A Compositional Coalgebraic Model of
Monadic Fusion Calculus

Maria Grazia Buscemi and Ugo Montanari

Dipartimento di Informatica, Universita di Pisa, Italy.
{buscemi,ugo}@di.unipi.it

Abstract. We propose a compositional coalgebraic semantics of the Fu-
sion Calculus of Parrow and Victor in the version with explicit fusions
by Gardner and Wischik. We follow a recent approach developed by the
authors and previously applied to pi-calculus for lifting calculi with struc-
tural axioms to bialgebraic models. In our model, the unique morphism
to the final bialgebra induces a bisimilarity relation which coincides with
hyperequivalence and which is a congruence with respect to the opera-
tions. Interestingly enough, the explicit fusion approach allows to exploit
for the Fusion Calculus essentially the same algebraic structure used for
the pi-calculus.

1 Introduction

Fusion calculus [9,12] has been introduced as a variant of the pi-calculus. It
makes input and output operations fully symmetric and enables a more general
name matching mechanism during synchronisation. The version with explicit
fusions [4, 5] aims at propagating fusions to the environment in an asynchronous
way. A fusion is a name equivalence that allows to use interchangeably in a
term all names of an equivalence class. Computationally, a fusion is generated
as a result of a synchronisation between two complementary actions, and it is
propagated to processes running in parallel with the active one. Fusions are ideal
for representing, e.g., forwarders for objects that migrate among locations [5],
or forms of pattern matching between pairs of messages [6].

In fusion calculus [9, 12], a fusion, as soon as it is generated, it is immediately
applied to the whole system and has the effect of a (possibly non-injective) name
substitution. Explicit fusions [4], instead, are processes that exist concurrently
with the rest of the system and enable to freely use two names one for the
other. Interestingly enough, the combination of explicit fusions and restriction
allows to derive a name substitution operator which behaves like the standard
capture-avoiding substitution.

Interactive systems, when represented as labelled transition systems, can be
conveniently modelled as coalgebras. A coalgebraic framework [10] presents sev-
eral advantages: morphisms between coalgebras (cohomomorphisms) enjoy the
property of “reflecting behaviours” and thus they allow, for example, to charac-
terise bisimulation equivalences as kernels of morphisms and bisimilarity as the

bisimulation associated to the morphism to the final coalgebra. Also adequate
temporal logics and proof methods by coinduction fit nicely into the picture.

However, in the ordinary coalgebraic framework, the states of transition sys-
tems are seen simply as set elements, i.e. the algebraic structure needed for
composing programs and states is disregarded. Bialgebraic models take a step
forward in this direction: they aim at capturing interactive systems which are
compositional. Roughly, bialgebras [11, 2, 3] are structures that can be regarded
as coalgebras on a category of algebras rather than on the category Set, or,
symmetrically, as algebras on a category of coalgebras. For them bisimilarity is
a congruence, namely compositionality of abstract semantics is automatically
guaranteed.

When considering mobile interactive systems, like the pi-calculus, the ordi-
nary coalgebraic approach cannot be directly applied, since the generation of
new names requires special conditions on the inference rules and on the defini-
tion of bisimulations. The bialgebraic approach, instead, fits well: it is enough
to consider the states as forming an algebra of name permutations |7, 8].

When considering more complex operations, the interaction of structural
axioms with inference rules makes the application of the bialgebraic approach
problematic. To overcome this difficulty, in [1] it has been proved that calculi
defined by De Simone inference rules and equipped with structural axioms can
be lifted to bialgebras, provided that axioms bisimulate. In the same paper, the
approach has been applied to a version of pi-calculus.

