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Abstract

In this note we describe models for a simple spatial logic £ whose only
spatial connectives are inaction and parallel composition. The models
are transition systems with an additional structure on the states to inter-
pret the spatial operators. Both the transition and the spatial structures
are described in coalgebraic terms, since interpreting the logic requires
observing the structure of states rather than building new ones. The cor-
responding notion of bisimulation takes into account both structures. We
show that bisimilarity is equivalent to logical equivalence, thus extend-
ing Hennessy-Milner’s result to the present framework. We discuss the
possible role of £ in characterizing classes of models and show that the
spatial operators are derived operators in a more primitive coalgebraic
modal logic.

1 Introduction

There has been recently a growing interest in logics that support in a integrated
way both behavioural and so-called spatial properties of concurrent systems
[1, 3,4, 6, 15, 17]. The models for spatial logic that have been considered so far
have been mostly for concrete domains like the ambient calculus [6], the asyn-
chronous [3] or synchronous [2] 7-calculus, semistructured data [5] and mutable
data structures [17], among others. Tn this note we propose a general family of
models consisting of transition systems whose states has been endowed with a
structure intended to capture their spatiality in a broad sense. The traditional
approach has been to consider the set of states as an algebra for an appropriate
set of operators (e.g. [11, 7]). Instead, we propose to treat space in coalgebraic
terms, the main reason being that for the applications we have in mind we need
to observe the structure of given states rather then using them to construct
new states (for coalgebras see [10, 19, 9]). Furthermore, this way we have a
uniform treatment of space and time, since the dynamics of transition systems
is naturally described in coalgebraic terms. This decision has important con-
sequences. For example, the notion of bisimulation associated with the models
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takes into account both the spatial and the transition structures, and so is finer
than the bisimulation associated with just the underlying transition structure.
This provides an explanation for the observation made by several researchers
that spatial logic has an intensional character, in that it discriminates between
states that are behaviourally equivalent. A somewhat unexpected outcome of
this approach is that such transition systems with spatial structure can be seen
as a noninterleaving model of concurrency [14].

In this note we consider a very simple spatial logic, which is basically Hennessy-
Milner logic [13] with the spatial operators 0 (void, nullary) and | (composition,
binary): 0 is satisfied by any inactive process and A|B is satisfied by any pro-
cess which is a parallel composition of a process satisfying 4 with a process
satisfying B. It turns out that to interpret these operators we only need to
describe the spatial structure on the set S of states by a “spatial function”
sp 1 S — Ps(S x S), where Py is the finite powerset functor; a pair (s',s") in
sp(s) means that s can be observed as a parallel composition of s’ with s; if
sp(s) is empty, s is inactive. We then say that s satisfies 0 if s is inactive, and s
satisfies A|B if s can be observed as a parallel composition of a state satisfying
A with a state satisfying B.

In this note we show for the logic and models briefly outlined above that
bisimilarity is equivalent to logical equivalence, thus extending Hennessy-Milner’s
result to the present framework. We also discuss the possible role of the logic in
characterizing particular classes of models and show that the spatial operators
are derived operators in a more primitive coalgebraic modal logic. We end with
some suggestions for future work.

2 A simple spatial logic

We consider in this note a very modest spatial logic comprising only the spatial
operators of inaction and parallel composition. Our logic £ is the set of formulas
described by the following syntax:

ABu=T|-A|AAB|QA|0| AB

Thus, we have the propositional constants T for true, — for negation and
A for conjunction. The modality ¢ is associated with an internal transition
(for simplicity we disregard labelled transitions). The remaining two formulas
are the spatial formulas. The formula 0 expresses inaction, and A|B a parallel
combination of a process satisfying A with a process satisfying B. This small
logic may be understood a mild extension of a Hennessy-Milner-like logic (apart
from the absence of labels in the transition modality) with two basic spatial
operators. We write Ly, for the logic without the spatial operators and L, for
the logic without the temporal modality.

