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Abstract. This paper has two main contributions: For one, we describe a general method
for verifying safety properties of non—well-quasi—ordered infinite—state systems for which
reachability is undecidable in general, the question being whether a set U of configurations
is reachable. In many cases this problem can be solved as follows: First, one constructs a
well-quasi—ordered overapproximation of the system in question. Thereby one can compute
an overapproximation of the set Pre*(U) of all predecessors of U. Second, one performs an
exact bounded forward search for U (starting at the initial state) which always stays inside
the already computed overapproximation of Pre*(U), thus curbing the search space. This
restricted forward search is more efficient than a normal forward search, yielding answers of
the form YES, NO, or UNKNOWN, where the YES and NO answers are always correct.
As our second main contribution herein, we apply our method to relabelling—free CCS with
finite sums, which is already a process calculus for which reachability is undecidable. To our
knowledge, this part is actually the first application of well-structered systems to verifying
safety properties in process calculi. The application is done via a special Petri nets semantics
for the calculus that we consider.

1 Introduction

Automatic techniques for reachability analysis have been developed for well-structured infinite—
state systems for which there exists a well-quasi—order on the set of configurations (e.g., [2,9]).
The main idea is that for these systems one can effectively construct a representation of Pre*(U),
the set of all predecessors of any given upward—closed set U of configurations.

Our aim is to make this technique applicable also to non—well-structured systems, such as CCS—
style process calculi, for which reachability is undecidable in general. Our idea is to first construct
a well-quasi—ordered overapproximation of the given system in the form of a (generalised) Petri
net. Then one can compute an overapproximation of Pre*(U), given an upward—closed set U of
configurations. If the initial configuration is not in this overapproximation of Pre*(U), then the
answer to the reachability problem is surely NO. Otherwise, one can, in a second step, do an
exact forward search (possibly using acceleration methods) which always stays inside the already
computed overapproximation of Pre*(U), thus curbing the search—space. Due to the restricted
search space, this forward search is more efficient than a normal forward search. It still does not
terminate in general, however, and thus one restricts the depth of the forward search. It follows
that the forward search is (unavoidably, in general) incomplete and therefore yields answers of the
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form YES or UNKNOWN. Altogether, our method thus yields answers of the form YES, NO, or
UNKNOWN.

In Section 2 we recall well-structured transition systems and some central results about them.
In Section 3 we describe our method of combined backwards and forwards search in general terms.
In the rest of the paper we apply it to relabelling—free CCS with finite summation, which is recalled
in Section 4. In Section 5 we show how to encode the process calculus into generalised Petri nets
and in Section 6 we show that these nets are well-structured with respect to an appropriate well-
quasi-ordering on markings. In Section 7 we describe the application of the backward/forward
search technique to these systems. Section 8 contains conclusions and topics for future work.

2 Preliminaries on Well-Structured Systems

For our purposes, we regard a transition system as a pair (S,—) where S = @ x D is a set of
states formed by a finite set @) of control states and a possibly infinite set D of data values, and
— C S x S is a set of transitions between states. A transition system is labelled if the transitions
carry annotations from a finite set L of labels. We write (s, s') € — as s — §', and (s, s') € — with
a label of a as s = s'. We denote the reflexive and transitive closure of — by —*. For any S’ C S
and € Llet Pre,(S') :={s€ S |3s' € S'.53 s'} and Post,(S') :={s€ S |3s' € S'.s' 3 s}

Next, we recall well-structured systems, as well as some decidability results for such systems [2].

A preorder is a binary relation that is reflexive and transitive. A preorder < on a set D is
(a) decidable if it is possible to effectively determine whether a < b for any a, b and (b) a well-
quasi-ordering (wqo) if there is no infinite sequence ag,ar,.. ., so that a; £ a; for any i < j. A set
M C D is said to be canonical if a,b € M implies a A b. M is a minor set of A if, for all a € A,
there is a b € M so that b < a and, at the same time, M is canonical.

Let D be a set. A subset U C D is upward closed if whenever a € U,b € D and a < b, then
b € U. The upward closure of a set A C D is the upward closed set C(A) := {b€ D | Ja € A.a < b}.
We say that C(A) is generated by A. The following lemmas can be found proven in [2]:

Lemma 1. If a preorder < is a well-quasi—ordering, then for each set A there exists at least one
finite minor set of A. O

Given a set A, we use Min to denote a function that returns a minor set of A. From the above
lemma and the fact that C(Min(U)) = U for each upward—closed set U, it follows that Min(U) is
a finite characterisation of U. Thus, a set Min(U) can be used as a representative of U.

Lemma 2. For a preorder < on a set A, < is a wqo if, and only if, for each infinite sequence
Ug C Uy C... of upward—closed sets in A, there is a k so that Uy = Ug41.- O

The forward direction of this lemma is important to prove termination of some verification
algorithms based on well quasi-orderings.

Given a preorder (D, <) we define the preorder (D*, <*) on the set D* of finite strings over D
so that 1 ...Zpm < y1...y, if there is a strictly monotonic injection f: {1,...,m} = {1,...,n}
where z; < yy;) for 1 < i < m. In a similar manner we define the preorder (M(D), <M) on the
set M(D) of multisets over D: A < B if there is a multiset injection f : A = B so that z < f(x)
for all z € A.

Theorem 1. (Higman [10]) If < is a wgo on D, then <* is a wgo on D* and <M is a wgo on
M(D). O



For well-structured systems, we require that the set of data values be equipped with a decidable
preorder <. We also assume that we have a minor set of D, which we denote by D,,;,,. We extend
the preorder on D to a decidable preorder < on the set of states S of a transition system by
(g,d) < (¢',d') if and only if ¢ = ¢’ and d <X d'.

A labelled transition system (S, —) is monotonic if, whenever s <t and s = s', then t > #' for
some t' so that t < ¢'.