In this paper we apply the general result to the fusion calculus of Parrow and
Victor, in order to provide a bialgebraic model of the calculus. We introduce a
permutation algebra enriched with the operations of the calculus plus constants
modelling explicit fusions. We then prove that the conditions required by [1] are
satisfied. Remarkably enough, explicit fusions enable us to model substitutions
within our theory, while keeping essentially the same permutation algebra con-
sidered in [1] for the pi-calculus. No non-injective substitution operations are
introduced in the algebra: rather, their observable effects are simulated by De
Simone inference rules which saturate process behaviours, while still keeping the
nice property of asynchronous propagation typical of explicit fusions. We claim
that the translation of fusion agents in our algebra is fully abstract with re-
spect to Parrow and Victor hyperbisimulation. As in [13], closure with respect
to substitution is obtained by adding in parallel at each step any possible fusion.

2 Background

2.1 Names, Fusion and Permutations

We need some basic definitions and properties on names, fusions and permu-
tations of names. We denote with 9 = {xg,x1,x2,...} the infinite, countable,
totally ordered set of names and we use x,¥, z ... to denote names.

Name fusions (or, simply, fusions) are total equivalence relations on 9 with
only finitely many non-singular equivalence classes. Fusions are ranged over by
©, 1, We let:

n(y) denote {z : x @y for some y # x};

— € denote the identity fusion (i.e., n(e) = 0);

p~+1 denote the finest fusion which is coarser than ¢ and 1, that is (¢ U)*;
@ 1 =1 denote that o + 1 = p + 9/;

— p_, denote o — ({z} x NMUN x {z}) U{(z,2)};

©lx] denote the equivalence class of z in ;

¢ C 9 denote than ¢ is finer that 1, i.e., for all x € N, p[z] C Y[z];

— {z =y} denote {(z,y), (y,z)}".

A name substitution is a function o : M — M. We denote with oo’ the
composition of substitutions o and o’; that is, coo’(z) = o(o'(z)). We use
o to range over substitution and we denote with [y; — 1, - ,yn — x,] the
substitution that maps x; into y; for ¢ = 1,... n and which is the identity on
the other names. We abbreviate by [y <] the substitution [y — z,z +— y]. The
identity substitution is denoted by id.

A substitution o agrees with a fusion ¢ f Va,y : zpy & o(x) = o(y). A
substitutive effect of a fusion ¢ is a substitution o, agreeing with ¢ such that
Va,y:o0(x) =0(y) = zey (i.e., o sends all members of the equivalence class to
one representative of the class). The only substitutive effect of a communication
action is id.

A name permutation is a bijective name substitution. We use p to denote a
permutation. Given a permutation p, we define permutation p;; as follows:

- p(Tn) = T,
p+1(z0) = o P+1(Tnt1) = Tmt1

Essentially, permutation p41 is obtained from p by shifting its correspondences
to the right by one position.

2.2 The Fusion Calculus

In this section we give an overview of the fusion calculus, which has been intro-
duced in [9]. Here we consider a monadic version of the calculus.

The fusion calculus agents, ranged over by P, Q, .. ., are closed (wrt. variables
X) terms defined by the syntax:

Pu=0|7P|P+P | PP | (z)P | recX.P | X

where recursion is guarded, and prefizes, ranged over by m, are I/O actions or
fusions:

7r:::|fy|xy|g0.

The occurrences of x in (z) P are bound and fusion effects with respect to x
are limited to P; free names and bound names of agent P are defined as usual
and we denote them with fn(P) and bn(P), respectively. Also, we denote with
n(P) and n(r) the sets of (free and bound) names of agent term P and prefix =
respectively.

The structural congruence, =, between agents is the least congruence satis-
fying the following axioms:

(fus) @.P = p.0,(P) for o, asubstitutive effect of ¢

(sum) P+0=P P+Q=Q+P P+(Q+R)=P+Q)+R

(ar) PO=P PIQ=QIP PIQIR) = (PIQ)IR

(res) ()0=0 (D)WP=()@)P (@)(P+Q)=(@P+()Q

(scope) Pl(2)Q = (2)(P|Q) where z ¢ fn(P)

The actions an agent can perform, ranged over by -, are defined by the
following syntax:

Y=oy | o) | 3y | 5) | ¢

and are called respectively free input, bound input, free output, bound output
actions and fusions. Names x and y are free in v (fn(7)), whereas z is a bound

name (bn(v)); moreover n(y) = fn(vy) Ubn(y). The notation ¢ \ z stands for the
equivalence relation ¢ with all references to z removed (except for the identity).