Labelled transition systems with spatial structure

The models of £ we consider here are labelled transition systems with spatial
structure, which consist of a set S together with functions

tr: S — Pr(S),
sp:S — Pr(Sx09),



where P; is the finite powerset functor. These functions are intended to describe
the transition and the spatial structures of the system, respectively. The pair
(S, try is an ordinary (unlabelled, for simplicity) transition system, to which a
spatial structure has been added; we put as usual s — ¢ iff ¢ € tr(s). The pairs
in sp(s) C S x S are the decompositions of s into parallel components. Tn the
particular case where sp(s) = (), the state s is considered to be inactive.

It is reasonable to expect that these data obey some conditions, for example
to capture the idea that parallel composition is commutative or to relate the
transition and the spatial structures. Such conditions will be discussed later.

Satisfaction

Given the logic £ and a lts with space (S, tr, sp), we define a satisfaction relation
EC £ x S by the following clauses:

e s|= T always.

o s|=-A il s~ A
e sEAABIif s|= A4 and s = B.
e sEOQAIMIIt:s—>tand t = A

e s E0iff sp(s) = 0.

slE=A|Biff 3(s',s") € sp(s) : s' = A and ¢ |= B.

As an example, the formula A £ =0 A =(=0|=0) describes a state that is
neither inactive nor a parallel composition of non-inactive states. We have
s |E A iff sp(s) # 0 and whenever (s',s"") € sp(s), then sp(s’) = 0 or sp(s’) = 0.

3 Bisimilarity and logical equivalence

Bisimulation

Tn a lts with space (S, tr, sp), a bisimulation is a symmetric relation B C S x S
such that sRf implies:

e Tor all s — &', thereis t — t' such that s'Rt'.
e For all (s',s") € sp(s), there is (¢',t") € sp(¢t) such that ' Rt’ and s Rt".

Bisimilarity ~ is the greatest bisimulation.

If we take into account only the transition condition, we obtain the standard
notions of bisimulation and bisimilarity in 1ts’s, which in this context we call
transition bisimulation and transition bisimilarity. Likewise, by considering only
the spatial condition we obtain spatial bisimulation and spatial bisimilarity. We
denote the two particular bisimilarities by ~. and ~p.



Logical equivalence

Given a lts with space (S, tr, sp) and s,t € S, we write

S =L,5 t

orjust s=p tiff {Ae L:sE A} ={A € L:t]= A}. Similar equivalences are
defined by considering the logics £y, and Lgp. In the transition case, it is known
that ~y, coincides with =, , in the sense that s ~;. tiff s =, tfor all s,¢ € S.
We next proceed to prove that the same is true for the purely spatial case. It is
interesting to note that the proof technique in the spatial case is similar to the
standard proof for the transition case, which is one of the advantages of treating
behaviour and structure in the same framework.

Spatial bisimilarity as logical equivalence

Lemma 3.1 =, is a spatial bisimulation, hence is contained in ~gp.

Proof. The relation =,__ is clearly symmetric. Now suppose s =, t for some
s,t € S. Given (s',s") € sp(s), we must find (¢',t") € sp(t) such that s" =, ¢
and s" =, t", that is,

s

{AE'CSPZS’ |:A}:{AE£SP:t’ |: A}
{AE,CSPZS” |:A}:{A€£Sp:tll |:A}

If s" = A" and " = A", then s |= A’|A". As s =¢,, t, we have t = A’|A",
hence there exists (¢',t") € sp(t) such that ¢ = A" and t"" | A”. Tn principle,
the pair (¢',t") depends on the formulas A" and A”. Assume we have shown that
there exists a pair (¢, ¢'") that satisfies the required condition for all choices of A’
and A”. With this hypothesis, we can prove that s’ =, ' and s =, #". Let
us suppose that s’ |= A’. As s =T, we have t' |= A" and ¢ |= T. Conversely,
if # |= A" but s’ [£ A, then s’ = = A" hence, by what has just been proved,
t' = —A’, a contradiction. Thus, s’ and #' satisly the same formulas, therefore,
s' =p,, t'. Similarly, s =, t".

