve locality and emptyness of states (that is, |s| = [s]
and |s| = []). In the sequel we need a more specialized notion of morphism.
We define the subsumption relation < on the set T'r of transitions by p — ¢ <
s — tif, and only if, |s| = |p| ® M and |t| = |q| ® M for some M € M(Loc(S))
(intuitively, p — ¢ “causes” s — t). We say s — t is a local transition if
p— g = s — timplies s —» t = p — ¢ for every transition p — ¢, that is,
Ip| = |s| and |g] = |t| (so a local transition is not properly subsumed by any
other transition). The set of all local transitions will be written Loc(T'r).



Proposition 2.3 Let f: S — S be a morphism. If s — t is a transition in S
such that f(s) = f(t) is local in S, then s — t is local in S.

Proof. Suppose p — ¢ is a transition in & and M € M(Loc(S)) are such
that |s| = [p| ® M and |t| = |¢| ® M. Then |f(s)| = M(f)(Is]) = M(f)(Ip]) &

M(HM) = [f(p)l @ M(F) (M) and |f ()] = |f(@)|@M(f)(M). As f(s) = f(2)
is local, we must have M(f)(M) = [], hence M = []. This shows s — ¢ is local.O

The converse of the previous result is not necessarily true. A morphism
f:8 — &' is strict if the following condition holds:

e s — tlocal in & implies f(s) — f(¢) local in §'.

Given M € M(Loc(S)), we are interested in those states whose extent is
contained in M, to be called the states of M and required to be preserved by
morphisms. More precisely, the set St(M) of states of M is the set of all states
s such that |s| € M. This defines a function St : M(Loc(S)) — P(S). A
morphism f : & — &' is conservative if the images of the states of any M are
the states in the image of M:

e P(f) oSt =St o M(f).

Let M € M(Loc(S)) and put M' = M(f)(M). Tf |s| C M, then M =
5] @ P for some P, so M’ = M(f)([s]) & M(F)(P) = | £(s)| & M(f)(P), hence
|f(s)| € M'. This shows the states of M are mapped on states of M’. Thus,
the important part of the conservativity condition is that every s’ € St'(M')
has the form f(s) for some s € St(M), that is, every state of M’ is the image
of some state of M.

A morphism f preserves the transitions on M(Loc(9)), in the sense that
P — @ implies M(f)(P) = M(f)(Q). If the morphism is conservative we
also have that M(f)(P) — Q' implies that there exists ¢ such that P — @
and M(f)(@) = Q'. This is the contents of the next proposition, which for
uniformity is stated in terms of the function TR : M{Loc(S)) = P(M(Loc(S)))
where TR(P) ={Q : P — Q}.

Proposition 2.4 For any conservative morphism f,
e TR o M(f) =P(M(f))o TR.

Proof. If P — @, there exist a transition s — # and M such that P = |s|®M and
@ = |t]® M. We have M(f)(P) = M(f)(|s]) @ M(f)(M) = |f(s)| & M(f)(M)
and similarly M(f)(Q) = | f(£)|&M(f)(M). But f(s) = f(t), since f preserves
transitions, hence M(f)(P) - M(f)(Q). Conversely, suppose M(f)(P) = Q'.
By definition, there exist s’ — ¢ and M’ such that M(f)(P) = |¢'| ® M' and
Q' = |t'| & M'. In particular, s’ is a state of M(f)(P), so there is a state s
of P such that f(s) = s'. We can write P = [s| & M for some M and clearly
M(f)(M) = M'. Since f(s) — ¢, there is t such that s — ¢t and f(t) = ¢
Putting Q = |t| & M we have M(f){(Q) = Q' as required. m|

The relationship between STsystems and nets will be established in terms
of strict and conservative morphisms. Accordingly, in the sequel by morphism
we shall always understand a strict and conservative morphism.



3 Petri nets

A (Petri) net! is a list
N = (B, E, pre, post)

where B and F are sets and pre, post are functions from F to M(B) satisfying
axiom N below. The elements of B are called conditions, those of F events
and the functions pre, post assign pre- and postconditions to events. As usual,
pre(e) is abbreviated to *e and post(e) to e*.