The family of transitions P —— @ is the least family satisfying the laws in
Table 1.

7 o
(F-Prg) m.P — P (F-Sum) PL,YP/ and symmetric
P—|—Q — P
0% Ty 2 xz /
(F-PAR) ﬂ if bn(y) Nfn(R) =0 (F-Com) P— 1{37 }Q —
PIR+— QIR PlQ =3 P
© az _
(F-ScopE) P Q¢7i§0$, zFw (F-OPEN) P—Q aLZ’Z? {Za Z}
Yo 7
(F-Pass) % z ¢ n(y) (F-REC) Plrec X. P/XJ —Q
(z)P— () P recX.P+— Q
_ pf ;o ’ ;_
(F-Cong) P=P P T Q@ Q=@
Pr—Q

Table 1. LTS for Fusion

Definition 1 (fusion bisimilarity). A fusion bisimulation is a binary sym-
metric relation S between fusion agents such that P S @ implies:

If P+ P with bu(y) Nf(Q) = 0 then Q = Q' and 0, P' S 0,Q’
for some substitutive effect o of .

P is bisimilar to Q, written P~ Q, if P S Q for some fusion bisimulation S.

Definition 2 (hyperequivalence). A hyperbisimulation is a substitution closed
fusion bisimulation, i.e., a fusion bisimulation S with the property that P S @
implies cP S 0@ for any substitution o. Two agents P and @ are hyperequiv-
alent, written P ~p. Q, if they are related by a hyperbisimulation.

2.3 Bialgebras

We recall that an algebra A over a signature X' (X-algebra in brief) is defined by
a carrier set |A| and, for each operation op € X of arity n, by a function op? :
|A|™ — |A]. A homomorphism (or simply a morphism) between two X-algebras
A and B is a function h : |A| — |B| that commutes with all the operations in X,
namely, for each operator op € X of arity n, we have op®(h(a1),--- ,h(a,)) =
h(op*(ai,...,a,)). We denote by Alg(X) the category of X-algebras and X-
morphisms. The following definition introduces labelled transition systems whose
states have an algebraic structure.

Definition 3 (transition systems). Let X be a signature, and L be a set of
labels. A transition system over X' and L is a pair lts = (A, —5) where A is a
nonempty X-algebra and — s C |A| X L x |A] is a labelled transition relation.
For (p,1,q) € — s we write p ths q.

Let lts = (A, —ys) and lts’ = (B,—yy) be two transition systems. A
morphism h : lts — lts’ of transition systems over X and L (Its morphism, in
brief) is a X-morphism h : A — B such that p s q implies f(p) ;lts/ f(q).
The notion of bisimulation on structured transition systems is the classical one.

Definition 4 (bisimulation). Let X be a signature, L be a set of labels, and
lts = (A, —ps) be a transition system over X and L.
A relation R over |A] is a bisimulation if p R q implies:

— for each p LN p’ there is some q - q' such that p' R ¢';
— for each q N q' there is some p N p’ such that p' R ¢'.

Bisimilarity ~s is the largest bisimulation.

Given a signature X' and a set of labels L, a collection of SOS rules can be
regarded as a specification of those transition systems over X' and L that have
a transition relation closed under the given rules.

Definition 5 (SOS rules). Given a signature X' and a set of labels L, a sequent

P LN q (over L and X) is a triple where I € L is a label and p,q are X-terms
with variables in a given set X.
An SOS rule r over X and L takes the form:

l ln
pl’—1>ql Pn 't {(qn

l
p—4q

where p; LN q; as well as p R q are sequents.
We say that transition system lts = (A,——ps) satisfies a rule r like above

1

if each assignment to the variables in X that is a solution” to p; LN q; for

i=1,...,n is also a solution topqu.