Definition 1. A transition system £ = (S,—) with a decidable preorder <X on the set of data
values, is said to be well-structured if

1. < is a well-quasi-ordering and
2. (S, —) is monotonic with respect to <X and
3. for all s € S and a € L, the set Min(Pre,(C({s}))) is computable.

As emphasised in [2], Min(Pre,(C({s}))) is finite if < is a well-quasi-ordering. We use
Minpre,(s) as shorthand for Min(Pre,(C({s}))). The following theorem is the reason why we
apply the theory of well-structured systems to infinite state processes:

Theorem 2. Let (S, —) be a well-structured transition system, (q,d) a state and U an upward-
closed subset of the set of data values. Then it is decidable whether it is possible to reach, from
{g,d), any state {¢’,d') with d' € U. O

3 The Method in General Terms

Well-structured infinite—state transition systems have been studied intensively in recent years and
several algorithms for reachability analysis have been developed (e.g., [2,9,7,3,5,1]). Often the
idea is that there exists a well-quasi—ordering on the set of configurations and thus any upward-
closed set is characterised by its finitely many minimal elements. Using this fact, one can effectively
compute a symbolic representation of the Pre*(U) (set of all predecessors) of any upward closed
set of configurations. Checking if some element of an upward—closed set U is reachable from the
set I of initial configurations can then be done by simply checking if I N Pre*(U) # 0.

Our aim is to make this technique also applicable to some classes of non—well-structured
infinite—state systems, like CCS-like process calculi. Since the reachability problem is undecid-
able for these systems, one cannot expect to obtain any decision procedure. However, our method
will yield answers of the form YES, NO, or UNKNOWN, where the YES and NO answers are
always correct.

First we describe our approach in general terms. The problem we consider is the following. Let
T be some non—well-structured transition system with set of initial states I. Let a be some atomic
action and A the set of all configurations where a is enabled. The question is if, starting at some
state in I, one can reach some state in A.

Our method works in several steps:

1. First one constructs a well-structured system W (T), which is an overapproximation of 7.
W(T) has the same underlying set of (potential) configurations as T, although the set of
reachable configurations may be larger. As W(T') is an overapproximation of 7' we must have
that Vi1, 2. (ty =7 t2 = t1 =w(r) t2). As W(T) is well-structured, there exists a well-quasi—
ordering on the set of configurations. In W (T') the corresponding set W(A) (with A C W(A))
is upward closed.

2. By backward search, one can now effectively construct the set Prey (W (A)), the set of
predecessors of W (A) in W(T'). Since we consider an overapproximation we obtain Prej.(A) C
Prejy () (W(A)). Now there are two cases.



If I'N Preyyry(W(A)) = 0 then also I N Prep(A) = 0 and thus in T the set A is not reachable
from I. In this case our procedure gives the correct answer NO.

If IN Prejy1y(W(A)) # 0 then nothing is decided yet. Maybe the set A is really reachable from
I'in T, but maybe it is just the case in the coarser overapproximation W (T'). So we continue
with the next step.

3. One now does a forward search of reachable states in the system T, starting with the set
I. However, we make the forward search more efficient by restricting it to those config-
urations that are in Prejy ;) (W(A)). (Nothing is lost by this restriction, since we have
z & Preyyry(W(A)) = =z ¢ Prep(A) = =z /A% A). So we iteratively construct sets of
configurations I s.t. Io := I and Ij11 := (I U Postr(Ix)) N Preyy () (W(A)). Additionally one
can combine this with acceleration methods to speed up the search. In this case one constructs
It = (I U Hi) N Preyy ) (W(A)), for some Hy, with Postr(Ix) C Hy, C Postt(I,).

One constructs these sets Iy, up to some some fixed bound b for k. If Iy N A # @ for some k < b
then our procedure gives the correct answer YES. Otherwise the procedure returns the answer
UNKNOWN.

One can obtain a lower bound for the required b from the backwards search, but no upper
bound, since the reachability problem is undecidable in general. The bound b must be at least
as large as the minimal number s s.t. I N Prejy 1) (W(A)) # 0. This is because the shortest
path from I to A in T can only be longer than the shortest path from I to W(A4) in W(T),
since W(T') is an overapproximation of T' (see Section 7). Thus, if one chose b < s then the
forward search could not possibly find A.

Remark 1. Alternatively, one might consider to abort the backwards—search at the smallest level
s where I N Preyyry(W(A)) # 0, instead of computing the whole Preyy, (W (A)). However, this
has the big disadvantage that the following forward-search cannot be restricted. Restricting the
forward-search to Preyy, 1) (W(A)) is safe (as shown above), but restricting it to Prejy ) (W (A4))
is too restrictive. So, in this case, one would have to do an unrestricted forward—search, which is
much less efficient. Therefore, we compute the whole Prejy, ) (W (A)) as described above.

Our method has several advantages over a normal or even accelerated forward search where
there is no prior backward search:

1. It can produce not only definitive YES but also definitive NO answers.

2. The forward search is more efficient, since the search space is restricted (but without any loss of
information). This allows to use higher bounds b and thus a deeper and more complete forward
search. Acceleration methods can still be used in the forward search.

In the following, we apply this method to a particular class of non—well-structured systems,
which are described by a (still Turing-powerful) fragment of Milner’s CCS [11]. The idea is to
encode the CCS-processes into generalised coloured Petri nets and then to use a modified weaker
variant of these nets as a well-structured overapproximation.

4 Agents

We consider a calculus that closely resembles Milner’s CCS [11], except for (a) the lack of an
operator for relabelling and (b) a binary operator for summation instead of one with generic —
and potentially infinite — arity. We do not consider relabelling since it is not obvious how we could
accommodate it within our Petri net semantics, where this semantics is, however, the link that
allows us to apply well-quasi—orderings to the calculus; we do not consider infinite summation since
our ultimate interest here lies in automated verification. As is well known, the state reachability



problem for the calculus is undecidable, even though there is no relabelling. One can prove that
by encoding a two—counter machine.