To finish the proof we only need show that there exists a pair (¢',¢") such
that for all A" and A", if s | A" and " |= A", then t' = A" and t"" |= A”.
As sp(t) is finite, there exists a finite set {(¢],¢}),...(t,, 1)} C sp(t) such that
if s' = A" and s’ |= A”, then ¢} = A" and ¢! = A" for some i. Reasoning by
contradiction, let us suppose that for every ¢ it was possible to find formulae A/
and A} such that s' = A} and " | AY but ¢} £ AL or ¢ £ A. Forming the
conjunctions A’ 2 A" A--- A A" and A" 2 A" A--- A A" we have s' = A" and
s'" |E A”. By hypothesis, there exists i such that ¢} |= A" and ¢/’ = A”. But this
implies t; = AL and ¢! = AY, contradicting our assumption. The assumption
must then be false, which means that there exists 4 such that for all formulas
A" and A" such that s’ = A" and s = A", we have t) |= A" and ¢/ = 4". O

To prove the converse we introduce the approximations relations ~gp ,,, de-
fined inductively for all n > 0 as follows:

® s ~g0 t always.

o s ~gpnt1 tifl for all (s',s") € sp(s), there exists (¢',¢") € sp(t) such
that s" ~gp t" and &' ~g,,, t7, and for all (¢/,¢") € sp(t), there exists
(s',8") € sp(s) such that " ~gp ' and s ~gp 5 7.



Note that m > n implies ~p m C~sp n.
Lemma 3.2 s ~g, t iff s ~gpn t for all n.

Proof. Let ~ be the intersection of the ~gp,,. It is easy to see that ~g, is
contained in ~. To prove the converse, we show that = is a spatial bisimulation.
Clearly, ~ is symmetric. Assume s &~ # and let (s',s") € sp(s). For every n,
there exists (¢, ¢} € sp(t) such that s’ ~gp ), and §" ~g, 5t Since sp(t) is
finite, one such pair at least, let us call it (¢',¢"), is used infinitely many times,
which means that in fact it can be used for all n since the relations ~, ,, are

decreasing. But this implies s’ &~ ' and s’ ~ ", as required. O

Lemma 3.3 ~, is contained in =¢_ .
P

Proof. The “depth” d(A) of a formula A is defined inductively by the following
cases:

o d(T) =0.
o d(~4) = d(A).

(A A B) = max{d(4),d(B)}.
(

(

2

o

0)=1
e d(A|B) = 1+ max{d(A),d(B)}.
Let L, be the set of formulas A € £,, such that d(A4) <n. Put s =¢, , ¢iff

sp,n

{A€Lypn:sEA}={A€ Ly, :tl= A} Clearly, s =¢, tiff s=,,, , tfor
all n > 0. To prove that ~z,C=,,  we only need to show that ~g,,C=¢_ .
for all n.

For n = 0, we have s ~g, t for all s and . As {A € Lyp0: 58 = A} is the
set of propositional tautologies for all s, we conclude that s =, , t. Assume
that the result has been established for n and suppose that s ~gp pt1 . As
we also have s ~, , t, the inductive hypothesis implies that s and ¢ satisfy the
same formulas of depth < n, so we only have to check that they satisfy the same
formulas of depth n+ 1. If d(4) =n+ 1 and s |= A, we will show that ¢ |= A;
the converse is similar. Tn the case n = 0 we may have A = 0, which implies
sp(s) = 0. Tn that case also sp(t) = 0. since s ~gp 1 ¢, hence t |= 0. If A has the
form A’'|A”, there exists (s',5") € sp(s) such that s’ | A" and s = A”. By
the hypothesis s ~g, n11 t, there exists (t',t") € sp(t) such that s’ ~gp , #' and
§'" ~gpn t". By inductive hypothesis, #' |= A" and ¢ |= A", since d(A") < n and
d(A") < n. It follows that ¢ |= A’|A”. In the case in which A4 is a propositional
combination of the two previous cases, the proof is by induction on the number
of propositional connectives in A, taking the cases just considered as the base
cases. O

Theorem 3.4 ~, coincides with =, _.
sp

The general case
Combining the transition and the spatial cases we obtain:
Theorem 3.5 ~ coincides with =,.

We omit the details.



4 Classes of models described by axioms

As noted above, concrete instances of lts’s with space satisfy certain properties
that we might like to introduce as axioms to characterize classes of models.
For example, we might require that whenever (s',s") € sp(s) it is also the
case that (s”,s') € sp(s), so as to capture observationally the commutativity of
parallel composition. Now in a coalgebraic framework we are not supposed to
observe states directly, so we should only mention states up to bisimilarity. The
commutativity conditions should then be rephrased as follows: If (s, 5"} € sp(s),
there exist ' ~ ¢’ and #' ~ s such that (¢",¢") € sp(s). The interesting thing
is that this formulation allows us to express commutativity with the logic L.