! Given h: X — A and its extension h : Ts(X) — A, h is a solution to p LN q for lts
if and only if h(p) L, h(q).

We represent with

l ln
PLE= 1 P G
l
p—4q
a proof, with premises p; LN q; fori=1,...,n and conclusion p R q, obtained

by applying the rules in R.

Definition 6 (transition specifications). A transition specification is a tuple
A = (X L, R) consisting of a signature X, a set of labels L, and a set of SOS
rules R over X and L.

A transition system over A is a transition system over X and L that satisfies
rules R.

It is well known that ordinary labelled transition systems (i.e., transition
systems whose states do not have an algebraic structure) can be represented as
coalgebras for a suitable functor [10].

Definition 7 (coalgebras). Let F : C — C be a functor on a category C.
A coalgebra for F, or F-coalgebra, is a pair (A, f) where A is an object and
f:A— F(A) is an arrow of C. A F-cohomomorphism (or simply F-morphism)
h:(A, f) — (B,g) is an arrow h : A — B of C such that h ; g = f ; F(h). We
denote with Coalg(F) the category of F-coalgebras and F-morphisms.

Proposition 1. For a fized set of labels L, let Py : Set — Set be the functor
defined on objects as Pr(X) = P(L x X + X), where P denotes the count-
able powerset functor, and on arrows as Pr(h)(S) = {{l,h(p)) | {{,p) € SN
LxX}U{hlp) |pe SNX}, forh: X - Y and S C L x X+ X. Then
Py -coalgebras are in a one-to-one correspondence with transition systems®> on L,

given by fus(p) = {{l,q) | p LI q} U {p} and, conversely, by p 'thsf q if and
only if (1,q) € f(p).

Definition 8 (De Simone format). Given a signature X and a set of labels
L, a rule r over X and L is in De Simone format if it has the form:

{z;—>vy;|iel}

1
op(x1,...,Tpn) — D

where op € X, I C{1,...,n}, p is linear and the variables y; occurring in p are
distinct from variables x;, except for y; = x; if i ¢ 1.

The following results are due to [11] and concern bialgebras, i.e., coalgebras
in Alg(X). Bialgebras enjoy the property that the unique morphism to the final
bialgebra, which exists under reasonable conditions, induces a bisimulation that
is a congruence with respect to the operations, as noted in the introduction.

2 Notice that this correspondence is well defined also for transition systems with sets
of states, rather than with algebras of states as required in Definition 3.

Proposition 2 (lifting of Pr). Let A = (X, L, R) be a transition specification
with rules in De Simone format.

Define Pa : Alg(X) — Alg(X) as follows:

— [Pa(A)| = PL(|A]);

— whenever € R then

op(x1,..., k) — P
(li,pi) € Siyiel q€8;,7¢1 ,
(Lplpifyis i € 1 a5/, 5 & 1)) € op™ (51, 8,)
— if h: A — B is a morphism in Alg(X) then Pa(h) : PA(A) — Pa(B) and
Pa(h)(S) = {{L,h(p)) [{l,p) € SN (L x [A]) } U {h(p)|p € SNIA[}.

Then Pa is a well-defined functor on Alg(X).

Corollary 1. Let A = (X, L, R) be a transition specification with rules R in De
Simone format.

Any morphism h : f — g in Coalg(Pa) entails a bisimulation ~, on ltss,
that coincides with the kernel of the morphism. Bisimulation ~yp, is a congruence
for the operations of the algebra.

Moreover, the category Coalg(Pa) has a final object. Finally, the kernel of
the unique Pa-morphism from f to the final object of Coalg(Pa) is a relation
on the states of f which coincides with bisimilarity on ltsy and is a congruence.