We assume a set Chan := {c, ...} of channels and a set Const := {A,...} of agent constants
to be given. The set Act := {a, ...} of visible actions is derived via Act = Chan U {€ | ¢ € Chan},
where ¢ # d and, at the same time, ¢ # d implies ¢ # d for all ¢, d. The set Act, := {a,...} of
actions is derived by Act, = Act U {7}, 7 ¢ Act. The ~—operation is extended to a self-inverse
complementation operator on this set via¢ =cand 7 = 7.

The syntax of the language is given by the following BNF-like grammar clause:
P:=0|aP|P+Q|P|Q|P\c|A (1)

We use a standard interleaving SOS for agents, which is shown below:

WP % P P = P Q= Q' P = P Q= Q
' P+Q-5P P+Q-5Q PQ-5P|Q PQ-5PIQ
P-4 P %Q PLP ey
SN TQ—>Q 7 ¢ ¢ {o,a} %Aép
P|Q — P'|Q' P\c % P'\c A2 P

5 P—Nets: Finite Petri Nets for Finite— and Infinite-State Agents

We define p—nets as an extension of Petri nets, where the individual tokens carry information about
their firing history. We show how the process calculus from the previous section can be encoded
into p—nets. There are two different conditions on when p—net transitions are enabled to fire: First,
there is strong enabledness, the standard notion for p—nets, where the firing history in the tokens is
taken into account. Second, there is a weaker condition called weak enabledness, which ignores the
token-histories and is more like the standard Petri net firing condition. Strong enabledness always
implies weak enabledness, but not conversely. The precise definitions are given below.

P-nets with the strong enabledness condition for p—net transitions faithfully simulate the be-
haviour of the processes defined in the process calculus that we consider herein, but they are not
well-structured systems. P-nets with the weak enabledness condition, however, are well-structured
and form an overapproximation of the p—nets with the strong enabledness condition.

A pnet always depends on an environment of agent constant definitions. Hence, from now on,
we fix an arbitrary such environment, defining the places, transitions and firings of the specific
p—het arising from it.

Places The set Place := {p,q,...} contains all agent constants together with all agents and
sub—agents that occur on the right—hand side of any defining equation within the environment.

Transitions Every p-net transition ¢ is a pair of the form (Pre, Post), where Pre and Post are
sets of places, which are called the pre— or postset of t. We denote Pre also by Pre(t) and Post by
Post(t).

Then, first of all, a set Trans(p) of preliminary p—net transitions for any p € Place is given as
defined below. The “—”—symbol signifies labellings that are associated with some p—net transitions



or arcs within p—net transitions.
Trans(a.P) = {<{a.P}, {P}> - a}
Trans(P + Q) = {{({P + QL {P}), ({P + @} {Q})}
Trans(P|Q) = {({PIQ},{P~1Q ~1})}
Trans(P\e) = {({P\c},{P}) = \c}
Trans(4) = {<{A}, {P}>}, given that A 2 P

What is left is to take possible synchronisation into account. That is done by the following definition
of the overall set Trans of p—net transitions:

Trans = (Upeplace Tmns(p)) U {<Prel U Prey, Post, U Post2> = (1, ¢) |

(Prey, Post1) — a € Trans(p) for some p € Place and
(Prez, Posts) — a € Trans(q) for some q € Place,
where c¢ is the channel on which a and @ occur

Later on we will use the fact that all p—net transitions have either one place or at most two places
in their pre— and post—sets. In the first case we denote these places by pre(t) and post(t), where t
is the transition; in the second case we denote these places by pre;(t) and post;(t), i = 1,2, where
the specific association between indexes and places does not matter as long as both pre;(t) and
post;(t) are in the pre— or postset of the same transition labelled with a or @. Also, we sum up
what labels are used:

— a: On p—net transitions that correspond to action prefixes.

— 1/r: On arcs leading to places in the postsets of p—net transitions that fork between concurrent
components.

— (7,¢): On p—transitions that correspond to synchronisations

— \¢: On p—net transitions that correspond to restrictions.

One might take note of the fact that agents of the form P|P will lead to p—net transitions whose
outgoing edge is labelled with both 1 and r.

Example 1. In Figure 1 we depict the p—net associated with an agent constant definition of the
form A 2 ¢.0|((2.0]4)\c).

Tokens A token is a string from the set (Chan U {1,r})*, assuming Chan N {l,r} = (. Let Tok :=
{n,...} be the set of tokens. We denote the empty token, that is, the empty string by e. Tokens
carry history information with them in the sense that they keep track of in which concurrent
threads and in which scopes with respect to restrictions they are. This information can then be
used to guarantee that any firing of a synchronisation transition (a) only uses tokens that belong
to concurrent threads and (b) the channel on which the synchronisation occurs is either free or
restricted within the same scope. Moreover, any firing of a prefix transition with a visible label
can be guaranteed to not use any token that is within a scope where the underlying channel is
restricted.



where £ = (7, ¢)

Fig. 1.

Markings A marking (usually denoted by m) of a p—net is a mapping from the places of the net
to the set of all finite multisets of tokens. Every marking must be non—empty in the sense that at
least one of the multi—sets in its range must be non—empty.

Firings As explained at the beginning of this section, we define two different conditions how
transitions can be enabled for a given marking in our p—nets:

— A p-net transition is called weakly enabled for a given marking if there are tokens present on
all its input places, just like in normal Petri nets.

— A p-net transition is strongly enabled if it is weakly enabled and, at the same time, the addi-
tional conditions explained below hold.