A state of N is a finite multiset over B. State M enables event e if *e C M.
Tn that case we write M 5 N with N = (M —*e) @ e® and call M 5 N a step
of N. Equivalently, there is a step M = N if, and only if, M = *e & P and
N = e* @ P for some state P. The set of all events enabled by M is written
En(M). This defines a function En : M(B) — P(E).

In this paper we shall assume nets satisfy the following condition:

(N) *¢'=*c¢@® M and e’* =e*@® M imply M = [ and e = ¢'.

If we say that e subsumes e’ if ' = *e @ M and ¢’* = e* & M for some M,
this defines a partial order and the axiom states that the subsumption order is
the identity. The next picture illustrates the kind of situation discarded by the
axiom.

If N = (B, E,pre,post) and A" = (B, E', pre’, post') are nets, a morphism
f: N = N is a pair of functions fg: B — B" and fr : F — E' such that

e pre’ o fg = M(fB) o pre,
e post’ o fp = M(fg) o post,
e En' o M(fp) = P(fg) o En.

This notion of net morphism is not standard, but is the more suitable one for
our purposes. (Note that fg is uniquely determined by fp, by axiom (IN).) The
category of nets and their morphisms will be denoted by Net.

Remark 3.1 The first condition of the definition of net morphism already im-
plies half of the third one, namely, En’ o M(fg) D P(fg) o En. First note
that this condition reads: If e € E is enabled by M € M(B), then fg(e)
is enabled by M(fg)(M). Now, if e is enabled by M, then *e¢ C M, hence
*fe(e) = M(fB)(*e) C M(fB)(M), so fr(e) is enabled by M(fp)(M). Thus,
in practice we only need to check that En' o M(fg) C P(fg) o Fn.

IThis definition was inspired by the one in [17] but does not quite agree with it in minor
details; the notion of morphism we use, however, is quite different from the one in that paper.



4 From nets to STsystems
Given a net N = (B, E, pre, post) we define an STsystem
ns(N) = (M(B), (sp, tr))
where
o sp(M1) = [[6] - b € M],
e tr(M)={N:3. M S N}.
Lemma 4.1 ns(N) is an STsystem.

Proof. Axiom ST1 results from the observation that M € M(B) is local if, and
only if, M is a singleton. For ST2, if P C |M]| for some state M, then P = |N|
for N = @@ P, the union of the singletons in P. As to ST3, suppose | M| — P
for some M and P. To find N such that M — N just take N = @ P. i

Lemma 4.2 The local transitions of ns(N') are those of the form *e — e*® for
ec F.

Proof. f M —+ N < ®*e — e®, thereis P such that *e = M@ P and e* = N® P.
But M — N, so there are ¢’ and Q such that M =’ & Q and N =¢e'* & Q.
It follows that *e =*c’ @ Q@ P and e®* =¢'* @ Q ® P, s0 Q ® P =[] by axiom
N. Tn particular, P =[], hence *e — e® is a local transition.

Conversely, assume M — N islocal. There are e and P such that M = *ed P
and N=e*® P. As M = N iglocal, P=1[],s0 M — N isin fact *e > ¢*. O

A net morphism f: NV — N’ defines an STsystem morphism
ns(f) : ns(N) — ns(N'), ns(f) = M(fB).

The following lemma checks that ns(f) is indeed a (strict and conservative)
STsystem morphism.

Lemma 4.3 For all M,N € M(B) and N' € M(B'):
1. [ns(f)(M)] = [ns(f)([b]) : b € M].
2. M — N implies ns(f)(M) — ns(f)(N). Moreover, ns(f)(M) — ns(f)(N)
is local if M — N is local.
3. ns(f)(M) — N' implies M — N and us(f)(N) = N' for some N.
4. P(ns(f)) o St = St' o M(ns(f)).

