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Abstract. This paper presents a semantic-based environment for rea-
soning about the behaviour of mobile systems. The verification envi-
ronment, called HAL, exploits a novel automata-like model which al-
lows finite state verification of systems specified in the m-calculus. The
HAL system is able to interface with several efficient toolkits (e.g. model
checkers) to determine whether or not certain properties hold for a given
specification. We report experimental results on some case studies.

1 Introduction

A global computing system is defined as a network of stationary and mobile
components. The primary features of a global computing system are that its
components are autonomous, software versioning is highly dynamic, the net-
work’s coverage is variable and often components reside over the nodes of the
network (WEB services), membership is dynamic and often ad hoc without a
centralized authority. Global computing systems must be made very robust since
they are intended to operate in potentially hostile dynamic environments. This
means that they are hard to construct correctly and very difficult to test in a
controlled way. In this area formal analysis techniques and the corresponding
verification technologies are important to gain confidence in correct behaviour
and to weed out bugs and security hazards before a system is deployed. For in-
stance, the growing demands on security have led to the development of formal
models that allow specification and verification of cryptographic protocols (see
[1,10,20,27] to cite a few). Although significant progresses have been made in
providing foundational models and effective verification techniques to support
formal verification of global computing systems, current software engineering
technologies provide limited solutions to some of the issues outlined above. The
problem of formal verification of global computing systems still requires consid-
erable research and dissemination efforts.

Automatic methods for verifying finite state concurrent systems have been
shown to be surprisingly effective [9]. Indeed, finite state verification techniques
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have enjoyed substantial and growing use over the last years. For instance sev-
eral communication protocols and hardware designs of considerable complexity
have been formalized and proved correct by exploiting finite state verification
techniques.

Unfortunately, finite state verification of global computing systems is much
more difficult. Indeed, in this case, even simple systems can generate infinite state
spaces. An illustrative example is provided by the m-calculus [30]. The w-calculus
primitives are simple but expressive: channel names can be created, communi-
cated (thus giving the possibility of dynamically reconfiguring process acquain-
tances) and they are subjected to sophisticated scoping rules. The w-calculus is
the archetype of name passing or nominal process calculi. Name passing process
calculi emphasize the principle that name mechanisms (e.g. local name gener-
ation, name exchanges, etc.) provide a suitable abstraction to formally explain
a wide range of phenomena of global computing systems (see e.g.[41,22]). The
usefulness of names has been also emphasized in practice. For instance, Need-
ham [35] pointed out the role of names for the security of distributed systems.
The World Wide Web provides an excellent (perhaps the most important) ex-
ample of the power of names and name binding/resolution.

Name passing process calculi have greater expressive power than ordinary
process calculi, but the possibility of dynamically generating new names leads
also to a much more complicated theory. In particular, standard automata-like
models are infinite-state and infinite branching, thus making verification a diffi-
cult task.

History Dependent automata (HD-automata in short) have been proposed
in [36, 32] as a new effective model for name passing calculi. Similarly to ordinary
automata, HD-automata are made out of states and labeled transitions; their
peculiarity resides in the fact that states and transitions are equipped with
names which are no longer dealt with as syntactic components of labels, but
become explicit part of the operational model. This allows one to model explicitly
name creation/deallocation, and name extrusion: these are the distinguished
mechanisms of name passing calculi.

HD-automata can be abstractly understood as automata over a permutation
model, whose ingredients are sets of names and of permutations (renaming sub-
stitutions) on these name sets. Names and name permutations have shown to
play a fundamental role to describe and reason about formalisms with name-
binding operations, and have been incorporated into various kinds of theories
that aim at providing syntax-free models of name-passing calculi [19, 21,25, 33,
34, 37].

HD-automata provide an intermediate, syntax independent, format to repre-
sent calculi equipped with mobility and distribution primitives [36]. An impor-
tant point is that for a wide class of processes (e.g. finitary w-calculus agents) the
resulting HD-automata are finite state. Furthermore, it is possible to construct
for each HD-automaton an ordinary automaton in such a way that equivalent
HD-automata are mapped into equivalent ordinary automata, and finite state
HD-automata are mapped into finite state ordinary automata. As a consequence,



many practical and efficient verification techniques developed for ordinary au-
tomata can be smoothly adapted to the case of mobile processes. Indeed, the
distinguished feature of our approach is the reduction of a specific name-based
theory to a specific a name-less theory. This allows us to re-use both verifica-
tion principles and automatic methods specifically developed for ordinary finite
state automata. We refer to Honda [25] for the description of a general alge-
braic framework which provides formal mechanisms to establish representation
theorems from name-based theories to name-less theories and back.

In this paper we focus on the usage of HD-automata as a theoretical foun-
dations of an automata-based approach to the finite state verification of name
passing process calculi. In particular, we exploit this theory as a basis for the
design and development of effective and usable verification toolkits. This pa-
per describes our experience in experimenting an environment, called the HD
Automata Laboratory (HAL), for the finite state verification of systems speci-
fied in the 7-calculus. The HAL environment includes modules which implement
decision procedures to calculate behavioural equivalences, and modules which
support verification by model checking of properties expressed as formulae of
suitable temporal logics. The construction of the model checker takes direct ad-
vantage of the finite representation of 7-calculus specifications presented in [32].
In particular, we exploit a high level logic with modalities indexed by w-calculus
actions and we provide a mapping which translates these logical formulae into
a classical modal logic for standard automata. The distinguished and innovative
feature of our approach is that the translation mapping is driven by the finite
state representation of the system (the m-calculus process) to be verified.

To illustrate the effectiveness and usability of our approach, we consider some
case studies which allows us to demonstrate some common verification patterns
which arise frequently when reasoning about w-calculus specifications.

The paper is organized as follows. Section 2 reviews the w-calculus and the
modal logic we use to express behavioural properties of m-calculus agents. This
section introduces the main notations and definitions that will be used through-
out the paper. We then proceed to introduce the translation mapping from -
calculus agents to HD-automata and from HD-automata to ordinary automata.
The translation mapping from the higher order logic to the bare logic is pre-
sented in Section 4. Section 5 describes the main modules of the verification
environment. Finally, Section 6 illustrates our experiments on some case studies.

2 Background

In this section we present an overview of the main concepts and notations that
we will use throughout the paper.

2.1 Ordinary Automata

Automata (or labelled transition systems) have been defined in several ways.
We choose the following definition since it is rather natural and it can be easily
modified to introduce HD-automata.



Definition 1 (ordinary automaton). An ordinary automaton is a 4-tuple
A=1(Q,q¢°, L,R), where:

— @ is a finite set of states;

— ¢° is the initial state;

— L is a finite set of action labels;
R C Q@ x Act x Q is the transition relation. Whenever (g, \,q') € R we will

write q N q.

Several notions of behavioral preorders and equivalences have been defined
on automata. Here, we review the notion of bisimilarity [29,39)].

Definition 2 (bisimulation on automata). Let A, and Ay be two automata
on the same set L of labels. A binary relation R C Q1 X Q2 is a simulation for
Ay and A, if whenever g1 R qo we have that:

for all t, : q 2 qy of Ay there exists ta : qo 2 gy of Ay such that
@ R g
Relation R is a bisimulation if both R and R~ are simulations.

Two automata Ay and As are bisimilar, written Ay ~ A, if their initial states
@%,q3 are bisimilar, namely ¢ R ¢S for some bisimulation R.

2.2 The w-calculus

Given a denumerable infinite set N of names (denoted by a, ..., z), the set of
m-calculus agents over A are defined by the syntax':

P:=nil |a.P | PP | P+ P | (2)P | [z =y]P | A(z1,...,%.(a))

o = tau | zly | z?(y),

where r(A) is the range of the agent identifier A. The occurrences of y in
z?(y).P and (y)P are bound; free names are defined as usual and £n(P) indi-
cates the set of free names of agent P. For each identifier A there is a definition
A1, -+, Yra)) == Pa (with y; all distinct and fn(Pa) C {y1 ...y, }) and we
assume that each identifier in Py is in the scope of a prefix (guarded recursion).

The observable actions that agents can perform are defined by the following
syntax:

p=tau | zly | 2l(z) | 2?7y

where z and y are free names of u (fn(u)), whereas z is a bound name (bn(u));
finally n(p) = £n(u) Ubn(w).

The rules for the early operational semantics are defined in Table 1. As usual
operational rules are defined modulo structural congruence, hence the symmetric
versions of rules have been omitted.

! For convenience, we adopt the syntax that is used in the HAL framework to input
m-calculus specifications. We use (z)P for the restriction, z?(y).P for input prefixes
and z!y.P for output prefixes. The syntax of the other operators is standard.



TAU tau.P 2% p

suM P> P

OUT zly.P =% p

PAR D1 5 p

()P L5 (z)P'

IN 2?(y).P 25 P{z/y}

if bn(p) Nfn(P2) =0

P+P 5P Pi||P, 25 Pj||P
zly o1 z? ’ z!(y) z? /
coM PP PP qrogp B2 Pl P B e g og
Pi||P, — Pi||P, Pi||P; — (y)(P1]| P2)
P p P 2% p'

if 2 £y, ¢ a((y)P)

if £ ¢ n(u) OPEN

()P = P'{z/y}

PL)PI IDE PA{yl/xh"'7y'r(A)/x'r(A)} L)P,
[(EICE]PL)P’ A(yl,...,yT(A))L)P’
Table 1. Early operational semantics.