As we are dealing with coloured Petri nets whose tokens can change their colour, we need to
put some machinery in place to express this discipline formally: We denote by Pre(t) € m the
fact that each place p in the preset of ¢ is such that m(p) # {[}. Moreover, if Pre(t) € m, then
a precondition of t is a function from sets to multisets, usually denoted by pc, that associates an
element of m(p) with every p € Pre(t).

Then, given a marking m, a transition ¢ and a precondition pc of ¢, ¢ is weakly enabled if
Pre(t) € m, regardless of the choice of input tokens given by pc. If |Pre(t)] = 1 and t is not
labelled with some a, that is, ¢ is not a visible prefix transition, then ¢ is strongly enabled too, also
regardless of the choice of input tokens given by pe. If |Pre(t)| = 1 and ¢ is labelled with some a,
then t is strongly enabled if m(pre(t)) does not contain the underlying channel of a, that is, t must
not be in a scope in which that channel is restricted. If |Pre(t)| = 2 then ¢ is strongly enabled if the
condition explained at the end of this paragraph is true. As a preliminary, we recall that | Pre(t)| = 2
means that ¢ must be labelled with (7,c), for some ¢. As another preliminary, if n € Tok, then
we denote by 1\ Chan the substring of n that results from deleting all occurrences of letters in
Chan. As still another preliminary, if ¢ € Chan, then mazpref,.(n) is € if ¢ does not occur in 5 and,
otherwise, the longest prefix n’ of 5 so that 1’ = 7"’ e ¢ for some 5". The condition that is to hold in
the case of |Pre(t)| = 2, states that (i) pc(pre;(t)) \ Chan # €, i = 1,2, while pc(pre, (t)) \ Chan #
pe(pre,(t)) \ Chan and (ii) mazpref,(pc(pre,(t))) = mazpref,(pc(pre,(t))). Part (i) means that
the tokens that participate must belong to different concurrent threads; part (ii) means that the
tokens must be in the same scope with respect to ¢. In the proof of Theorem 3 below we will need
to refer to this condition again, and there we will denote it by Sync(pc(pre; (t)), pc(prey(t)), ¢)-



Let ¢ be strongly enabled for m and let pc be a precondition pc. Then a firing is a triple of the

. A
form (m,A,m'), usually written as m —— m’, where

— m is the source marking,
— A is the label and
— m/ is the target marking of the firing.

The label and the target marking are derived from the source marking and the choice of the pe(-)—
function, as explained below. By M @ z and M © x we respectively denote the inclusion of z in or
the exclusion of x from a multiset M.

— Predictably, the firing leaves places outside the pre— and postsets of ¢ unaffected, so m'(p) =
m(p) for each p & Pre(t) U Post(t).

— From places in the preset of ¢, the token specified by the pe(-)—function is removed, so m'(p) =
m(p) © pe(p) for each p € Pre(t).

— The label of the firing is a if that is ¢’s label and 7 if ¢ is labelled with (7,c), for some c.
Otherwise, the label is € — The context will always distinguish this € from the € denoting the
empty string.

— On places that belong to the postset of ¢, m’ is specified as follows:

- If ¢ is not labelled with \c or (7, ¢), for some ¢, and if none of the arcs leading to the place(s)
in Post(t) is labelled with 1 or r, (which means that |Post(t)| = 1) then m/(post(t)) =
m(post(t)) & pe(pre(t)).

- If ¢ is labelled with \¢, for some ¢, (which means that |Post(t)| = 1) then m/(post(t)) =
m(post(t)) @ pc(pre(t)) e c.

- If ¢ is labelled with (7, c), for some ¢, (which means that 1 < |Post(t)| < 2), then:

- If |Post(t)| = 2, then m/(post;(t)) = m(post;(t)) & pe(pre;(t)), i = 1, 2.
- If | Post(t)| = 1, then m/(post(t)) = m(post(t)) @ pe(pre, (t)) ® pe(pre,(t)),

- If the arcs leading to post,(t) are labelled with d;, ¢ = 1,2 and d; € {l,r}, (which means
that |Post(t)| < 2 and {d;,d2} = {l,r}) then:

- If | Post(t)| = 2, then m/(post;(t)) = m(post;(t)) ® pc(pre(t)) o d;, i = 1,2.
- If |Post(t)| = 1, then m/(post(t)) = m(post(t)) @ pc(pre(t)) o di & pe(pre(t)) o do.

The intuition behind p-—net firings is to represent what could perhaps be called a kind of
sub—atomic behaviour, that is, behaviour one level below the operational transition semantics.
Specifically, net markings correspond to sub—atomic states and net firings to sub—atomic steps,
where there are branches due to summation, forks due to parallel composition, backward jumps due
to agent constants and so on. The behaviour can be regarded as sub—atomic since in general several
firings of the eventual p—net are required to represent one SOS transition. What is crucial for us is
that p—net firings coincide with the standard transition semantics in the sense that both generate
the same observable traces up to firings labelled with e. Theorem 3 states that formally. As a
preliminary, given any agent P, let initp be the marking that maps (i) P to the (singleton) multiset
containing the empty token and (ii) all other places/agents to the empty multiset. Moreover:

1. The set TTrace(P) of (possibly infinite) transition traces of P is given by
TTrace(P) = {aias . .. | there are Py, Py,... so that Py = P and Py — P} =3 ... }.

2. The set FTrace(P) of (possibly infinite) firing traces of P is given by

FTrace(P) = {\1 Az ... | there are mg, my, ... so that mg = initp and mg 2y 22 o h

Theorem 3. For any agent P, the sets TTrace(P) and FTrace(P) coincide up-to the removal of
all 7’s from the traces in TTrace(P) and of all 7’s and all €’s from the traces in FTrace(P).



As the proof of Theorem 3 is somewhat long, we present it under its own sub—heading below.