Proof. For the first statement just note that both sides evaluate to [[f5(b)] :
b € M]. For the second one suppose that M — N, so that there is e € F
and a state P such that M = *e@ Pand N = e* @ P. Let ¢ = fgle).
As M(fg) is a monoid morphism and f preserves pre- and postconditions, we
have ns(f)(M) = *e' @ ns(f)(P) and ns(f)(N) = €'* @ ns(f)(P), which gives
the desired transition. If M — N is local, then P =[], hence ns(f)(P) =[], so
locality is preserved, because *e’ — e'* is local. For the third statement, assume



ns(f)(M) — N', so that ns(f)(M) = *¢' @ P' and N' = ¢'* @ P’ for some e’ and
P'. TIn particular ¢ € En'(ns(f)(M)) = En'(M(fg)(M)), so by definition of
net morphism, e’ € {fg(e) : e € En(M)}. This shows that ' = fr(e) for some
e € En(M). There is then a state P such that M = *e® P. As ns(f) is a monoid
morphism that takes ®e to *¢’, we have *¢’ @ ns(f)(P) = *e' @ P', hence P' =
ns(f)(P). Thus, if we make N = e®* @ P, we have M — N and ns(f)(N) = N’,
as required. Finally, let M € M(Loc(M(B))) and M’ = M(ns(f)(M)). We
must show that every P’ € St/(M’) has the form ns(f)(P) for some P € St(M).
If we put M = @ M and M' = @ M', then M' = ns(f)(M). Now |P'| C M'if,
and only if, P C M', so there is Q' such that M' = P'&Q’. As M’ = ns(f)(M),
there exist P, ) such that M = P®Q, P' = ns(f)(P) and Q' = ns(f)(Q). Thus,

[ =|P| & |Q], so that P € St(M), and P’ = ns(f)(P), as required. O

5 From STsystems to nets
We associate the net
sn(8S) = (Loc(S), Loc(T'r), pre, post)
with STsystem & = (S, {sp, tr)), where
e pre(s = t) = [s],
e post(s = t) = |¢].
Lemma 5.1 sn(S) is a net.

Proof. We must check axiom N. Let M € M(Loc(S)) and e, e’ € Loc(Tr) such
that *¢’ = *e & M and ¢/* = e¢®* & M, so that we have to show that M = [].
Say e = p = ¢ and ¢’ = s — t. The conditions translate to |s| = |p| @ M and
[t| = |¢| ® M, that is p = ¢ =< s = t. The conclusion M = [] follows from the
fact that the transition s — £ is local. ad

Lemma 5.2 For M € M(Loc(S)) and s — t € Loc(Tr), we have s — t €
En(M) if, and only if, s € St(M). Thus, En(M) = {s — t € Loc(Tr) : s €
St(M)}.

Proof. This is because s — ¢ € En(M) if, and only if, *(s = ¢t) C M, and
*(s > t)=|s|. O

For a (strict and conservative) STsystem morphism f : & — &', define
sn(f) : sn(S) — sn(S’) by

su(f)p erOC()
su(f)p = (f x f) I Loc(Tr).

Lemma 5.3 sn(f) is well-defined and is a net morphism.

Proof. sn(f) is well-defined because f preserves local states and local tran-
sitions. We have pre'(sn(f)g(s — t)) = pre/(f(s) = f(t)) = |f(s)] and



M(sn(f)B)(pre(s — t)) = M(f)(|s|) and the equality follows from the defini-
tion of f. Similarly, post’(sn(f)g(s = t)) = M(sn(f)p)(post(s — t)). Finally,
for M € M{Loc(s)), we have

Plsn(f)e)(En(M)) = Plsu(f)g)({s = t € Loc(Tr) : s € St(M)}

{f(ss) = f(t):s >t € Loc(Tr),s € St(M)}

and

En'(M(sn(f)p)(M)) = En'(M(f)(M))
={s" =t € Loc(Tr") : s" € St'(M(f)(M))}
={f(s) >t € Loc(Tr") : s € St(M)}
={f(s) = f(t): s =1t € Loc(Tr),s € St(M)}

where the third equality is justified by the fact that f is conservative. O

6 Relating the categories

Having defined the functors ns : Net — STsys and sn : STsys — Net, we next
show that sn is left adjoint to ns. First, we establish some auxiliary results.