MATCH

Several bisimulation equivalences have been introduced for the w-calculus
[40]; they are based on direct comparison of the observable actions 7-agents can
perform. They can be strong or weak, early [31], late [30] or open [43]. In this
paper we consider early bisimilarity since it provides the simplest setting for
presenting the basic results of our framework. However, it is possible to treat
also other behavioural equivalences and other dialects of the m-calculus (e.g.
asynchronous m-calculus) [36].

Definition 3 (early bisimulation). A binary relation B over a set of agents
is a strong early simulation if, whenever P B @), we have that:

— if P X5 P’ and £n(P,Q)Nbn(u) = 0, then there exists Q' such that Q - Q'
and P' B Q'.

Relation B is a strong early bisimulation if both B abd B~ are simulations.
Two agents are said strong early bisimilar, written P ~ @, if there exists a
bisimulation B such that P B Q.

2.3 A temporal logic for w-calculus agents

The standard approach to capturing correctness of m-calculus specification is
through the use of a bisimulation equivalence. However, in some cases it could
be more useful to check whether crucial properties (such as variety of safety and
liveness properties) hold. This raises the obvious question of how the logic be-
haves with respect to a bisimulation equivalence. Usually, the logic behaves well
provided that is adequate with respect to the bisimulation equivalence, namely
two processes are bisimilar provided that they satisfy exactly the same set of
logical formulae.

Several programming logics have been proposed to express and verify proper-
ties of m-calculus agents (e.g. [11,31]). These logical formalisms are extensions,
with m-calculus actions, name quantifications and parameterizations, of stan-
dard action-based logics [24,26]. Here, we introduce the logic we use to specify



behavioural properties of w-calculus agents. The logic, called w-logic, extends
the modal logic introduced in [31] with some expressive modalities. Besides the
strong next modality EX{u} ¢ of [31], the m-logic also includes two eventually
temporal operators (notation EF'¢ and EF{x}¢ ) that permit to express liveness
and safety properties. The meaning of EF ¢ is that ¢ must be true sometimes
in a possible future, and the meaning of EF{x} ¢ is that the truth of ¢ must
be preceded by the occurrence of a sequence of actions y. Derived temporal
operators, defined on the top of the next and eventually operators, including a
weak next modality <u> ¢, whose meaning is that a number of unobservable tau
actions can be executed before the action p?, and the always operators AG ¢,
whose meaning is that ¢ is true now and always in the future, and AG{x} ¢,
whose meaning is that ¢ is true now and in all future states reachable performing
sequences of actions .
The syntax of the 7-logic is given by:

¢ = true | ~¢ | $& ¢ | EX{u}¢ | EF ¢ | EF{x}¢

where x could be p, ~p or \/;,c;pi where I is a finite set. We remark that we
allow for a richer syntax of actions in EF{x}¢ since this is useful for expressing
constraints on the actions that can appear along the path.

The interpretation of the logic formulae is the following:

— P = true holds always;
— P = ~¢ if and only if not P = ¢;
—PE¢& ¢ ifand only if P = ¢ and P = ¢;
P = EX{u}¢ if and only if there exists P’ such that P - P’ and P’ |= ¢;
P = EF ¢ if and only if there exist Py, ..., P, and p1,..., s, with n > 0,
such that P =Py 2% Py ... £% P, and P, = ¢.
— P = EF{x}¢if and only if there exist Py, ..., P, and vy, ...,v,, withn > 0,
such that P = Py =% P, ... 2% P,, P, |= ¢ and:
o x=p:forall 1 <j<n,v;=porv; =tay
o x=r~p:foralll <j<n,v;#porv =tay
® X = Vierpi:forall 1 <j<n,v; =p; for some i € I or v; = tau.

The following derived operators can be defined:

— ¢V ¢ stands for ~(~¢ & ~¢');

— AX{p}¢ stands for ~EX{pu}~¢. This is the dual version of the strong next
operator;

— <p>¢ stands for EF{tau}EX{u}¢. This is the weak next operator.

— [p]é stands for ~<pu>~¢. This is the dual version of the weak nezt operator;

— AG ¢ stands for ~EF ~¢ and AG{x} ¢ stands for ~EF{x} ~¢. These are
the always operators.

% The notation <_> is generally used in the framework of modal logics to denote the
strong nezt modality, while <_>> is used for the weak nezt modality. Here we denote
instead the strong nezt by EX and the weak next by <_>.



Standard results ensure that liveness and safety properties can be naturally
expressed by means of w-logic formulae. Moreover, it has been proved [23] that
the 7-logic is adequate with respect to strong early bisimulation equivalence.
This means that two w-calculus agents are early bisimilar provided that they
satisfy the same properties that can be expressed in the 7-logic.

The m-logic comes equipped with a model checking algorithm to determine
whether or not that properties expressed as 7-logic formulae hold for a 7-calculus
specification. The construction of the model checker for the 7-logic exploits and
re-uses the model checker implemented for the ACTL logic [14, 13]. The branching
time temporal logic ACTL is the action based version of CTL [15]. ACTL is well
suited to describe the behavior of a system in terms of the actions it performs
at its working time. The complete definition of ACTL syntax and semantics is
presented in the Appendix.

3 From m-calculus agents to ordinary automata

In this section, we outline the translation steps that permit, given a w-calculus
agent, to generate the finite state and finitely branching ordinary automaton
representing the agent’s behaviour. The generation of the ordinary automaton
associated with a w-calculus agent consists of two stages. The first stage con-
structs an intermediate representation of agent’s behaviour taking advantage of
the notion of HD-automaton. The second stage builds the ordinary automaton
starting from the HD-automaton. The generation of the ordinary automaton has
been splitted into these two steps to achieve modularity in the structure of the
verification environment. Moreover, the intermediate representation allows for a
more efficient implementation of the second translation step.

3.1 From mw-calculus agents to HD-automata

HD-automata have been introduced in [32], with the name of m-automata, as a
convenient structure to describe in a compact way the operational behaviours
of w-calculus agents. HD-automata have been further generalized to deal with
name passing process calculi, process calculi equipped with location or causality
and Petri Nets [36, 33, 34].

Due to the mechanism of input, the ordinary operational semantics of the
m-calculus requires an infinite number of states also for very simple agents. The
creation of a new name gives rise to an infinite set of transitions: one for each
choice of the new name. To handle this problems in HD-automata names appear
explicitly in states, transitions and labels. Indeed, it is convenient to assume that
the names which appear in a state, a transition or a label of a HD-automaton are
local names and do not have a global identity. In this way, for instance, a single
state of the HD-automaton can be used to represent all the states of a system
that differ just for a bijective renaming. However, each transition is required to
represent explicitly the correspondences between the names of source, target and
label.



Definition 4 (HD-automaton). A history-dependent automaton (HD-automa-
ton) is a structure A = (Q,q°, L,w,q 2 q'), where:
o

— Q is a finite set of states;
— ¢° is the initial state;
— L is a set of action labels;
— w is a function associating (finite sets of local) names to states:
w:Q — Pf (N);
-q %) q' is the transition relation where o : w(q¢') — w(q) U {x} is the

(injective) embedding function, and x is a distinguished name.

Function o embeds the names of the target state in the names of the source
state of the transition. The distinguished symbol * is used to handle the creation
of a new name: the name created during the transition is associated to *. Notice
that the names that appear in the source and not in the target of the transition
are discarded in the evolution. In HD-automata, name creation must be handled
explicitly, using *, whereas name discarding can occur silently.

As pointed out in [32] the usage of local names allows modeling execution of
input prefixes by a finite number of transitions: it is enough to consider as input
values all names which appear free in the source state plus just one fresh name.
In other words, in the case of the HD-automata it does not make sense to have
more transitions which differ just in the choice of the fresh name.

Ezample 1. Consider agent P(in,out) := in?(x).out!z.nil. Figure 1 illustrates
the corresponding HD-automaton. Local names of states (i.e. the result of func-
tion w) are graphically represented by the finite set called names. The names
which are used as input values in the transition of P are in and out (i.e. the
local names of the initial state) and the fresh name *. Moreover, labels of the
form in?(x) are used to denote the input of a fresh name.

The meaning of the names changes along the transitions (i.e. the embedding
function from the names of the target state to the name of the source state) is
represented by the function map labelling the transition. For instance, consider
the transition

in?()

P(in, out) alb.nil

map:{a—out,b—=}
of Figure 1. The corresponding embedding function o : {a,b} — {in,out, x} is
defined as o(a) = out,a(b) = . Finally, in the HD-automaton of Figure 1, the
targets of two input transitions originated from the initial state (namely the in-
put of a new name, and the input of the name in) are merged: the corresponding
agents differ for an injective substitution only.