We strongly conjecture that TTrace(P) and FTrace(P) in fact coincide up to the removal of all
€’s from the traces in FTrace(P), leaving all 7’s in place. The reason why we nevertheless formulate
Theorem 3 as above has to do with its proof, where it turns out to be convenient to appeal to
a classical theorem about traces and may—testing. This result holds in general only if one strips
the traces under consideration of all labels that are invisible. For our purposes that is of course
irrelevant, as the safety properties we are interested in are only concerned with actions that are
visible.

Proving Theorem 3

The proof of Theorem 3 employs two main auxiliary tools: CCS-like agents with an operator
for internal choice and decomposition sets, a notion that effectively helps analysing p—net firings.
Then there are four steps: Steps 1 to 3 are concerned with proving successive trace equivalences,
considering agent transitions, decomposition set transitions as we are going to define them below
and p-net firings; Step 4 just puts these equivalences together so that the validity of Theorem 3
is established. Step 2, being concerned with a trace equivalence of agents and decomposition sets,
is in fact the one that bridges the widest gap. One could regard the entire setup as directed at
making this step as easy as possible.

CCS-like Agents with an Operator for Internal Choice We refer to [8] as for background on CCS—
like process calculi with an operator for internal choice. For our purposes, we employ the language
below, where we denote internal choice, as it is common practice, by @.

Uu=0|aU|UaV|U|V|U\|A (2)

We should stress that our language has 7—prefixes, although one topic of the line of work to
which [8] belongs is how to do without them while retaining all expressive power. It is easy to see
that the result that we need — Theorem 4 — is not affected by that. Likewise, it is not affected by
the presence of agent constants instead of the rec—operator, which is the usual means of expressing
recursion in CCS without 7’s, as it is sometimes called. We employ the language from (2) since its
transition semantics is closer to how p—nets operate than the transition semantics of the language
from (1) on page 5.

The transition semantics is given in SOS—style by the following axioms and clauses:

U V2

aU 50U UV -SU UV SV : S
Uyv 5 U'\v UV 2 UV

U-Su vy U5

— ——— cé¢{o,@l A-SUAEU
Uulv —-U'\v U\e — U'\c

As another slight deviation from the usual ways in connection with CCS without 7’s, we employ
transitions with 7-labels. Again, it is easy to see that Theorem 4 is not affected by that. As
compared to labelling all invisible transitions with €, the benefit of retaining the 7—transitions is a
clearer correspondence to decomposition set transitions as they are defined below.

To relate agents over (1) to agents over (2), we introduce a bijective non—determinisation
operator. It is defined by n(op(Pi, ..., Parity(op))) = 0P(n(P1), ..., n(Pyrity(op))) for op # + and
n(P + Q) = n(P) ® n(Q). Then we have the following classical result:

Theorem 4. For any P, P and n(P) are may-testing equivalent within the canonical framework
that arises by admitting both + and @.



Step 1: Equivalence of Traces of the Different Kinds of Agents By another classical result, may—
testing equivalence is characterised by equivalent traces of visible actions, so we can state Corol-
lary 1, our first step towards proving Theorem 3. As a preliminary, for any agent U, the set
TTrace(U) of (possibly infinite) transition traces of U is given by

TTrace(U) = {A1 A2 ... | there are Uy, Uy, ... so that Uy = U and Uy 21, 22 .

Corollary 1. For any agent P, the sets TTrace(P) and TTrace(n(P)) coincide up-to the removal
of all 7’s from the traces in TTrace(P) and both all 7’s and all €’s from the traces in TTrace(n(P)).

Decomposition Sets and their Transitions A decomposition set is a finite set of pairs of tokens and
agents over (2), where we write (n,U) as :U. A decomposition set D is regular if (i)—(iii) holds,
where Tok(D) is the multiset of tokens in D: (i) Tok(D) is actually a set, that is, the tokens in D
are unique; (ii) for every token of the form 7 e1e 6, in Tok(D) there is also a token of the form
nerefyin Tok(D), and conversely; (iii) there are not any two tokens n and 6 in Tok(D) so that
7 is a prefix of 6.

A labelled transition relation on decomposition sets is given as shown below, denoting by X UY
the disjoint union of any two sets X and Y and by ch(a) the underlying channel of any a € Act.

{n:@.U}UD -2 {n:UYU D if a # 7 implies that ch(a) does not occur in 7
{mUeVIUD S {n:U}YUD

{nUeV}UD - {n:V}UD

{n:UVIUD - {nel:U,per:VIUD (3)
{n:U\c}UD - {nec:U}UD

(n:A}UD -5 {:UYUDif A2U

{n:a.P,0:a.V}UD - {n:U,0:V} U D if Sync(n,0,ch(a))

It can easily be seen that decomposition set transitions preserve regularity.

Step 2: Equivalence of Agent and Decomposition Set Traces We introduce next a way of extracting
agents over (2) from decomposition sets. That is done via a family (<), of binary predicates on
those agents and decomposition sets, which is defined as follows:

X <QaD Y <QerD X <Upee D

X<,Difp:X €D
NEG G X|Y <, D X\c<, D

There is, then, an operational correspondence via these predicates, that is, an operational
correspondence between transitions of agents over (2) and decomposition set transitions. This
lemma is the central and most difficult part of the proof of Theorem 3.

Lemma 3. Suppose U <. D, where D is regular. Then:

1. i. Whenever U — U’ then, for some regular D', D - D' and U' <. D'.
i. Whenever U — U’ then, for some regular D', D —+*>5 D' and U’ <. D'.
2. i. Whenever D = D', then U <. D' or, for some U', U == U’ and U' <. D'.
#. Whenever D =5 D' then, for some U', U = U’ and U' <1 D'.