Note that, in order to prove that bisimilarity is a congruence, Corollary 1
requires that the lifting of a Pj-coalgebra to be Pa-coalgebra takes place. In
fact, this step is obvious in the particular case of f: A — PA(A), with A =T,
and f unique by initiality, namely when A has no structural axioms and no
additional constants, and Its; is the minimal transition system satisfying A.

The following results are due to [1] and generalise the theory described so
far to algebras with structural axioms. In particular, Theorem 2 below states
that a lts with structural axioms can be lifted from Coalg(Py) to Coalg(Pa)
under appropriate conditions. Hence, it follows by Corollary 1 that bisimilarity
is a congruence in this more general settings.

Theorem 1. Let B be the class of coalgebras g in Set with the following prop-
erties:

1. g: |B| — PL(‘BD; with B = T(EUC,E)-

2. ltsy satisfies transition specification A = (X, L, R), with R in De Simone
format.

3. A set of basic transitions T C C' x L x Tsyc exists for constants C, namely,

o !
(c,1,t) € T implies c—4[t] .

Then, there is an initial coalgebra g in B, such that Vg € B, Vp € B, pi@q

implies pigqq.

Furthermore, the transitions of g can be derived using the rules R and the
following additional rules:

l
(ConsT) M (STRUCT) h =g tll tll —>§t/2 t’2 =5 b
C‘l@t tliﬁtg

where terms t,t1,t],ta,th are in Tsyc.

Definition 9. Let g : |B| — Pr(|B|) be the initial coalgebra of Theorem 1,
where, however, constants C' are considered as auziliary, i.e., B is seen as a
X -algebra. Then, we define the following X -algebras and X -morphisms:

— A=Tx(C) and h : A — B as the unique extension in Alg(X) of h(c) = [c|g,
force C;

— [+ A — Pa(A) as the unique extension of f(c) = {(I,t)|(c,l,t) € T} in
Alg(X).

Theorem 2. Let g be the initial coalgebra in B as specified by Theorem 1, and
let A, h, and f be defined as in Definition 9. Then, h is surjective. Let us
assume that for all equations t; = to in E, with free variables {x;}icr, we have
De Simone proofs as follows:

1 . L .
iy, €1 iy, €1
% implies % and t) =gt (1)

ty — 1] to — th
and viceversa, using the rules in R and the additional rules:

et i (c,1,t) e T.

Then, the left diagram below commutes in Set, i.e., h;g = f; Pr(h). Thus,
the right diagram commutes in Alg(X) and g can be lifted from Set to Alg(X).

A h |B| A—" o p

o

PL(|A|)WPL(|B|) PA(A)?USPA(B)

Corollary 2. Let g be the initial coalgebra in B as specified by Theorem 1,
and suppose g can be lifted from Set to Alg(X). Then in g bisimilarity is a
congruence.

3 A Labelled Transition Systems for Fusion Calculus

In this section, following the approach adopted in [1] for the pi-calculus, we
provide a structured labelled transition system lts, for the fusion calculus and

apply the general result recalled in Subsection 2.3 to lift lts, to be a bialgebra.
It follows that bisimilarity in lts, is a congruence.

We first define a permutation algebra enriched with the operations of fusion
calculus and with explicit fusions z = y. Operators p are generic, finite name
permutations, as described in Subsection 2.1; § is meant to represent the substi-
tution [z; — x;41], for i = 0,1,. ... Restriction v (corresponding to (x) in fusion
calculus) has no argument, since the extruded or restricted name is assumed
to be always the first one, i.e. 9. By p(z) and 0 (z) we denote the syntactical
application respectively of p and § to name x; homomorphically, p(-) and 4 (+)
are extended to fusions.