In [32] it has been proved that finite state HD-automata can be built for the
class of finitary agents. An agent is finitary if there is a bound to the number
of parallel components of all the agents reachable from it. In particular, all the
finite control agents, i.e. the agents without parallel composition inside recursion,
are finitary.



P(in, out)
names : {in, out}

in?(x)
map : {a — out,b — *}
in?out
map : {a — out}

n?lin
map : {a — out,b > in}

ala.nil
names : {a}

alb.nil
names : {a, b}

nil
names : {}

Fig. 1. The HD-automaton corresponding to the agent P(in, out) := in?(x).out!z.nil.

Due to the private nature of the names appearing in the states of HD-
automata, bisimulations cannot simply be defined as relations over states but
they must also deal with name correspondences. A HD-bisimulation is a set of
triples of the form (g1, d,¢2) where ¢; and ¢o are states of the HD-automata
and ¢ is a partial bijection between the names of the states. The bijection is
partial since we allow states with different numbers of names to be equivalent
(in general equivalent 7-calculus agents can have different sets of free names).

Suppose that we want to check if states ¢; and g2 are (strongly) bisimilar via
the partial bijection §. Furthermore, suppose that ¢; can perform a transition

t:qu SR q;- To check bisimilarity, we have to find a transition ¢ : g2 EEN a4
g1 g2

that matches t1, i.e., the two transitions must have the same label according to
bijection § and the target states are bisimilar via the partial bijection ¢’ that is
built from § and from the transition embeddings oy and o5.

Definition 5 (HD-bisimulation). Let A; and Ay be two HD-automata on the
same set L of labels. An HD-simulation for A; and As is a set of triples

R C {{q1,0,q2) | 1 € Q1, @2 € Q2, 0 : partial bijection of w1(q1) and wa(g2)}

such that, whenever {q1,9,¢2) € R we have:

A . A
— for each t1 : q = ¢, there is some ta : o = qb, and:
g1 o2



e Ay = §*(\1), where 6* is a partial bijection between wi(q1) U {*} and
wa(ge) U {+} such that 8*(z) = o(x) if *(z) € wa(ga);
b <q1,5',l]§) € R; where 51 = 02_1 0(5* 001.

Relation R is an HD-bisimulation if both R and R~! = {{q2,6 1, q1) | {q1,0,q2) €
R} are HD-simulations.

Two HD-automata Ay and Ay are HD-bisimilar, written Ay ~ As if their ini-
tial states are bisimilar according to the partial bijection that is the identity on
wi () Nw2(g9).-

We can briefly comment on the previous definition. The mapping §* allows one
to extend § either by mapping the special symbol * in ¢; into * in ¢4, or by
mapping into * a name of w; (g;) not covered by . This second case is necessary
since ¢; and ¢» may have different sets of free names, and hence different sets
of input transitions. For instance, let us consider the agent Q(in,out,w) :=
in?(z).outlz.nil. This agent has the same behaviour of P(in,out) but contains
an extra name w. According to the definition of HD-bisimulation, the transition

Q(in, out, w) Y outlwnil can be matched by the transition of P(in,out)
corresponding to the input of special symbol .

In [32,36] it has been shown that the definition of HD-bisimilarity applied
to HD-automata obtained from 7-calculus agents induces over m-calculus agents
an equivalence relation which coincides with strong early bisimilarity.

3.2 From HD-automata to ordinary automata

The theory of HD-automata ensures that they provides a finite state faithful
semantical representation of the behaviour of w-calculus agents. Indeed, it is
possible to extract from the HD-automaton of a m-calculus agent its ordinary
early operational semantics. This is done by a simple algorithm, basically a visit
of the HD-automaton, which maintains the global meaning of the local names
of the reached states.

Intuitively, the algorithm behaves as follows: When a fresh name is introduced
by a transition of the HD-automaton, a global instantiation has to be chosen for
that name. For instance, suppose we are visiting the HD-automaton of Figure 1
starting from the initial state. Furthermore, assume that the global meaning of
local names is the identity function (i.e. the function mapping local names in
and out into global names in and out, respectively). If we choose the transition
in?(x), we have to give a global meaning, say v, to the fresh name *. Then, we
reach the state alb.nil, where the global meaning of names a and b is out and
v, respectively. It is immediate to see that this corresponds to the w-calculus
transition P(in, out) ) hutlonil? Clearly, we have a transition for all the
possible choices of the fresh name v. In other words, this procedure yields an
infinite state automaton. To obtain a finite state automaton it suffices to take as

3 Notice that parentheses have been added around to name v in order to stress that v
is used as a fresh name in the transition.

10



fresh name the first name which has been not already used. In this way, a finite
state automaton is obtained from each finite HD-automaton.

The ordinary automaton obtained from the HD-automaton of Figure 1 is
displayed in Figure 2. In the ordinary automata labels of transitions appear in
quotation marks, to stress the fact that they are just strings.

P(in, out)

outla.nil . 5 out!in.nil ‘ outlout.nil

M

“out!out”

nil

Fig. 2. The ordinary automaton corresponding to the HD-automaton of Figure 1.

To sum up, we outlined a procedure to map (a significant class of) w-calculus
agents into finite state automata. It is not true in general, however, that bisimilar
m-calculus agents are mapped into bisimilar ordinary automata. In fact, due to
the mechanism for generating fresh names, this is true only if we can guarantee
that two bisimilar agents have the same set of free names. To guarantee this,
the HD-automaton has to be made irredundant in a pre-processing phase. The
irredundant construction discards all the names which appear in the states of the
HD-automaton but which do not play any active role in the computations from
that state. For instance, in the case of agent Q(in,out,w) := in?(z).out!z.nil
one can see that name w does not play an active role and can hence be removed
from the state of the HD-automaton corresponding to (). As a consequence,

also the transition Q(in, out,w) Y outhw.nil disappears, yielding an irredun-
dant automaton. The irredundant HD-automaton is more compact than the
starting “redundant” HD-automaton, but describes the same behaviors. More
precisely, the irredundant HD-automaton and the staring HD-automaton and
HD-bisimilar.

11



In [32] a simple and efficient algorithm is described to make irredundant
the HD-automata corresponding to m-calculus agents without matching. HAL
exploits an extension of this algorithm which is able to handle also a limited
form of matching?.

In [32,36] it has been shown that the standard definition of bisimulation
applied to ordinary automata obtained from irredundant HD-automata induces
on the HD-automata a relation that coincides with HD-bisimilarity. This yields a
procedure for checking the bisimilarity of two 7-calculus agents. The two agents
are translated into HD-automata. These are made irredundant and translated
into ordinary automata. Finally, standard bisimilarity checking algorithms are
exploited on the ordinary automata. The theoretical results of [32, 36] ensure the
correctness of this procedure.

To conclude this section we show the expressiveness of HD-automata in han-
dling bisimilarity.

Example 2. Consider the m-calculus agent
Q(in,out) := (2)(in?(x).2lz.nil || 2?(y).outly.nil).

The standard m-calculus early operational semantics yields an infinite state and
infinite branching labelled transtion system (see Figure 3(A)). The ordinary
automaton, instead, which results from the HD translation steps is displayed
in Figure 3(B). It is straightforward to notice that agent Q(in,out) is weakly
bisimilar to agent P(in,out) of Example 1.

o (e}
zn"zn/ ina; "7 Ymt
inZoutYin?a in?a
o o O rrrreereeae e o o o o
ltau ltau tau ltau ltau tau ltau
(o] (o] [¢] (o] (o] (o] (o]
outla
outlin outlout outla outla; )
outlin outlout
[e] (e} o [e] (e}
(A) (B)

Fig. 3. State space representation of agent Q(in, out).

4 Intuitively, the names that appear in a matching must be bound and can never be
the objects of bound output transitions.

12



4 From m-logic to AcTL

Our purpose is now to define an automatic verification procedure to model check
whether or not a 7-logic formula holds for a 7-calculus specification. In Section 3
we have shown that it is possible to derive an ordinary automaton for finitary
m-calculus. Hence, if we were able to translate formulae of the w-logic into “or-
dinary” logic formulae, it should be possible to use existing model checking
algorithms to check the satisfiability of “ordinary” logic formulae over ordinary
automata. This translation is possible using ACTL [14], for which an efficient
model checker has been implemented [18] and for which a sound translation
exists.

In the rest of this section we present the translation function that associates
an AcTtL formula with a formula of 7-logic. The translation is defined by having
in mind a precise soundness result: we want a m-logic formula to be satisfied by a
m-calculus agent P if and only if the finite state ordinary automaton associated
with P satisfies the corresponding ACTL formula. The translation of a formula
is thus not unique, but depends on the agent P. Specifically, it depends on the
set S of the action labels that occur in the transitions of the ordinary automaton
associated with the agent P.

Definition 6. Let § = {y'/y}. We define uf as being the action p' obtained
from u by replacing the occurrences of the name y with the name y'. Moreover,
we define trued = true, ($1&p2)0 = ¢10&p20, (~)0 = ~¢8, (EX{u}td)0 =
EX{ub}¢l, (EF¢)8 = EF ¢l and (EF{x}$)0 = EF{x0}¢80.