Proof. We consider only Property 2.ii, as the other ones can be treated essentially along the same
lines or complementarily. So suppose U <. D, where D is regular, and D —= D'. First, we observe
that, since D is regular, every pair §:V in D must be referred to at some unique leaf of the
derivation tree for the property U <. D. Now suppose D — D’ has been established via the
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second axiom in (3) — We consider only this case as the other ones are easier. So D — D' is of
the form D —— D’ and has been derived from the presence of some 6:a.V and some «:a@.W in D,
where the predicate Sync(6, k, ch(a)) holds. By our initial observation, 8: a.V and k:a@.W occur at
unique leafs of the derivation tree for U <1 D. We continue by moving down the derivation tree for
U <. D, collecting further derivable transitions as follows:

— At any node where the rule
X <D Y <per D

X|Y«,D
is applied there are the following sub—cases:
- There is a derivable transition X — X' but none for Y, or a derivable transition ¥ — Y
and none for X. In this case the next derivable transition is X|Y — X'|Y or X|Y —
X|Y', respectively.

~ There is a derivable transition X —% X' and a derivable transition ¥ —% Y , or a derivable

transition X -2+ X' and a derivable transition Y —%+ Y. In this case the next derivable
transition is XY — X'|Y".

In fact this situation occurs exactly once, and it is also not possible that two transitions
with the same labels meet at the same node, the reason for both being twofold:

a. Having started out at exactly two leafs, where the labels of the initial transitions are
complementary to each other, we are moving down a tree.

b. It must hold that p is a prefix of both § and x. Hence, by Sync(d, ,ch(a)), it holds
that mazpref,p,)(0) — which is the same as mazpref,j,)(x) — is a prefix of p, so
we can be sure that we never have to propagate a transition labelled with a or @ over
a restriction in ch(a) before we switch over to transitions labelled with 7, where these
transitions can then be propagated over any restriction.

— At any node where the rule
X <pec D
X\c¢<, D

is applied, there is a derivable transition X — X'. As we have already shown, it must hold
that ¢ ¢ {a, @}, so the next derivable transition is X\c — X'\c.

So we arrive at a transition U — U’. It remains to show U’ <. D' but that is a straightforward
matter of going through the derivation tree again, this time considering the transition residuals.

Taking into account that {e:U} is trivially regular for any U, it is now straightforward to
conclude:

Corollary 2. For any agent U, the sets TTrace(U) and DTrace(U) coincide up to the removal of
all €’s.

Step 8: Equivalence of Decomposition Set and P—-Net Traces For any agent U, the set DTrace(U)
of (possibly infinite) decomposition traces of U is given by

DTrace(U) = {\Xz... | there are Do, D1,... so that Dy = {e:U} and Dy 24 p, 22 .t
Lemma 4. For any agent P, the sets FTrace(P) and DTrace(n(P)) coincide.

Proof. (Outline) To begin with, a marking m is set-based if m(P) is a set for all P. It can readily
be seen that p—net firings preserve this property. Then, for any set—based marking m, let a decom-
position set D(m) be given by D(m) = {p:n(P) | n € m(P)}, and let m be regular if D(m) is
regular.

11



Because m is set—based, m and D(m) contain the same information, so one can then easily
show that m -5 m/ implies D(m) 2 D(m') and, conversely, D(m) 2 D implies m 25 m! for
some m' so that D' = D(m'). Moreover, as initp is always regular, and as p—net firings preserve
regularity in the same way as decomposition set transitions, all reachable markings are regular.
These properties together entail Lemma 4.

Step 4: Concluding the Proof of Theorem &

Proof. (Theorem 3) As a direct consequence of Corollary 1, Corollary 2 and the previous lemma.

6 P—-Nets as Well-Structured Systems

In this section we introduce a preorder C on markings and prove the prerequisite for applying the
method described in Section 3 to p—nets, namely that the firing discipline from the previous section
gives rise to a well-structured system with respect to C.

First of all, a preorder on tokens is given by 5 < 6 if 5 is a (not necessarily contiguous) substring
of . By Higman’s theorem (cf. Section 2), this preorder is a wqo if the underlying alphabet is
finite, a property that holds as far as our purposes are concerned since we always consider the
safety properties of a single p—net with finitely many transition and arc labels. A preorder <M
on multisets of tokens is then given as described for general multisets over wqo’s in Section 2.
Again by Higman’s theorem, this preorder is a wqo since the preorder on tokens is a wqo. Finally,
a preorder C on the markings of any specific p—net N or, equivalently, a preorder on P—indexed
families of token multisets, where P is the set of places of N, is given by m T m' if m(p) <M m/(p)
for all p € P. By a corollary of Higman’s theorem, this preorder is also a wqo. The intuition is that
m C m' if m' represents a (not necessarily strictly) longer firing history than m.

It is not difficult to see that basing a preorder on markings on the prefix relationship between
strings over Chan U {1,r} would not make sense in the sense of representing firing histories and
deriving a sensible wqo. In fact we believe that our wqo on markings is canonical and, moreover,
the reachability problem will of course remain undecidable regardless of any other wqo one might
choose. Tt is therefore not possible to improve our backward/forward strategy as applied to the
agents from Section 4 qualitatively. It might only be possible to improve it merely quantitatively
in the sense that (definitive) YES or NO answers are produced in higher numbers. It is, however,
not obvious how that could be achieved on the basis of a different preorder on markings.

Before we prove that the wqo on markings gives rise to a well-structured system, we still need to
see why there is no well-structuredness if one considers only strongly enabled firings (strong firings).
Of course well-structuredness can not hold already in the light of Theorems 2 and 3 in combination
with the fact that the reachability problem over CCS without relabelling is undecidable. Still, more
elementary arguments lead to the same result: For one, if ¢ is a synchronisation transition, then
we may have tokens n; on pre;(t), i = 1,2, that may fire strongly whereas, in a bigger marking,
tokens 6; that can not fire strongly may be on pre;(t), where n; < 6;; similarly, if ¢ is a visible prefix
transition, we may have a token 7 on pre(t) that may fire strongly whereas, in a bigger marking,
a token @ that can not fire strongly may be on pre(t), where 5 < 6. In other words, strong firings
are not monotonic, so well-structuredness does not hold even disregarding the computability of
Minpre,,.