Lemma 4.1 Let (S, tr,sp) be a lts with space and s € S. The following state-
ments are equivalent:

1. If (¢',8") € sp(s), there exist t"" ~ §" and t' ~ ' such that (t",t") € sp(s).

2. s = (A|B) = (B|A) for all formulas A and B, where = is the implication
stgn.

Proof. (1 = 2) This is immediate, because bisimilar states satisfy the same
formulas.

(2 = 1) Suppose (s/,s") € sp(s). Tf A" and A" are two formulas such
that s' = A" and s &= A”, then s = A’|A”, hence s |= A"]|A’, so there is
(t",t") € sp(s) such that # |= A" and #' |= A’. In principle, the states ¢',¢"
depend on the formulas A’, A”, but as in the proof of Lemma 3.1, we can show
that it is possible to choose ¢',t" so that s’ | A" and " = A” imply # | A’
and ¢ |= A" for all A’, A”. As in the same proof, we conclude that s’ ~ ¢’ and
5" ~ t". This ends the proof. a

We state additional examples of common properties without further com-
ment:

¢ A|0 & A (inactive states are neutral with respect to parallel composition).

A|B = BJA (parallel composition is commutative).

(A|B)|C & A|(B|C) (parallel composition is associative).

0= =0T (inactive states have no transitions).

(OA)|B = O(A|B) (local transitions cause global transitions).

5 Relation with modal logics for coalgebras

A benefit of the coalgebraic models of spatial logic is that there are very general
ways to associate modal logics with coalgebras. The question arises: What
is the relationship of spatial logic to those modal logics? We next show that
the fragment of spatial logic that we have been considering can be obtained
by introducing appropriate “spatial modalities” in terms of which the spatial
connectives can be defined as derived operators. For convenience, we follow here
the approach proposed by RoBiger (see e.g. [18]; an alternative more general



approach can be found in [16]; for a general introduction to the field of modal
logics for coalgebras see [12]).

Again, we concentrate on the purely spatial case for illustrative purposes.
So we are going to consider the endofunctor FX = P;(X x X) on the category
of sets and “purely spatial” systems (S,sp) with sp: § — F'S.

The coalgebraic modal logic of (S, sp)

Following [18], we associate with each subterm S; of P;{S x S) a description
language £; whose basic statements have a modal nature that relate the lan-
guages among themselves. The basic statements are then combined by the
propositional (non-spatial) connectives to give the full languages £;.

Term Language Basic statement
Si=85 L1 (Sp>A, A€ Lo,
Sy = Pf(S X S) Lo <’Pf>z4, A€ L3,
S3=8x%x8 L3 <7Tl>z4 Ae 4 (Z = 1,2).

Here, m; : S x S — S (i = 1,2) are the canonical projections.

Satisfaction relation

We define a satisfaction relation |=; between elements of S; and statements of
L; by simultaneous induction for all languages. We present the definition for
the basic modal statements only:

L1: s (sp)A < sp(s) E2 A
Ls: PE2(P)A < FpePpkEs A
L3: p |:3 <7Tl>14 < Wi(p) |21 A (7, = 1,2).

The spatial connectives are derived connectives in £;

The spatial connectives 0 and | are easily defined:

02 (sp)~(Pp)T,
AIB = (sp)(Py)((m1)A A (m2) B).

Indeed, it is easy to see that s |=1 (sp)=(Ps) T iff sp(s) = 0, iff s satisfies 0.
On the other hand, s =1 (sp)(Py)({m1)AA {m2) B) iff there exists (s1, s2) € sp(s)
such that s; =1 4 and sz |51 B, which is the same as saying that s satisfies
A|B.