Definition 7 (translation function). Given a w-logic formula ¢ and a set of
action labels S, the ACTL translation of ¢ is the ACTL formula Ts(p) defined as
follows:

— Ts(true) = true

= Ts(¢1&¢2) = Ts(91)&Ts(42)

= Ts(~9) = ~Ts5(9)

- 73‘( X{M}¢) Vowers(wEX{n'}Ts(¢6) where 6 = {y'/y} if bn(u) = y and
bn(p
(EF
(E

)=
5) = BFTs(0)
F{x}¢) = Eltrue{\| e, oW }UT5(®)

- Ts
- Ts

where:

— Ts(tau) = {tau}
= Ts(zly) = {zly}
— Ts(zl(y)) = {z!(2) € S| 2z is a name }
— Ts(z?y) = {z?y} U {z?(z) € S| z is a name }
= Ts(~p) =S\ Ts(w)

%(Vzel wi) = UieI Ts (i)
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Here, we assume that when S = () then Vu’ €T5(X)¢ = false. Notice that the
complexity of the translation has a worst case complexity which is exponential
in the number of actions appearing in set S.

Ezample 3. Let us consider agent P(in,out) introduced in Example 1. Agent
P satisfies the w-logic formula ¢ = EX{in?u}EX {out!u}true for each name

u, since P % for each name u and then it performs an out! action with the
corresponding name. We want to verify whether the ACTL translation of the
formula holds in the ordinary automaton associated with P, hence we have to
consider the ACTL translation of the formula with respect to the set of actions
S used in the ordinary automaton of P. The translation of the formula is:

EX{intu}EX{outlu}true V EX{in?(a) } EX {outla}true

since the only bound input action in S is in?(a). Note that the resulting ACTL
formula holds in the ordinary automaton of P.

Assume now that S contains two bound input actions in?(a) and in?(b). In
this case the translation yields the formula:

EX{in?u}EX{outlu}true V EX {in?(a)} EX {out!a}true
V EX{in?(b)} EX {out!b} true

The correctness of the translation is shown in [23]. More precisely, let P be
a m-calculus agent and let A be the corresponding ordinary automaton (namely,
the automaton obtained by translating P into an HD-automaton, by making the
HD-automaton irredundant, and by translating it into an ordinary automaton).
Then P satisfies a w-logic formula ¢ if, and only if, A satisfies the formula
Ts(¢p), where S are the action labels of A. We remark that ACTL is adequate
with respect to the standard bisimulation on ordinary automata. Therefore, in
the verification of formula Tg(@) it is possible to replace automaton A with
a bisimilar automaton. This makes it possible, for instance, to minimize the
automaton A before doing the actual verification.

We conclude this section observing that one of the advantages of model check-
ing is that, if a formula is false, a counter-example is returned by the verification
engine. This counter-example can guide the user in detecting and fixing the er-
ror. Currently, the counter-example is returned on the ordinary automaton, and
the user is responsible of re-interpreting it on the starting m-calculus agent.

5 HAL Architecture

The previous sections outlined the theoretical foundations of an automata-based
approach to the finite state verification of name passing process calculi. It re-
mains to show that this theory can be exploited as a basis for the design and
development of an effective and usable verification toolkit. This section and the
one following explore this issue by describing our experience in experimenting
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an environment, called HAL for verifying finite state mobile systems represented
in the 7-calculus.

HAL has been implemented on top of the JACK environment [4]. The idea
behind JACK? is to combine different specification and verification toolkits [28,
42, 3,18], around a common format for representing ordinary automata: the FC2
file format [5]. FC2 allows interoperability among JACK tools. Moreover, tools
can easily be added to the JACK system, thus extending its potential. An or-
dinary automaton is represented in the FC2 format by means of a set of tables
that keep the information about state names, arc labels, and transition relations
between states. The JACK front-ends allow specifications to be described both
in textual form and in graphical form, by drawing automata. Moreover, JACK
provides sophisticated graphical procedures for the description of specifications
as networks of processes. This supports hierarchical specification development.
Once the specification of a system has been written, JACK permits the con-
struction of the global automaton corresponding to the behaviour of the overall
system. Moreover, automata can be minimized with respect to several behav-
ioral equivalences. Finally, ACTL can be used to describe temporal properties and
model checking can be performed to check whether systems (i.e. their models)
satisfy the properties.

The HAL toolkit is the component of JACK which provide facilities to deal
with m-calculus specification by exploiting HD-automata. The goal of HAL is to
verify properties of mobile systems specified in the m-calculus. Exploiting HAL
facilities, m-calculus specifications are translated first into HD-automata and
then in ordinary automata. Hence, the JACK bisimulation checkers can be used
to verify bisimilarity. Automata minimization, according to bisimulation is also
possible. HAL supports verification of logical formulae expressing properties of
the behaviour of m-calculus specifications. The ACTL model checker provided by
JACK can be used for verifying properties of w-calculus specifications, after that
the w-logic formulae expressing the properties have been translated into ACTL
formulae. Notice that the complexity of the model checking algorithm depends
on the construction of the state space of the w-calculus agent to be verified,
which is, in the worst case, exponential in the syntactic size of the agent.

The architecture of HAL is displayed in Figure 4. The current implementation
consists of five main modules all integrated inside the JACK environment. Three
of these modules handle the translations from m-calculus agents to HD-automata,
from HD-automata to ordinary automata, and from z-logic formulae to ACTL
formulae. The fourth module provides several routines that manipulate the in-
ternal representation of HD-automata. The routine for making HD-automata
irredundant (see Section 3.2) is contained in this module. The last module pro-
vides HAL with a user-friendly Graphical User Interface (GUI). The HAL user
interface is splitted in two sides: the Agent side and the Logical side (see also
Figures 5 and 6). The Agent side allows:

% Detailed information about JACK are available at:
http://matrix.iei.pi.cnr.it/projects/JACK.
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Graphical User Interface (GUI)

m-calculus agent

From m-calculus agents
to HD-automata m-logic formula

HD-automaton

HD-automata From 7-logic formulae
reduction to ACTL formulae

HD-automaton

From HD-automata to
ordinary automata

ordinary ACTL formula
automaton

automata minimization o JACK — graph editing

behavioural verification = toolset 5 model checking

Fig. 4. The logical architecture of the HAL environment.

— the transformation of w-agents into HD-automata and then into ordinary
automata (options Build and Unfold),

— the verification of equivalence of ordinary automata (option Check).

The Logic side allows a w-logic formula to be translated in the corresponding
ActL formula taking into account the specific automaton on which it will be
checked (option Translate), and its verification through model checking (option
Check).

Several optimizations have been implemented. These optimizations reduce
the state space of HD-automata, thus allowing a more efficient generation of the
ordinary automata associated with w-calculus agents. An example of optimiza-
tion is given by the reduction of tau chains (that are unbranched sequences of
tau transitions) to simple tau transitions (option Reduce). Another optimiza-
tion consists of the introduction of constant declarations. Constant names are
names that cannot be used as objects of input or output actions (for instance,
names that represent stationary communication topologies, namely communica-
tion topologies which cannot be modified when computations progress). Since
constant names are not consider as possible input values, the branching structure
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" x| HAL — The Hd-Automata Laboratory (version 1.2)

quit || UTILITIES |
Hide log >» Logic
Pi Agents Hd Autonata Automata
ETAMELES fhal fhandover . pi | [esr.hd B5M_red.fc2
‘ 65M_red.hd B5Mbuffer red.fc2
/ V] /
Load Edit Del | Load | Aty | Dpel | Load | Atg | Del |
Build » | Roduce | mafold »> | Mininize | check... |
#4rish unfolding hd-antomaton GSM_red.hd *+s#ss N
Reading hd-autanatan GSM_red.hd
fn states: 100

fn states: 200

nfolding hd-automaton

time: 1.83 sec.
Writing autonaton 6SM_red.fc2

Done
wwkknt end of unfolding *4ss

*akstk unfolding hd-autonaton GSMbuffer_red.hd **xs+s
Reading hd-awtaraton GsMbuffer red.hd
nfolding hd-autowaton
time: 0.55 sec.
Writing automaton GSMmfer red.fc2
one

I
axkukt end of wnfolding x4 7]

Fig. 5. The Agent side of HAL.

fi=] HAL - The Hd-Automata Laboratory (version 1.2)
gurt || UTILTTIES |
Hide log >> Agents
Pi Formilae Actl Formulae Automata
EXAMPLES halygstformulae.pl| |\ | [Buffer.actl GSM_red.fc2 N
pufferd. actl osMbuffer red.fo2
NoStop.actl
NoVait.actl
Order.actl
4 £ #
load | Edit | mer | TLoad view | pel | load | atg | el |
Translate >> Mininize theck

*xkkih translating formula file EXAMPLES/hal/GSMformidae.pl (using GSHbuffer_red.fic2) ***+**
Defined Buffer

Written actl formula Buffer
Defined Nostop

Written actl formula NosStop
Defined order

Written actl formula Drder
Defined Buffer3

Written actl formula Bufferd
Defined NoWait

Written actl formula NoWait
whkush end of translation *xhssx

|4 =0

Fig. 6. The Logical side of HAL.
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of input transitions is reduced. The semantic handling of constants is presented
in [36]. Constants have to be declared in the m-calculus specifications.