Lemma 5. P-nets with weakly enabled firings (weak firings) are well-structured systems, given
that the underlying environment of agent constant definitions is finite.

Proof. We know already that the preorder on markings is a wqo and, since a finite environment of
agent constant definitions entails finite sets of channels, tokens and markings, this preorder is also
decidable. So it remains to show that transitions are monotonic and that Minpre, is computable.

12



Monotonicity of weak p—net firings: Suppose m; C my and my 2, m} . We have to find an ms so

that ma — mé and m} C m). Every weak firing involves the firing of exactly one p—net transition,
so we can conduct a case analysis on what kinds of p—net transitions there are and in what ways
m} can depend on m, to prove that there is always a weak firing under ms so that the subsequent
marking, mb, is bigger than m/ under C. All of that is straightforward.

Computability of Minpre,: To show that we can compute the set of minimal predecessor markings
under A of the upward closure C({m}) of any set {m}, we can again conduct a case analysis on
what kinds of transitions there are, distinguishing as to whether A is equal to a, for some a , € or 7.
We skip the case of A = a for some a, since it is simpler than the other ones. The idea is to compute
a finite initial contribution to an overapproximation of Minpre,(m) for each net transition ¢. That
overapproximation itself is finite since the p—net is finite, so it is possible to compute the minimal
markings in it, obtaining Minpre, (m).

A = 7: In this case we need to consider all invisible prefix transitions and all synchronisation
transitions that belong to the p—net. The case of any arbitrary synchronisation transition ¢ is more
difficult, so we consider only this one. We know that |Pre(t)| = 2 and 1 < |Post(t)| < 2. The idea
is to derive a finite set K of markings so that m < k for each k¥ € K and, for every marking h
with m < h and every firing A’ — h via t, there is a k' so that k' < h' and k' — k via ¢ for
some k € K. Then the set of all &' with ¥ — k via t for some k € K is t’s contribution to
the above—mentioned overapproximation of Minpre,.(m). There can only be finitely many such &’
since K is finite and, at the same time, the p—net is finite.

Notation. For any function f, we denote by f[z := y] the function given by f[z := y](z) = f(2) if
z#z and flz :=yl(z) =y if z ==z.

If |Post(t)] = 2, then K = {m,m[post,(t) := m(post,(t)) & €], m[post,(t) = m(posty(t)) &
€], m[post;(t) := m(post;(t)) ® €|i=1,2}; if |Post(t)] = 1, then K = {m,m[post(t) := m(post(t)) &
€], m[post(t) := m(post(t)) ®eDe]}. Obviously it holds that m < k for each k € K. Then, whenever
m < h and h' - h is a firing via t, recall that m < h entails that, for each p € Place, there is
a multiset injection f, : m(p) = h(p) so that n < f,(n) for each n € m(p). In the light of this
observation, it is easy to see that, by the way we have derived K, there is always a k € K with the
desired properties, since € < 7 for every token 7.

A = e: In this case there are various kinds of transitions to be considered but we restrict ourselves
to those that are labelled with \¢, for some ¢, or whose outgoing arcs are labelled with 1 and r. In
fact we always derive a set of markings K with the same properties as in the above—described case
of a synchronisation transition: If ¢ is labelled with \¢, then K = {m, m[post(t) := m(post(t)) ®c]};
if the outgoing arcs of ¢ are labelled with 1 and r, then (a) K = {m,m[post,(t) := m(post,(t)) ®
1], m[post,(t) := m(post,(t)) @ 1], m[post, (t) := m(post, (t)) & l][posty(t) := m(post,(t)) & r]} if
|Post(t)| = 2, assuming without loss of generality that the arc leading to post,(p) is labelled
with 1 and that the arc leading to post,(t) is labelled with r, and (b) K = {m,m[post(t) =
m(post(t)) @ 1], m[post(t) := m(post(t)) & r], m[post(t) := m(post(t)) ® 1@ r]} if |Post(t)| = 1.

We can now conclude, from Theorem 2 and Lemma 5:

Theorem 5. The control state reachability problem is decidable for p—nets with weak firings (in
the sense of Theorem 2).

7 Safety Properties Verification

What is called the decidability of control-state reachability over p—nets translates to a strategy for
curbing search spaces in verifying safety properties of finite and infinite-state agents as we have
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introduced in Subsection 4. It is only possible to deal with those safety properties of any agent
A that can be expressed as upward—closed sets of markings of the p—net associated with A, but
there are no other restrictions. Of course, even these kinds of safety properties are undecidable in
general. However, our method can still solve many instances of them. Furthermore, our method is
more efficient than normal forward—search techniques, since it is possible to curb the search space
for the forward search by using the information computed during the backwards search phase.
Altogether, our method produces answers of the form YES, NO, or UNKNOWN, where the YES
and NO answers are always correct.

In the following we thus show how to apply the general principle described in Section 3 to our
fragment of CCS and p—nets. For describing the strategy more formally, we stick to the problem
of verifying whether some agent A may ever execute any given action a or not. We assume that
the underlying channel of a is un-restricted.

The problem:

Instance: An agent A with initial state ini and an atomic action a.
Question: Can agent A ever execute action a?

Preparatory phase:

1. Build the p—net N associated with A.

2. Let M* be the set of minimal markings where a is immediately executable. For every transition
t labelled with a there is a minimal marking m; that enables ¢. It is given by an e—token on all
places in pre(t). Then M® = {m; |t labelled by a}.