The introduction of explicit fusions in the signature Y. is intended to model
substitutive effects of fusion calculus while keeping essentially the same permu-
tation algebra as in [1]. In fact, an explicit fusion z = y allows to represent the
global effect of a name fusion resulting from a synchronisation without need of
replacing x to y or viceversa in the processes in parallel: names z and y can be
used interchangeably in the context z = y|-.

Definition 10 (permutation algebra for fusion calculus). A permutation
algebra B for fusion calculus is the initial algebra B = Txyc g where:

— signature X is defined as follows:
u=0|a_ | 4| v |p-| 6| x=y,

with prefixes m = Ty, zy, p;
— C is the set of constants

C = {crecx.p | P is a fusion agent };
— FE is the set of axioms below:

(sum) p+0=p ptg=q+p pt+@+r)=@+q+r
(par) pl0=p plg=gqlp pllglr) = (plg)lr
(res) v.0=0 v.(0p) | g = plv.q v.g=x=0
v.v. [z o xilp=v.v.p
(perm) (p'op)p=p'(pp) idp=p
(fus) z=2=0 plx=y) = plx)=ply) dz=y =0d(x)=5(y)
(delta) 0.0=0 d.plg=1(d.p)|d.q d.v.p=v.zg < 21]d.p
(exch) p0=0 p(m.p)=p(m).pp plp+a)=pp+ pq
p(pla) =pplpg pr.p=V.p11p PCrecX.P = Cp(rec X. P)
Axioms (sum), (par), and (res) correspond to the analogous axioms for

fusion calculus. The other axioms rule how to invert the order of operators among
each other, following the intuition that v and ¢ decrease and increase variable

10

indexes, respectively. Notice that other expected properties like v.§.p = p and
[xo <> x1]d.0.p = 6. 0.p can be derived from these axioms.

We give below a translation of fusion agents into terms of algebra B. The
translation is straightforward, except for restriction v that gives the flavour of
the De Brujin notation. The idea is to split standard restriction in three steps.
First, one shifts all names upwards to generate a fresh name xg, then swaps 4 (z)
and zg, and, finally, applies restriction on x(, which now stands for what ‘used
to be’ z.

Definition 11 (translation [-]). We define a translation of fusion agents [] :
F — |B| as follows:

[of=0 [r.Pl==[P] [P+Q]=[P]+[Q] [PIQ]=I[P]IIQ]
[(x) P] = v. [6(x) < x0]0[P] [rec X. P] = crec x. P

We now define a transition system lts, for the above algebra and show that
it satisfies the conditions required by Theorem 2.

Definition 12. Let A be the set A = {zy, =, Ty, T, ¢ | z,y,n(p) € N} and
be the set of all fusions over M. We define the set L of labels as L = A x .

The entailment relation F, introduced in Subsection 2.1, is extended to A as
expected.

Definition 13 (transition specification A). The transition specification A
is the tuple (¥, L, R), where the signature X is as in Definition 10, labels L are
defined in Definition 12 and R is the set of SOS rules in Table 2. Transitions
take the form p i>¢ q, where (, @) ranges over L.

Some of the rules in Table 2 are the same as those given in [1] for the pi-calculus.
The most interesting among them concern bound I/O actions: they follow the
intuition that substitutions on the source of a transition must be reflected on
its destination by restoring the extruded or fresh name to xy. This implies, for
example, that in rule (Par’) side condition bn(a) N fn(r) = @ is not necessary,
since ¢ shifts any variable in r to the right and, thus, x¢ does not appear in §. .

The other rules of Table 2 are tailored to deal with fusions. Their aim is two-
fold: to enable propagation and composition of fusions (e.g., rules (Exr), (Pari),
(Par}), and (Pary)) and to close at each step with respect to fusions running in
parallel (e.g. rules (Pre), (Pre’), (Fus)). Note that the side conditions ensure a
saturation of process behaviours with respect to the observable fusions. Hence,
for example, z = y |y = k |p and © = y |z = k| p have the same transitions. Rule
(Pre’) might seem unusual: we will justify the need for this rule in example 1
below.