The distinguished feature of our approach is the reduction of a specific name-
based theory (the w-calculus) into an automata-like intermediate format (HD-
automata). Theoretical results ensure soundness of this reduction. Furthermore,
this allowed us the semantic re-use of both verification principles and automatic
methods specifically developed for ordinary finite state automata. The main
drawback of this approach is the generation of counterexamples when the -
calculus specification does not satisfies some properties. Indeed, counterexamples
are generated by the JACK model checker but they are shown in the ordinary
automata world. In other words, users are responsible of re-interpreting them on
the orginal 7w-calculus specifications. This can be done, for instance, by exploiting
the Autograph toolkit (a module of the JACK system) which provides services
to animate and visualize ordinary automata.

HAL is written in C++ and compiles with the GNU C++ compiler. The
GUI is written in Tcl/Tk. HAL is currently running on SUN stations (under
SUN-0S) and on PC stations (under Linux). Recently, the HAL toolkit has been
restructured and made available as a WEB service. By a few clicks in a browser
at the URL http://matrix.iei.pi.cnr.it:8080/halontheweb/ the HAL web
service can be accessed remotely and its facilities can be exercised directly over
the web.

6 Verification Case Studies

In this section we discuss some experimental results of HAL in the analysis
of mobile systems specified in the w-calculus. The experiments have been run
on a PC with a Pentium 4 - 1.80GHz processor and 512MB memory running
Linux 2.4.18. The examples are available, along with the HAL bundle at URL:
http://matrix.iei.pi.cnr.it/projects/hal

6.1 Data Structures

The first example concerns reasoning about data structures represented as 7-
calculus processes. This is a simple exercise in reasoning about m-calculus speci-
fications and yet allows the demonstration of common verification patterns which
arise frequently when using m-calculus specifications.

To begin, let us consider the simplest example of a memory cell. A cell can
be represented as a (recursive) process of the form

define Cell(i,o) = i7?(c).o!c.Cell(i,o0)

A process can store a new value via the channel i and read the stored value
via the channel o. We shall exploit the Cell data structure to construct more
interesting data structures. Figure 7 illustrates the HAL specification of two data
structures: heap and buffer. For simplicity, we assume that the two data struc-
tures have a fixed size, and that names in, out are constants. For completeness,
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T-spec w-to-hd red-hd hd-to-aut aut-min

heapl| 2 (0.00) 2 (0.00) 2 (0.00) 2 (0.00)
heap2| 7 (0.01) 7 (0.01) 11 (0.00) 6 (0.00)
heap3| 22 (0.04) 22 (0.02) 75 (0.05) 20 (0.00)

heap4| 74 (0.17) 74 (0.03) 700 (0.62) | 70 (0.12)
heap5| 277 (1.04) | 277 (0.15) | 8476 (15.42) | 252 (2.21)
heap6|| 1154 (6.66) | 1154 (0.90) |126125 (715.28)[924 (141.96)
heap? || 5294 (46.00) | 5294 (5.66) - -
heap8 [[26441 (338.26)|26441 (35.62) - -

Table 2. Heap specification: Model construction.

we also report the build statements. These statements are used to invoke the
HAL facility that constructs the HD-automaton associated with a w-calculus
process.

We expect that the specifications above satisfy certain properties. A main
requirement is that whenever a value is inserted in the data structure, then it
is possible to make it available in output. The following formula represents this
property:

define Memory = AG([in?m]EF (<out!m>true))

Other interesting properties to be verified are

define NoDeadlock = AG(<in?*>true | <out!*>true)

(specifying that the evolution never reaches a deadlock state) and

define Order = AG([in?m] [in?n] ~ (EF {~out!m} EX {out!n} true))

(specifying that the data structure adopts a FIFO policy, namely that, if name
m is received before name n, then there is no path along which name n is emitted
before name m).

Table 2 illustrates the results of the model creation for heap specifications.
The model is computed by generating the HD-automaton associated to the -
calculus specification (column w-to-hd), the resulting HD-automaton is then
made irredundant (column red-hd), the irredundant HD-automata is transformed
into an ordinary automaton (column hd-to-aut) and then minimized (column
min-aut). The numerical entries of the table give the number of state of the
automaton and the construction time (in seconds). Notice that we were not able
to construct the ordinary automata corresponding to heap7 and heap8 specifi-
cations because of state explosion. Table 3 illustrates the results of the model
checking activity for the heap4 specification. Tables 4 and 5 illustrate the re-
sults of our experiments for the buffer specifications. We remark that property
Order is true only for buffers, while the other two properties are true for both
structures.

19



Heaps:

define
define
define
define
define
define
define
define

const
const

build
build
build
build
build
build
build
build

Heapl(in,out) =
Heap2(in,out) =
Heap3(in,out) =
Heap4(in,out) =
Heapb (in,out) =
Heap6(in,out) =
Heap7(in,out) =
Heap8(in,out) =

in
out

Heapl
Heap2
Heap3
Heap4
Heapb
Heap6
Heap7
Heap8

Buffers:

define
define
define
define
define
define
define
define

const
const

build
build
build
build
build
build
build
build

Bufferil(in,out)
Buffer2(in,out)
Buffer3(in,out)
Bufferd (in,out)
Bufferb5(in,out)
Buffer6(in,out)
Buffer7 (in,out)
Buffer8(in,out)

in
out

Bufferl
Buffer2
Buffer3
Bufferd
Bufferb
Buffer6
Buffer7
Buffer8

Cell(in,out)

Cell(in,out) |Heapl(in,out)
Cell(in,out) |Heap2(in,out)
Cell(in,out) |Heap3(in,out)
Cell(in,out) |Heap4(in,out)
Cell(in,out) |Heapbh(in,out)
Cell(in,out) |Heap6(in,out)
Cell(in,out) |Heap7(in,out)

= Cell(in,out)

= (c) (Cell(in,c) |Bufferi(c,out))
= (c) (Cell(in,c) |Buffer2(c,out))
= (c)(Cell(in,c) |Buffer3(c,out))
= (c) (Cell(in,c) |Buffer4(c,out))
= (c) (Cell(in,c) |Buffer5(c,out))
= (c) (Cell(in,c) |Buffer6(c,out))
= (c)(Cell(in,c) |Buffer7(c,out))

Fig. 7. Heap and buffer specifications.
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T-spec|| property results

heap4 || Memory |OK (0.01)
heap4 ||[NoDeadlock|OK (0.00)
heap4 Order ([NO (0.01)

Table 3. Heap specification: Model checking results.

T-spec w-to-hd red-hd hd-to-aut aut-min
bufferi 2 (0.00) 2 (0.00) 2 (0.00) 2 (0.00)
buffer2 7 (0.02) 5 (0.00) 8 (0.00) 7 (0.00)
buffer3|| 20 (0.03) 14 (0.00) 51 (0.02) 37 (0.00)

bufferd| 67 (0.13) | 51(0.02) | 504 (0.18) | 297 (0.05)
buffer5|| 255 (0.80) 209 (0.08) 6370 (3.89) 3251 (3.26)
buffer6|| 1080 (4.88) 930 (0.38) |97473 (158.74)|45013 (1154.27)
butfer?| 5017 (31.53) | 4461 (2.02) 5 -
buffer8|(25287 (213.58)|22977 (11.63) - -

Table 4. Buffer specification: Model construction.

6.2 A-calculi

Although based on simple primitives, the w-calculus is very expressive. It can
encode the A-calculus and other functional programming formalisms. Similarly,
a variety of imperative, object-oriented and concurrent programming may be
reduced to the m-calculus. Several encodings of A-calculus evaluation strageties
into the m-calculus have been developed. All these encodings have three common
features:

— function application is modeled as parallel composition,
— p-reduction is modeled as synchronization,
— the encoding is parameterized over a name which models the environment.

Here, we do not discuss the theories underlying the interpretation of A-calculi
into the m-calculus (we refer to [40] for the detailed treatment). Instead, we aim
at showing how HAL can be exploited to reason about such encodings.

Let us consider the following three simple A-calculus terms:

— P =(\z.2),
- @ = (Az.2)(A\z.z), and
— R = (Az.(zx))(\z.2).