Backward search phase: Solve the control-state reachability problem for the upward closure of
the set M®. If any marking in this upward closure can be reached from the initial marking, then A
can reach a state in which a is immediately executable. Conversely, action a will never be executed
if the upward closure of M® turns out not to be reachable from the initial state. This outcome is
synonymous with the initial state not being contained in Pre*(M?), the last state set generated in
performing the backward search. Hence, if the initial state does belong to that set, then the answer
is still open and forward search will commence.

The function Reachability takes as input the p—net, the initial state ini and the set of markings
M*. Tt returns YES, NO, or UNKNOWN.

The function Searchpgckwarda(M®,ini) searches backwards in p—net with the weak firing rule,
i.e., in the overapproximation. It returns a result of the form (OB, s) where OB = Preg erapprox(M®)
and s € N is the minimal number of steps that the backwards search needed to reach ini in the
overapproximation of the system (or —1 if it never did). Termination is guaranteed by the fact
that p—nets with the weak firing rule are well-structured systems (see Lemma 5 and Lemma 5).
If the initial state ind is not in OB = Preg,cpqppror (M®) then surely no marking in the upward-
closure of M@ is reachable either in the agent A and thus the answer is NO. Otherwise one starts

the forward search.

function Reachability(N,M?®,ing) :
(OB, s) := Searchpackwara(M®,ini)
if ini ¢ OB
then «—— NO
else «— Search jorwara(ini, M*, OB, b(s))

In this algorithm b(.) is some fixed function that is used to determine the search—depth of the

forward search. We must have Vz.b(z) > z, otherwise the forward-search cannot possibly return a
positive answer.
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function Searchpgckward(M®,ini)

My:=M*%k:=0;s:=-1

repeat
if (s=—1 A ini € My) then s:=k
Mpq1 := My, U Minpre(My,)
k=k+1

until Mk+1 = Mk

— (Mk7 S)

Forward search phase: In the forward search phase we do no longer use the overapproximation,
but the regular model (the p—net with the strong firing condition), in order to avoid getting false
positives. We search forward from the initial marking iné to find out whether at least one marking
that enables action a is reachable. That means that we are searching for a reachable marking that
is bigger than (or equal to) some marking in M?. We use only the condition of strong enabledness
for transitions, in order to stay regular by avoiding irregular synchronisations. We restrict our
forward search to those configurations that are in our already computed overapproximation OB
of Pre*(M?), since no marking bigger than some marking in M? can possibly be reached from
any configurations that are not in this set. This curbs the search space and makes the search
more efficient and thus allows us to use larger numbers b(s) than it would otherwise be practically
possible.

function Search ¢orwara(ing, M*, OB, b)

ji=b;
while j >0
I = (I U POStstrong(I)) NnoB

if 3m' e I,me M®*.m <m' then +— YES
+—— UNKNOWN

In this algorithm the test Im' € I,m € M% m < m' is computable, because M?* is finite, and
1 is finite since global transitions on p—nets generate a finitely branching transition system. The
function Post,irong(I) returns the set of immediate successors of set I in the regular system (not
the overapproximation), with the strong firing rule.

The algorithm presented here is not a semi—decision procedure, since there is no guarantee that
the algorithm will give always the answer YES (or NO) if the action is (not) reachable. Because
the forward search is restricted to depth b(s), it is incomplete in the sense that the true answer
YES might not be found in some cases, and instead answer UNKNOWN is produced. On the other
hand, a true answer NO might also be missed. The overapproximation might be too coarse and
thus the backward search might miss the correct NO answer and hand the problem over to the
forward search which will produce the answer UNKNOWN. However, if our algorithm produces
answer YES or NO then these are always correct.

Finally, it is possible to combine our method with acceleration techniques in the forward search.
Thus one would replace the assignment I := (I U Poststrong(I)) N OB in the algorithm above by
I := (I'U Accelerate(I)) N OB, where the function Accelerate(I) computes a partial acceleration of
the forward search, for example by looking for repeatable sequences of transitions and computing
their least fixpoint. This can be done in many different ways, provided that it satisfies the following
condition, which is needed for the progress and correctness of the acceleration:

Postsirong(I) C Accelerate(I) C Postl,,n.(I)

strong
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8 Conclusion and Further Work

We have described a general technique for reachability analysis of non—well-structured systems.
It combines a complete backward reachability analysis in a well-structured over—approximation
of the system with an incomplete forward search. This forward search is restricted to the pre-
viously computed backward reachable set. Our method produces answers of the form YES, NO,
or UNKNOWN, where the YES and NO answers are always correct. We have also applied this
general method to relabelling—free CCS with finite sums and we have shown how to construct a
well-structured overapproximation by what we have called p—nets. Possible topics for future work
include the following ones: (1) More detailed studies of acceleration methods that can be used in
the forward search; (2) generalising our method to other classes of non—well-structured systems
such as the m—calculus; (3) Implementing our algorithm in a tool.

Related Work As for related work, we have to mention [6], where well-structured systems are
employed in deciding termination in a restricted m—calculus. The way well-structured systems are
brought to bear in [6] is not Petri-net—-based and therefore difficult to compare to our approach.
Moreover, as safety properties of the kind we have considered are undecidable, any attack on the
lines of [6] can never improve on our results qualitatively.

Petri net semantics for CCS-like process calculi appeared approximately from the mid—eighties
onwards (see, for example, [12]) and more recently there has been a resurgence of this topic [4]. The
semantics presented here is set apart by its heavy reliance on coloured tokens in combination with
the fact that every p—net is finite, where that finiteness is obviously crucial for applying our method
for verifying safety properties of infinite-state systems. In [4] infinite nets may occur. Moreover,
other work on Petri net semantics for process calculi including [4] generally deals with relabelling
whereas it is not obvious how we could modify our framework to do that.
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