Lemma 6.1 Let S be an STsystem. The function n = ns : S — M{Loc(S))
defined by n(s) = |s| is a morphism from S to ns(sn(S)).

Proof. Let us denote by sp’ : M(Loc(S)) = M(M(Loc(S))) and tr' : M(Loc(S)) —
P(M(Loc(S))), respectively, the spatial and the transition functions of ns(sn(S));
they are given by sp'([s1,...,8,]) = [[s1],-.-,[ss]] and tr'(P) = TR(P) ={Q :

P = in S} Let s € S and |s| = [s1,...,s,]. We calculate:

sp'(n(s)) = sp'(|s])
= Sp,([slv R STL])
= [[s1],.. ., [sn]]

M) (sp(s)) = M) ([s1, - -, n])

= [ls1],-- -, lsnl]
= Hsl]v R [Snﬂ

tr'(n(s)) = {P:|s| > P in S}
={|t| : s = tin S},

Pm(tr(s)) =Pm)({t:s—>tin S}
={|t| : s = tin S},
which shows that 7 is a morphism. a

Lemma 6.2 Let S be an STsystem, N a net, [ : S — ns(N) a morphism and
s € 8. If |s| = [s1,...,8n] and f(s) = [b,...,b], then n = k and, up to a
permutation of by, ... by, f(s:) = [b] for 1 <i<n.

Proof. Denoting by sp,s the spatial map in ns(A), the morphism condition

spy © f = M(f) osp gives spy(f(s)) = [[b1],-..,[be]] and M(f)(sp(s)) =
[f{s1),..., f(sn)], hence the conclusion. 0O
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Proposition 6.3 Let S be an STsystem and n : S — ns(su(S)) the morphism
defined by n(s) = |s|. For any net N' and any STsystem morphism f : S —
ns(N), there is a unique net morphism g : sn(S) — N such that ns(g)on = f.

Proof. We use the notations of the previous two lemmas. We must define
gp : Loc(S) = B and gg : Loc(Tr) — E. We put

gs(s)  =bwhere f(s) = [b],
gr(s — #) = the unique e such that *e = f(s) and e®* = f(¢).

Note that gp is well defined because f(s) is local if s is, and so has the form
[b] for some b € B. On the other hand, gg is well defined because s — ¢ local
implies f(s) — f(t) local, and the local transitions of ns(AN) have the form
*e — ¢* for a unique ¢ € F.

Before showing that ¢ = (gB,¢r) is a net morphism, let us check that
ns(g)on = f. Take s € S and assume that |s| = [s1,...,8,] and f(s) =
[b1,...,b,) with f(s;) = [b;] for 1 <4 < n. We have:

ns(g)(n(s)) = M(gs)(ls])
= [93(51)7 s 7gB(Sn)]
=[b1,-..,bs]
= f(s).

This also implies the uniqueness of gg; since gg is uniquely determined by gp,
the uniqueness of ¢ follows.
For future reference let M = [s1,...,s,] € M(Loc(S)). Then

M(H) M) = [f(51),. .., f(sn)]
=[lgB(s1)],.-.,lgB(sn)]]
= spu([9B(s1),---,9B(sn)])
= spy(M(g )(M)