Their w-calculus interpretation is as follows:

define P(u) = u?(p). p?(x). p?(v) . x!v . nil

define FIX_P(z) = z?(w). (FIX_P(z) | P(w))
define Q(u) = (W) (P&) | () P)(v!p. p!z. plu. nil | FIX_P(z)))
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T-spec property results
buffer4|| Memory |OK (0.01)
buffer4|NoDeadlock|OK (0.02)
buffer4d Order |OK (0.03)

Table 5. Buffer specification: Model checking results.

m-encoding||w-to-hd|red-hd|hd-to-aut|aut-min
P 0.00 | 0.00 0.00 0.00
Q 0.02 | 0.00 0.00 0.00
R 0.03 | 0.00 0.00 0.00

Table 6. Interpreting A terms: Model construction.

define FIX_x(z,x) = z?7(w). (FIX_x(z,x) | x'w.nil)
define Aux(u) = u?(p). p?(x). p7(v)

(w) (x!'w. nil | (2)(p) (w!p. p!z. p!v. nil | FIX_x(z,x)))
define R(u) = (v) (Aux(v) | (2)(p) (v!p. p!z. p'u. nil | FIX_P(2)))

Table 6 illustrates the results of the model creation for the encoding (we only
report the construction time). Theoretical results guarantee that P is bisimilar
to @ and R. Checking the two bisimilarities in HAL takes 0.01 sec. and 0.02 sec,
respectively.

In order to experiment HAL with A-calculus encodings, we introduce a “‘wrong”
encoding into the w-calculus of the three A terms presented above:

define P(u) = u?(p). p?(x). p?(v) . x!'v . nil

define Q(u) WEW | D @E)p. plz. ptu. nil | z?(w). P(w)))
define Aux(u) = u?(p). p?(x). p7(v)

(w) (x'w. nil | (2)(p) (w!p. p!'z. p!v. nil | z?(w). x!w. nil))
define R(u) = (v) (Aux(v) | (2)(p) (v!p. p!z. plu. nil | z?(w). P(w)))

Exploiting HAL facilities we compute that this encoding is not correct: P is
bisimilar to @ (0.03 sec), but is not bisimilar to R (0.01 sec).

6.3 Security Protocols

Cryptography is an important mechanism for achieving security in distributed
systems. The creation of unique names (nonces) is an essential primitive to
identify sessions or to timestamp freshness of a message in security protocols.
The generation of nonces is an instance of the dynamic name generation pro-
vided by the w-calculus. This observation has led to modeling keys as names,
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key generation as restriction, and communication on a cryptographic channel as
communication on its key. For instance, the following m-calculus processes pro-
vide a simple specification of a set of cryptographic primitives with symmetric
keys.

define CryptedMsg(cm,k,m) = cm?(x). (t)(k!'t. t?(y). t?(r). [y=x] r'm.nil)
define Encrypt(r,k,m) = (cm)(r!'cm. CryptedMsg(cm,k,m))

define Decrypt(r,k,cm) = (x)(cm!x.k?(t).t!x.t!r.nil)

Basically, the specification above describes a ciphertext (a cryptographic mes-
sage) as an abstract object with the methods: Encrypt and Decrypt.

The spi calculus [1] is an extension of the m-calculus with basic primitives to
represent ciphertexts, and constructs for generation of nonces and keys. Spi-like
calculi have been used to specify and verify secrecy and authenticity properties
of several cryptographic protocols. Moreover, there has been some work on de-
signing and implementing toolkits to assist reasoning about security protocols.
Here, we do not discuss in detail the issues of name passing calculi for secu-
rity, but, we aim at showing the use of HAL facilities to assist specification and
verification of security protocols. We illustrate some examples for secure com-
munication and key exchange. In all case we model check properties over the
models generated by the protocol specifications. Clearly, our security protocol
specifications are lower level than those of other formalisms specifically designed
to specify security protocols, since our goal is to illustrate the usability of HAL
to tackle a variety of specification issues of global computing systems.

The following m-calculus specifications describe four simple security proto-
cols. Processes SimpleSP1 and SimpleSP2 receive two plain-text messages over
channel in, SimpleSP1 encrypts the first message; SimpleSP2, instead, encrypts
the second message. The resulting cipher-text is sent along channel out.

define SimpleSP1(in,out) =
(k) (in?(m1) .in?(m2) . (r) (Encrypt(r,k,ml) | r?(cm). out!cm.nil))

define SimpleSP2(in,out) =
(k) (in?(m1) .in?(m2) . (r) (Encrypt(r,k,m2) | r?(cm). out!cm.nil))

Under the perfect encryption hypothesis, the external, hostile, environment
is not able to decrypt the cipher text: the protocol does not leak the content
of the cipher text. This is the standard notion of leaking formalized in terms of
bisimilarity. Indeed, the two w-calculus processes are bisimilar: HAL takes 0.01
seconds to check bisimilarity.

Let us now consider processes SimpleSP3 and SimpleSP4:

define SimpleSP3(in,out) =
(k) (in?(m1) .in?(m2) . (r) (Encrypt(r,k,ml) | r?(cm). out!cm.out!k.nil))

define SimpleSP4(in,out) =
(k) (in?(m1) .in?(m2). (r) (Encrypt(r,k,m2) | r?(cm). out!cm.out!k.nil))
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In this case, the protocol does leak the encryption key k in the hostile environ-
ment, and HAL reports correctly that the two processes are not bisimilar.

We now consider other simple security protocols. Protocol SP1 models a
cryptographic communication along a unsecure channel between two principals
sharing a symmetric key. Protocol SP2 models a cryptographic communication
where the initiator of the protocol encrypts, using a symmetric key, the session
key. The message is then forwarded along the unsecure channel exploiting the
session key.

define P1(in,bus,k) =
in?(m). (r) (Encrypt(r,k,m) | r?(cm). bus!cm. nil )

define Q1(bus,out,k) =
bus?(cm). (r)(Decrypt(r,k,cm) | r?(m). out!m. nil)

define SP1(in,bus,out) = (k) (Pi(in,bus,k) | Q1(bus,out,k))

define P2(in,bus,kl1) = in?(m). (rl) (r2) (k2)
(Encrypt(ril,k1,k2) |
r1?(cml). bus!cml. Encrypt(r2,k2,m) | r27(cm2). bus!cm2. nil )

define Q2(bus,out,kl) = bus?(cml). bus?(cm2). (rl)
(Decrypt(rl,ki,cml) |
r1?7(k2). (r2) (Decrypt(r2,k2,cm2) | r2?(m). out!m. nil))

define SP2(in,bus,out) = (k1) (P2(in,bus,k1) | Q2(bus,out,kl))

To reason about these security protocols we consider the following properties
whose meaning is straightforward. Table 7 illustrates the results of experimenting
with HAL to verify these cryptographic protocols on these properties:

define AlwaysSuccess = AG([in?n]<out!n>true)
define PossibleSuccess = AG([in?m]EF (<out!m>true))

define NoWrongOutput = AG([in?n] [out!m]false)

We see that it is not possible to ensure the success of communication (prop-
erty AlwaysSuccess), since messages flow on public channels that are unreliable
(e.g. messages can be intercepted). However, the communication may be success-
ful (property PossibleSuccess), and in this case we can ensure the reception
the right message (property NoWrongQutput).

To conclude this section, we consider a security protocol of larger size: the well
known Wide Mouth Frog (WMF) protocol [2]. In the WMF protocol principal
A transmits a secret message to principal B by a session key k. The session key
is exchanged through a trust server S. The keys kas, kbs are secret keys for
communicating from the server to principals A and B. The WMF protocol can
be specified as follows. Table 8 illustrates the experimental results for the WMF
protocol.
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security protocol|| m-to-hd | red-hd | hd-to-aut | aut-min
SP1 49 (0.09) | 25 (0.00) | 39 (0.01) |25 (0.00)
SP2 726 (4.56)|466 (0.12)|1329 (0.31)(270 (0.39)
security protocol property results|computation time
SP1 AlwaysSuccess | NO 0.00
SP1 PossibleSuccess| OK 0.01
SP1 NoWrongQutput | OK 0.00
SP2 AlwaysSuccess | NO 0.02
SP2 PossibleSuccess| OK 0.02
SP2 NoWrongOutput | OK 0.03

Table 7. Reasoning about security protocols.

security protocol|| =-to-hd red-hd | hd-to-aut | aut-min
WMF 2046 (24.89)[1079 (0.35)[4146 (1.39)|436 (1.72)
security protocol property results|computation time
WMF AlwaysSuccess | NO 0.05
WMF PossibleSuccess| OK 0.05
WMF NoWrongQutput | OK 0.03

Table 8. Reasoning on the WMF protocol

define A(kas,in,bus) =
in?(v) . (k) (r) (Encrypt(r,kas,k) |
r7(ck). bus!ck. (r)(Encrypt(r,k,v) |
r?(cv). bus!cv. nil))

define B(kbs,out,bus) =
bus?(ck) . (r) (Decrypt(r,kbs,ck) |
r?7(k). bus?(cv). (r) (Decrypt(r,k,cv) |
r?(v). out!v. nil))

define S(kas,kbs,bus) =
bus?(ck) . (r) (Decrypt(r,kas,ck) |
r?7(k). (r)(Encrypt(r,kbs,k) |
r?(ck). bus!ck. nil))

define WMF(in,out,bus) =
(kas) (kbs) (A(kas,in,bus) |B(kbs,out,bus) | S(kas,kbs,bus))

25



define Car(talk,switch,out) =
talk? (msg) .out!msg.Car(talk,switch,out) +
switch?(t) .switch?(s).Car(t,s,out)

define Base(talkcentre,talkcar,give,switch,alert) =
talkcentre?(msg) .talkcar!msg.
Base(talkcentre,talkcar,give,switch,alert)
+

give?(t).give?(s) .switch!t.switch!s.give!give.
IdleBase(talkcentre,talkcar,give,switch,alert)

define IdleBase(talkcentre,talkcar,give,switch,alert) =
alert?(empty) .Base(talkcentre,talkcar,give,switch,alert)

define Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap) =
in?7(msg) .tca!msg.Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap)
+
tau.ga!tp.ga!sp.ga?(empty) .ap!ap.
Centre(in,tcp,tp,gp,sp,ap,tca,ta,ga,sa,aa)

Fig. 8. m-calculus specification of GSM modules.