6 Discussion and extensions

This note proposed a general approach to the study of models for spatial logic
where both the behavioural and the spatial properties are interpreted in coal-
gebraic terms. For simplicity we considered here a logic with only the two most
basic spatial operators, namely, inaction and parallel composition. To inter-
pret these operators it was enough to consider a spatial function of the form
sp : S = Pr(S x S). but other forms are possible, and in fact in [14] two other



types of spatial function were considered. What is required is a systematic study
of these basic models, establishing the appropriate correspondences between the
respective categories.

Of course the logic considered in this note can be extended in several ways,
requiring more sophisticated notions of model. Noteworthy in this respect are
spatial operators that deal with names, like the fresh name quantifier and others
[3]. In this case it is not enough to consider coalgebras over sets, we need the
richer structure of sets on which act permutations of names [8].

We end with two research directions already pointed out in this note: the
characterization of classes of models by sentences of the logic, and the relation-
ship between spatial logics and the coalgebraic modal logics associated with the
types of models under consideration.

Acknowledgements Thanks to Luis Caires for discussions on related topics.

References

[1] L. Caires. A model for Declarative Programming and Specification with Con-
currency and Mobility. PhD thesis, Dept. Informatica, FCT, Universidade
Nova de Lisboa, 1999.

[2] L. Caires. Behavioral and Spatial Properties in a Logic for the Pi-Calculus. In
1. Walukiwicz, editor, Proc. of Foundations of Software Science and Com-
putation Structures (FoSSaCS’2004), Lecture Notes in Computer Science,
Springer-Verlag (to appear).

[3] T.. Caires and T.. Cardelli. A Spatial Logic for Concurrency (Part I). Infor-
mation and Compuiation (2003), 186 (2), 194-235.

[4] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). In
CONCUR 2002 (13th International Conference), Lecture Notes in Computer
Science, Springer-Verlag, 2002.

[5] L. Cardelli, P. Gardner and G. Ghelli. Manipulating trees with hidden la-
bels. Tn A.D Gordon, editor, Proc. Foundations of Software Science and
Computation Structures (FoSSaCS’2003), Lecture Notes in Computer Sci-
ence, Springer-Verlag, 2003.

[6] T.. Cardelli and A.D. Gordon. Anytime, Anywhere. Modal Logics for Mobile
Ambients. In Proc. 27th ACM Symposium on Principles of Programming
Languages, ACM, 2000, pages 365-377.

[7] A. Corradini, R. Heckel and U. Montanari. From SOS specifications to
structured coalgebras: How to make bisimulations a congruence. In Proc.
CMCS’99, ENTCS 19, Elsevier Science, 1999.

[8] M.J. Gabbay and A.M. Pitts. A new approach to abstract syntax with vari-
able binding. Formal Aspects of Computing 13 (2001), 341-363.

[9] H.P. Gumm. Elements of the General Theory of Coalgebras. LUATCS’99,
Johannesburg, 1999.



[10] B. Jacobs and J.J.M.M. Rutten. A tutorial on (co)algebras and
(co)induction. EATCS Bulletin (1997), 62, 222-259.

[11] A. Kurz. Logics for Coalgebras and Applications to Computer Science. PhD
thesis, Universitat Minchen, 2000.

[12] A. Kurz. Coalgebras and Modal Logic. Course notes, CWI, 2001.
[13] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[14] L. Monteiro. A noninterleaving model of concurrency based on transition
systems with spatial structure. Tecnical report, Dept. Informatica, FCT,
Universidade Nova de Lisboa, 2003.

[15] P. O’Hearn and D. Pym. The logic of bunched implications. The Bulletin
of Symbolic Logic, 5 (2) (1999), 215-243.

[16] D. Pattinson. Semantical principles in the modal logic of coalgebras. In Pro-
ceedings 18th International Symposium on Theoretical Aspects of Computer
Science (STACS 2001), LNCS 2010, Springer, Berlin, 2001.

[17] J.C. Reynolds. Separation logic: a logic for shared mutable data structures.
In Proceedings of the 17th Annual Symposium on Logic in Computer Science,
TEEE Computer Society Press, 2002.

[18] M. RoBiger. Coalgebras and modal logic. Tn H. Reichel, editor, Coalgebraic
Methods in Computer Science (CMCS’00), volume 33 of Electronic Notes in
Computer Science, pages 299-320, 2000.

[19] J.JM.M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249, 3-80, 2000.