To end the proof we must check that ¢ is a net morphism. Let pre’ and
post’ be the pre- and post-maps defined in sn(N). Let s — ¢ € Loc(T'r) and let
e € E be the unique event such that *e = f(s) and e* = f(¢t). We have

pre(gr(s = t)) = ?r(ege)
M(gp)(prel(s — 1)) = %%}B)usn

and similarly, post(gr(s — t)) = f(t) = (gB)(post (s = t)). Finally, we
must show that En(M(gg)(M)) C P(gr)(En'(M)) for any M € M(Loc(S)).
Suppose € € E is enabled by M(gp)(M). Then *e C M(gp)(M), hence |*¢| C
spa(M(gp)(M)) = M(f)(M). This means that ®e is a state of M(f)(M), so
there is a state s of M such that f(s) =* e. As *e — e°®, there is a transition
s — t such that f(¢t) = e¢*. But *e¢ — e® is local, so s — t is also local and
gr(s = t) = e. This shows that e € P(gg)(En'(M)) = Plgr)({s = t €
Loc(Tr) : |s| € M}), as required. O

Corollary 6.4 The functor sn : STsys — Net is left adjoint to the functor
ns : Net — STsys.
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Appendix: Relating two notions of spatial system
In this appendix we show how a spatial system of the form
(S,sp:S = {1} + Prin(S x 9))
gives rise to a spatial system of the form
(S,spT : 8 = M(S))

provided the original system satisfies well-foundedness, determinacy, inactivity,
commutativity and associativity conditions, to be presented shortly.

Given sp : § = {1} + Prin(S x S), we shall use the following abbreviations:
sC for sp(s) = 1, st for sp(s) = B and s[t,u] for (t,u) € sp(s). We shall also
write s[t[u, v], w] for s[t,w] and t[u, v], and similarly for s[t, u[v,w]].

Let < be the relation on S such that s" < s iff s[s’,s"] or s[s”, s'] for some
s € 8. We shall assume (S, sp) satisfies the following conditions:

Well-foundedness The relation < is well-founded.

Determinacy Whenever s[s’,s"] and s[t', "] (same s), either there is u such
that s'[t',u] and #"'[u, s''] or there is v such that ¢'[¢',v] and s"[v,t"].

Inaction There is s with st.
Commutativity If s[t,u], then s[u,t].

Associativity If s[t[u,v], w], there is z such that s[u, z[v, w]], and if s[u, z[v, w]],
there is £ such that s[t[u, v], w].

Note that the spatial system for CCS satisfies all conditions.

If <* is the reflexive-transitive closure of < and t <* s we say t is a substate
of s. The set of substates of s will be written Sub(s). Since sp(t) is finite, the
set {u : u < t} is finite, so Sub(s) can be seen as a finitely branching acyclic
graph where the set of successors of ¢ is {u : u < t}. If < is well-founded, the
graph is finite (otherwise it would have an infinite branch by Konig’s lemma,
contradicting well-foundedness). In that case we let h(s) to be the height of the
graph. Note that if h(s) = 0, then either s© or s*.

For a spatial system satisfying the above conditions, we define a function
spT : S — M(S) by induction on the height of the elements in S:

(] if s+,
spT(s) = [s] if 5,
spt(s') @spt(s”) if s[s',s"].

Of course we must show that the definition does not depend on the choice
of the pair (s, s"”) in sp(s), and that is where determinacy comes into play. For
suppose we also have s[t', "] and assume without loss of generality that there
is w with §'[t',u] and #"[u, §"]. By induction hypothesis,

spT(s") @ spt(s”") =spT(t') @ spT (u) @ spt(s”) =spT (') @ spT(t”),

as required.
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By induction on the height it is easy to see that sp™(s) consists only of
local states (with respect to sp™), so (S,sp™) satisfies axiom (ST1). It is not
difficult to see that (S,sp™) also satisfies axiom (ST3), so is a spatial system
of the second kind.

The correspondence

(S,sp: S = {1} +Prin(Sx8)) = (S,spT:85— M(S))

is the object function of a functor which is the identity on morphisms (that is,
if f:8 — T is a morphism of spatial systems of the first kind, it is also a
morphism of spatial systems of the other kind). We omit the details.

We could also define in a straightforward way a functor in the reverse direc-
tion, but we omit the construction since it is not useful to assign a noninter-
leaving semantics for calculi as exemplified for CCS.

Acknowledgements Thanks to Luis Caires for discussions on related topics.
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