6.4 The Handover Protocol for Mobile Telephones

The last case study concerns the specification of the core of the handover protocol
for the GSM Public Land Mobile Network (GSM) proposed by the European
Telecommunication Standards Institute. The specification is borrowed from that
given in [44], which has been in turn derived from that in [38].

The w-calculus specification of the GSM protocol is

define GSM(in,out) =
(tca) (ta) (ga) (sa) (aa) (tcp) (tp) (gp) (sp) (ap)
| ( Car(ta,sa,out),
Base(tca,ta,ga,sa,aa),
IdleBase(tcp,tp,gp,sp,ap),
Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap))

Centre receives messages from the environment on channel in; these input ac-
tions are the only observable actions performed by Centre. Module Car sends
the messages to the end user along the channel out; these outputs are the only
visible actions performed by the Car. Modules Centre and Car interact via the
base corresponding to the cell in which the car is located. The specification of
modules Car, Base, IdleBase and Centre is reported in Figure 8. The behaviour
of the four modules is briefly summarized below:

— Car brings a MobileStation and travels across two different geographical
areas that provide services to end users;

— Base and IdleBase are Base Station modules; they interconnect the Mo-
bileStation and the MobileSwitching Centre;
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— Centre is a MobileSwitching centre which controls radio communications
within the whole area composed by the two cells.

The protocol starts when Car moves from one cell to the other. Indeed, Centre
communicates to the MobileStation the name of the base corresponding to the
new cell. The communication of the new channel name to the MobileStation is
performed via the current base. All the communications of messages between
the MobileSwitching centre and the MobileStation are suspended until the Mo-
bileStation receives the names of the new transmission channels. Then the base
corresponding to the new cell is activated, and the communications between the
MobileSwitching centre and the MobileStation continue through the new base.

The observable behaviour of the GSM protocol can be abstracted by a three
position buffer. The buffer queues the messages and is specified by the module
GSMbuffer as follows

define SO(in,out) =
in?(v). S1(in,out,v) + tau. SO(in,out)

define S1(in,out,vl) =
in?(v). S2(in,out,vi,v) + out!vl. SO(in,out) + tau. out!vi. SO(in,out)

define S2(in,out,vi,v2) =
in?(v). S3(in,out,vl,v2,v) + out!vi. Si(in,out,v2) +
tau. out!vi. out!v2. SO(in,out)

define S3(in,out,vi,v2,v3) =
out!vl. S2(in,out,v2,v3)

define GSMbuffer(in,out) = SO0(in,out)

Figure 9 illustrates a version of the GSM protocol that models the Mo-
bileSwitching and MobileStation modules in a more realistic way. Indeed, the
full’” version exploits a protocol for establishing whether or not the car is cross-
ing the boundary of a cell and entering the other cell.

It is possible to check that GSM, GSMfull and GSMbuffer have the same be-
haviour. Indeed, GSM and GSMfull are proved to be weakly bisimilar to GSMbuffer.
Table 9 gives the performance figures of the model creation and of the bisimu-
lation checks when in and out are assumed constant names. Table 10 gives the
figures of the model creation when in and out are not constant names.

We expect that the GSM specifications satisfy some properties. Namely, the
protocol is reliable: when a message has been sent then it is possible to receive
it and in-order delivery is guaranteed. The logical formulae:

Reliablel = AG([in?n]EF<out'!n>true)

Reliable2

AG([in?m] [in?n] ~ (EF {"out!m} EX {out!n} true))

specify this property. The first formula states that whenever a message m is
received from the external environment through the channel in then it will be
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define CC(fa,fp,l,in,data,ho_cmd,ho_com,ho_fail,ch_rel) =
in?(v) .faldata.fa!v.CC(fa,fp,1,in,data,ho_cmd,ho_com,ho_fail,ch_rel)
+ 1?(mnew) .fa'ho_cmd.fa!mnew.
(fp?(c) . [c=ho_com]fa!ch_rel.fa?(mold) .1!mold.
CC(fp,fa,l,in,data,ho_cmd,ho_com,ho_fail,ch_rel)
+ fa?(c).[c=ho_failll!mnew.
CC(fa,fp,1l,in,data,ho_cmd,ho_com,ho_fail,ch_rel))

define HC(1,m) = 1!'m.1?(m) .HC(1,m)

define MSC(fa,fp,m,in,data,ho_cmd,ho_com,ho_fail,ch_rel) =
(1) (HC(1,m) | CC(fa,fp,l,in,data,ho_cmd,ho_com,ho_fail,ch_rel))

define BSa(f,m,ho_acc,ho_com,data,ho_cmd,ch_rel,ho_fail) =
£?(c).([c=datalf?(v) .m!data.m!v.
BSa(f,m,ho_acc,ho_com,data,ho_cmd,ch_rel,ho_fail)
+ [c=ho_cmd]f?(v).m!'ho_cmd.m!v.(f?(c).[c=ch_rel]lf!m.
BSp(f,m,ho_acc,ho_com,data,ho_cmd,ch_rel,ho_fail)
+ m?(c).[c=ho_faillf'ho_fail.
BSa(f,m,ho_acc,ho_com,data,ho_cmd,ch_rel,ho_fail)))

define BSp(f,m,ho_acc,ho_com,data,ho_cmd,ch_rel,ho_fail) =
m?(c) . [c=ho_acc]f'ho_com.
BSa(f,m,ho_acc,ho_com,data,ho_cmd,ch_rel,ho_fail)

define MS(m,data,ho_cmd,out,ho_acc,ho_fail) =
m?(c) . ([c=datalm?(v) .out!v.MS(m,data,ho_cmd,out,ho_acc,ho_fail)
+[c=ho_cmd]Im? (mnew) .
(mnew!ho_acc.MS (mnew,data,ho_cmd,out,ho_acc,ho_fail)
+m!ho_fail.MS(m,data,ho_cmd,out,ho_acc,ho_fail)))

define P(fa,fp,in,ho_acc,ho_com,data,ho_cmd,ch_rel,ho_fail) =
(m) (MSC(fa,fp,m,in,data,ho_cmd,ho_com,ho_fail,ch_rel)
| BSp(fp,m,ho_acc,ho_com,data,ho_cmd,ch_rel,ho_fail))

define Q(fa,out,ho_acc,ho_com,data,ho_cmd,ch_rel,ho_fail) =
(m) (BSa(fa,m,ho_acc,ho_com,data,ho_cmd,ch_rel,ho_fail)
| MS(m,data,ho_cmd,out,ho_acc,ho_fail))

define GSMfull(in,out) =
(ho_acc) (ho_com) (data) (ho_cmd) (ch_rel) (ho_fail)

(fa) (fp) (P(fa,fp,in,ho_acc,ho_com,data,ho_cmd,ch_rel,ho_fail)
| Q(fa,out,ho_acc,ho_com,data,ho_cmd,ch_rel,ho_fail))

Fig. 9. Full specification of the GSM protocol.
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protocol || m-to-hd | red-hd |hd-to-aut|aut-min
GSMbuffer|| 12 (0.00) | 12 (0.00) | 49 (0.02) |49 (0.02)

GSM || 55 (0.33) | 35 (0.02) |135 (0.03)]49 (0.01)
GSMfull ||260 (3.07)|146 (0.03)|557 (0.12)[49 (0.05)

GSMbuffer ~ GSM |OK (0.14)
GSMbuffer ~ GSMfull||OK (0.14)
GSM ~ GSMfull ||OK (0.13)

Table 9. GSM Protocol: Model creation and bisimilarity.

protocol w-to-hd red-hd | hd-to-aut | aut-min
GSMbuffer|| 65 (0.04) |65 (0.02) | 164 (0.03) |163 (0.01)

GSM 211 (1.18) {167 (0.04)| 407 (0.08) |163 (0.04)
GSMfull ({960 (10.37)|676 (0.15)|1633 (0.31)|163 (0.15)

Table 10. Model creation without constant names.

eventually retransmitted to the end user via the channel out. The meaning of
the second formula is that if name m is received before n, then there is no path
along which name n is emitted before m.

We also expect that the formula

FastTransmission = AG([in?m1] [in7m2] [in7m3]
([out!'m2]false &
[out!m3]false & <out!mi>true & [in?*]false))

will be satisfied. This formula states that whenever three messages are received
in sequence through the channel in, then the first message will be retransmitted
soon to the end user through the channel out before performing any input from
channel in.