Proposition 3. Let A = (X L, R) be the transition specification in Defini-
tion 13. Rules R are in De Simone format.

11

(Pre) zyp —=_ ple ¢ T ¢ bay=2ay

, 5 (")
(Pre’) zy.p —; . (0. (pl@)) [m0=0(y) @' T ¢ Fa=a

(Fus) pp—=_, ply @ TP T ¢ Fo=¢

« /
(Exp) =1y ;I:y r=1y (Sum) %“’p,
p+q =, p
po.q afnT , pS.q a=i,z
(RHO) ‘Pp(a) (RHO") P+1¢ka) s
PP) P pp LD g
p=,q aFnT) P54 =Tz
(D) 5@ (DeL’) @,
o.p 5 () d.q o.p 5(5(9)) [to < 21]d. ¢
() B QT DT () Lo 20T
plr =, qlr plr =, qld.7
(e € —
oa=3Iy,T
(PARy) B 1 P -:W“ o by PIC T4 ¢ Fa=d
p1|P2 a—>w, ql\QQ
(e € —
— — a=2I,x
(PAR,,l) D1 ®1 q1 pi/ Y2 q2 o1 E 80/ E o1 +5(¢2)7 SDI Foa= Of/
p1|P2 T (I1|5. q2
N =
(PARy) B qle D2 ey B2 ©' C o1+ 2
p1lp2 o qilge
PS5 @ pr o, g g pe g
(Com) =2 2 (Com’) - (e)
pilpe —,,—. ¢il@2ly = 2 pilpz —, q1[v. 210 (y) = xo
(CLOSE) P75 B P2 o)
pilp2 =, v. qilq2
PS5 q a=ITy,xy; xoF T,y pi>(s q Qa=ZI,x; T F# Xo
(RES) £ pres) (Res’) “"V)(a)
v.p %V(kp) v.q v.p —)‘P V. [3}0 — xl]q
— T#T
(OPEN) P 5(“09)0 1 7 0 (Scopg) — f(;w !
VP 75 4 Vp — () V-4

Rules (Pre), (Pre’), and (Open) are analogous with output actions; rule (Com’)

has a symmetric counterpart.

Table 2. Structural Operational Semantics

12

Definition 14 (transition system ltsy).
The transition system for algebra B is lts; = (B, —), where — is defined by
the SOS rules in Table 2 plus the following aziom:
[PlrecX.P/X]] =_q

©

(REC) a
Crec X. P .—>¢ q

Theorem 3. Let B be the permutation algebra defined in Definition 10. Then,
Condition 1 in Theorem 2 holds.

Corollary 3. Let B be the algebra defined in Definition 10. Bisimilarity is a
congruence in g : B — PA(B).

Theorem 4. Let P and Q be two fusion agents. Then, P ~pe Q iff [P] ~4 [Q].

Hint of proof. 'The proof relies on the definition of three intermediate transition
systems and their notions of bisimulation, which aim at modelling that fusion
hyperequivalence is closed with respect to substitution.

The rules of the first transition system [ts; are similar to those given in
Table 1 for the fusion calculus. The only differences derive from the fact that here
the restricted name is assumed to be always xg. Hence, in case of bound actions,
substitutions on the source of a transition must be reflected on its destination
by restoring the extruded or fresh name to xg.

For p a term of algebra B, we denote by Eq(p) the equivalence relation ob-
tained as the sum of all explicit fusions in p. Bisimulation on lts; is a relation
R such that p R ¢ implies:

L. Eq(p) = Eq(q);

2. for each p—= p’ there is some ¢—~— ¢ such that Eq(p) F a = o/ and p’ R ¢/,
and viceversa.

Bisimilarity ~; is the largest bisimulation on lts;.