Other logical formulae expressing propeties are

NoStop = AG(EX{#?7*}true | EX{*!*}true | EX{} true)
(that states that the protocol is always running) and
NoWait = AG(<in?*>true)

(that states that input operations have higher priority than the other operations
of the protocol).
Notice that in the above formulae the shorthand {*?7x} is used to indicate
any input action and in?* is used to denote the reception of any name.
Assuming in and out constant names, the performance figures of the model
checking are given in Table 11. All the properties are true, except NoWait (the
handover phase has higher priority than the input of new messages).
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GSMbuffer

m-logic-to-actl (0 02)
Reliablel K (0.00)
Reliable2 K (0.00)

FastTrasmission||OK (0.01)
NoStop K (0.00)
NoWait NO (0.00)

GSM

m-logic-to-actl (0 00)
Reliablel K (0.00)
Reliable2 K (0.00)

FastTrasmission K (0.02)
NoStop K (0.00)
NoWait NO (0.00)

GSMfull

m-logic-to-actl (0 00)
Reliablel K (0.00)
Reliable2 K (0.02)

FastTrasmission K (0.00)
NoStop K (0.00)
NoWait NO (0.00)

Table 11. Model checking GSM properties.
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7 Concluding Remarks

We have described HAL, an automata-based verification environment for the
m-calculus. We illustrated the usability of HAL by reasoning on a variety of
specifications. Our approach differs from others in that we do not place empha-
sis on a specification language but rather we exploit the intermediate, syntax
independent, format provided by HD-automata. HD-automata give the basis to
handle finite state verification in the case of modern specification calculi for
global computing systems (like 7-calculus, spi-calculus, etc.).

Our current research activity proceeds mainly on two fronts. The first line
of reasearch aims at extending HAL to work directly on HD-automata without
requiring the mapping to ordinary automata for verification. In particular, we
are developing a module able to directly minimize HD-automata. Foundational
results [33, 34, 16] guarantee existence of minimal HD-automata. Moreover, the
development of verification algorithms that work directly on HD-automata would
also have the advantage of presenting the results of the verification e.g., the
counter-examples) in a form that is nearer to the m-calculus notations. Currently
counter-examples are returned on the ordinary automaton world, and the user
is responsible of re-interpreting them on the original 7-calculus specifications.

In the second line of reaserach, we are extending the theory of HD-automata
in several ways. We plan to extend the basic model to endow states with a
structure intended to describe and observe the spatial organization of systems
in a broad sense. In particular, we are exploiting HD-automata as a general
model for spatial logics [7,6], where typically one is able to express that if a
state has a certain structure, then it satisfies some properties. Another research
activity concerns the development of abstraction and composition techniques
for HD-automata to avoid the state explosion problem on specifications of com-
plex global computing systems. To this purpose, we plan to investigate how the
techniques developed in [8] can be applied in our framework.

To end the paper we make a more detailed comparison with the Mobility
Workbench [44] (MWB in short). In the MWB the verification of bisimulation
equivalence between (finite control) m-calculus agents is made on the fly [17],
that is the state spaces of the agents are built during the construction of the
bisimulation relation. Checking bisimilarity is, in the worst case, exponential in
the syntactical size of the agents to be checked. The model checking function-
ality offered by the MWB is based on the implementation of a tableau-based
proof system [11,12] for the Propositional u-calculus with name-passing (an ex-
tension of p-calculus in which it is possible to express name parameterization
and quantifications over the communication objects). On the largest example we
considered, the GSM protocol, the time required by MWB for checking bisim-
ilarity (running on a Pentium4/2GHz machine) of GSMfull and GSMbuffer is
similar to the time required by HAL: MWB requires about 5 seconds, while HAL
requires about 11 seconds.

There are several differences between our approach and the one adopted in
the MWB that make it difficult to perform a precise comparison of the two
verification environments. For instance, in HAL the state space of a m-calculus
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agent is built once and for all. Hence, it can be minimized with respect to
some minimization criteria and then used for behavioural verifications and for
model checking of logical properties. The m-logic, although expressive enough
to describe interesting safety and liveness properties of w-calculus agents, is
less expressive than the Propositional p-calculus with name-passing used in the
MWB.

The main difference between the two approaches is mainly methodological.
HAL has been designed in order to be largely language independent: to handle
a formalism different from the m-calculus is suffices to construct a translation
module mapping the new formalism into HD-automata. The structure of the
MWRB, instead, is tailored to the language.

Acknowledgments We thank Bjorn Victor and the anonymous reviewers for their
suggestions.
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Appendix: AcTL: Action Based CTL

AcTL [14] is a branching time temporal logic suitable to express properties of
reactive systems whose behaviour is characterized by the actions they perform.
Indeed, ACTL embeds the idea of “evolution in time by actions” and logical
formulae take their meaning on labelled transition systems.

Definition 8 (action formulae). Given a set of observable actions Act, the
language AF (Act) of the action formulae on Act is defined as follows:

X = true | b | ~X | x & x
where b ranges over Act.

As usual, false abbreviates ~true and x V x' abbreviates ~(~x & ~x').
ACTL is a branching time temporal logic of state formulae (denoted by ¢),
in which a path quantifier prefixes an arbitrary path formula (denoted by 7).

Definition 9 (ACTL syntax). The syntaz of the ACTL formulae is given by
the grammar below:

¢ 1= true | o & ¢ | ~¢ | Exn | Am
mu= X{x}¢ | X{vau}¢ | [p{x}U4] | [p{x}U{x'}¢]

where x,x' range over action formulae, E and A are path quantifiers, and X
and U are the next and the until operators respectively.

As usual, false abbreviates ~true and V¢’ abbreviates ~(~¢ & ~¢'). Moreover,
we define the following derived operators:

EF¢ stands for E[true{true}Ud].

AG ¢ stands for ~EF~¢.

— < a > ¢ stands for E[true{false}U{a}¢].
— < tau > ¢ stands for E[true{false}U¢).

In order to present the ACTL semantics, we need to introduce the notion of
paths over an ordinary automaton.

Definition 10 (paths). Let A = (Q,q°, Act U {tau}, R) be an ordinary au-
tomaton.

— 0 18 a path from ro € Q if either o = ro (the empty path from rq) or o is a
(possibly infinite) sequence (ro, a1,71)(r1,Q2,72) - .. such that (r;, aip1,7i01) €
R.

— The concatenation of paths is denoted by juztaposition. The concatenation
o109 s a partial operation: it is defined only if o1 is finite and its last state
coincides with the initial state of oo. The concatenation of paths is associative
and has identities. Actually, o1(0203) = (0102)03, and if ro is the first state
of o and r, is its last state, then we have roo = or, = 0.
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A path o is called maximal if either it is infinite or it is finite and its last
state has no successor states. The set of the maximal paths from ry will be
denoted by II(rg).

If o is infinite, then |o| = w.

If o =g, then |o| = 0.

If 0 = (ro,01,r1)(r1,2,72) ... (*n, Qng1,Tnt1), 7 > 0, then |[o| = n + 1.
Moreover, we will denote the it" state in the sequence, i.e. r;, by o(i).

Definition 11 (Action formulae semantics). The satisfaction relation |=
for action formulae is defined as follows:

a = true always,
aEbiffa=b,

a = ~x iff not a = x,
aEx&x iffaEx ondal=x'.

Definition 12 (ACTL semantics). Let A = (Q,¢°, ActU {tau}, R) be an ordi-
nary automaton. Let s € Q and o be a path. The satisfaction relation for ACTL
formulae is defined in the following way:

s |= true always

sEokd iffsk¢ands = ¢

sE~diff notskE ¢

s |= Em iff there exists o € II(s) such that o =7
sEAniffforallo e l(s),c =7

o EX{x}¢ iff c = (6(0),a1,0(1))o’, and oy = x, and o(1) = ¢

o | X{tau}¢ iff c = (¢(0),tau,o(1))o’, and o(1) E ¢

o E [¢{x}UP'] iff there exists i > 0 such that o(i) |= ¢', and for all 0 <
Jj<i:o=0"(0(j),a1,0(j +1))o" implies 0(j) = ¢, and aj;1 = tau or
a1 F X

o E [o{xYU{x'}¢'] iff there exists i > 1 such that o = o' (0 (i—1), o, 0(i))o”,
and o(i) = ¢', and o(i — 1) E ¢, and a; = X', and for all 0 < j < i:

o=05(0(j —1),a;5,0(j))o] implies o(j —1) F ¢ and o = tau or o F x

AcTL logic can be used to define liveness (something good eventually hap-

pens) and safety (nothing bad can happen) properties of concurrent systems.
Moreover, ACTL logic is adequate with respect to strong bisimulation equiva-
lence on ordinary automata [14]. Adequacy means that two ordinary automata

Ay

and Ay are strongly bisimilar if and only if F} = F, where F; = {¢ € ACTL :

A; satisfies ¢}, i =1,2.
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