Our first claim is that, for P and Q two fusion agents, P~ Q if and only
if [P] ~1 [Q], being ~ the notion of fusion bisimulation given in Def. 1. This
fact can be proved by observing that p ~; ¢ if and only if o(p) ~1 o(g), for any
substitutive effect o of Eq(p).

We then define transition system ltso by adding to lts; a rule for closing with
respect to fusions in parallel:

«@
e @)
P—=(q
Bisimulation and bisimilarity ~s are analogous to those defined for lts;, with
—» in place of — . We argue that, P ~p. @ if and only if [P] ~2 [Q], where
~ne denotes fusion hyperequivalence. The intuition behind this result is that

we are able to model in ~4 closure with respect to substitution, by adding in
parallel at each step any possible fusion (rule 2).

13

The third transition system Itss is obtained essentially by replacing rule 2 in
ltso with:
™, $
T.p="3 qlep.

Bisimilarity ~3 is analogous to ~4 (— replaces —5). The proof of the theorem
is concluded by showing that ~3 is equivalent to both ~o and ~.

Ezample 1. Consider two fusion agents P = (y) (y=z.Zy. R) and Q = €.Tz.R,
with y ¢ R. As expected, P and @ are hyperequivalent. Let us now translate
P and @ in terms of algebra B. For convenience, we abbreviate ¢ (w) with w,
for any w € 9. Then, [P] = v. 24 = x¢.Z4+20.0. [R] and [Q] = €.zz.[R]. By
Theorem 4, [P] ~, [Q]. In fact, [P] <. v.Z;20.0. [R] | zo = 24; on the other
side, [Q] =, Zz.[R]. By rule (Pre'), Z2.[R] =, 6.[R]|xzo = 24 and, thus, the
analogous actions taken by v. Z,x¢.0. [R] | 2o =24+ can be simulated.

References

1. M. Buscemi and U. Montanari. A First Order Coalgebraic Model of Pi-Calculus
Early Observational Equivalence. In Proc. of CONCUR ’02, LNCS 2421. Springer,
2002.

2. A. Corradini, M. Groflie-Rhode, R. Heckel. Structured transition systems as lax
coalgebras. In Proc. of CMCS’98, ENTS 11. Elsevier Science, 1998.

3. A. Corradini, R. Heckel, and U. Montanari. Compositional SOS and beyond: A
coalgebraic view of open systems. Theoretical Computer Science 280:163-192, 2002.

4. P. Gardner and L. Wischik. Explicit Fusions. In Proc. of MFCS ’00, LNCS 1893.
Springer-Verlag, 2002. Full version to appear in Theoretical Computer Science.

5. P. Gardner, C. Laneve, and L. Wischik. The fusion machine (extended abstract).
In Proc. of CONCUR ’02, LNCS 2421. Springer-Verlag, 2002.

6. L. G. Meredith, S. Bjorg, and D. Richter. Highwire Language Specification Version
1.0. Unpublished manuscript.

7. U. Montanari and M. Pistore. Pi-Calculus, Structured Coalgebras and Minimal
HD-Automata. In Proc. of MFCS’00, LNCS 1983. Springer, 2000.

8. U. Montanari and M. Pistore. Structured Coalgebras and Minimal HD-Automata
for the pi-Calculus. Technical Report 0006-02, IRST-ITC, 2000. Available at the
URL: http://sra.itc.it/paper.epl?id=MP00. Full, revised version to appear in
Theoretical Computer Science.

9. J. Parrow and B. Victor. The Fusion Calculus: Expressiveness and Symmetry in
Mobile Processes. In Proc. of LICS’98. IEEE Computer Society Press, 1998.

10. J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science 249(1):3-80, 2000.

11. D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Proc.
of LICS’97, IEEE. Computer Society Press, 1997.

12. B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes.
PhD thesis, Department of Computer Systems, Uppsala University, 1998.

13. L. Wischik and P. Gardner. Strong Bisimulation for the Explicit Fusion Calculus.
To appear in Proc. of FoSSaCS ’04.

