
Verification On The Web Of Mobile Systems ?

Gianluigi Ferrari1, Stefania Gnesi2

Ugo Montanari1, Roberto Raggi1

Gianluca Trentanni2, and Emilio Tuosto1

1 Dipartimento di Informatica, Università di Pisa
2 ISTI-CNR, Pisa

Abstract. Web services allow the components of applications to be
highly decentralized, dynamically reconfigurable. Moreover, Web services
can interoperate easily inside an heterogeneous network environment.
The vast majority of current available verification environments have
been built by sticking to traditional architectural styles. Hence, they
are centralized and none of them deal with interoperability and dynamic
reconfigurability. In this paper we present a verification toolkit whose de-
sign and implementation exploit the Web service architectural paradigm.
We describe the architectural design and the discuss in detail the current
implementation efforts.

1 Introduction

In the last few years distributed applications over the WEB have gained wider
popularity Several systems (e.g. Gnutella) have led to an increasing demand of
evolutionary paradigms to design and control the development of applications
over the WEB. The main advantages of exploiting the WEB as underlying plat-
form can be summarized as follows. The WEB provides uniform mechanisms
to handle computing problems which involve a large number of heterogeneous
components that are physically distributed and (inter)operate autonomously.
Recently, several software engineering technologies have been introduced to

support a programming paradigm where the WEB is exploited as a service dis-
tributor. Here, by service we do not mean a monolithic WEB server but rather
a component available over the WEB that others might use to develop other
services. Conceptually, WEB services [4] are stand-alone components that re-
side over the nodes of the network. Each WEB service has an interface which
is network accessible through standard network protocols and describes the in-
teraction capabilities of the service. Applications over the WEB are developed
by combining and integrating together WEB services. Moreover, no WEB ser-
vice has pre-existing knowledge of what interaction with other WEB services
may occur. Moreover, WEB services are highly portable to adapt to a variety of
infrastructures.

? Work partially supported by FET Projects IST-2001-33100 PROFUNDIS and IST-
2001-32747 AGILE.

In a WEB service scenario, the development of applications can be charac-
terized in terms of the following steps:

1. Publishing WEB services;
2. Finding the required WEB services;
3. Binding the WEB services inside the application;
4. Running the application assembled from WEB services.

Indeed, in the next few years evolutionary in-development technologies based on
HTTP/XML plus

1. remote invocation (e.g. XML-RPC SOAP),
2. directory and service binding (e.g. UDDI, trader),
3. language to express service features (e.g. WSDL)

will become the standard functional platform to programming applications over
the WEB.
The vast majority of currently available semantic-based verification environ-

ments have been designed and implemented by sticking to traditional paradigms.
Basically, verification environments are monolithic specialized servers which do
not easily support interoperability and dynamic reconfiguration. We argue that
the research activity in the field of formal verification can take advantage of the
shift from the traditional development paradigms to other paradigms which bet-
ter accomodate and support WEB services. The present paper intends to explore
this issue.
In particular, the present paper intends to address the following issue. Can

we simplify the design, development and maintenance of semantics-based verifi-
cation environments in a modular fashion by exploiting WEB services?
This paper provides a preliminary answer to this question by presenting the

prototype version of a verification toolkit which directly exploits the WEB as a
service distributor. The toolkit has been conceived to support reasoning about
the behaviour of mobile processes specified in the π-calculus and it supports the
dynamic integration of several verification techniques. In other words, the toolkit
can be dynamically encompass a variety of verification techniques. Finally, the
toolkit has been developed by targeting also the goal of extending an available
verification environment (HAL [1, 2]) with new facilities provided as WEB ser-
vices. This has given us the opportunity to verify the effective power of the WEB
service approach to deal with the reuse and integration of “old” modules.
The paper is structured as follows. Section 2 provides the reader with the

necessary background information. By several examples, Section 3 introduces
the software architecture of the toolkit and describes the current prototype im-
plementation. Finally, Section 4 discusses the strengths and limitations of our
proposal.

2 Preliminaries

History Dependent automata (HD-automata in brief) have been introduced in [7,
5] with the aim of providing an automata-like model that supports effective and

efficient techniques to certify properties of distributed systems specified by suit-
able name passing calculi (e.g. the π-calculus). Name passing primitives are
simple but expressive: channel names can be created, communicated and they
are subjected to sophisticated scoping rules. However, the possibility of dynam-
ically generating new names leads also to a much more complicated theory. In
particular, the usual operational models are infinite-state and infinite branching
and therefore they are not amenable for finite-state verification.

Similarly to ordinary automata, HD-automata are made out of states and la-
beled transitions. However, states and transitions are equipped with local names
which are no longer dealt as syntactic components of labels but become explicit
semantic components of the model. Indeed, HD automata can be viewed as au-
tomata on top of a permutation algebra of states (technically HD-automata are
coalgebras over the permutation algebra). The permutation algebra describes
the effect of name permutations (i.e. renaming) on state transitions. This in-
formation is sufficient to describe in a semantically correct way the creation,
communication, and deallocation of names in the case of name-passing calculi.

State transitions of HD-automata have an intuitive graphical representation.
For instance, Figure 1 depicts a transition from source state s to destination
state d. The transition exposes two names: Name 2 of s and a newly generated
name 0. State s has three names, 1, 2 and 3 while d has two names 4 and 5
which correspond to name 1 of s and to the new name 0, respectively. Notice
that names 3 is discharged along such transition.

σ ds

1
2

3

4

5

lab 02

Fig. 1. A HD-automaton transition

The names of the states occurring in a computation are basically equipped
with the “history” of the name associations performed during the computation.
Clearly, if a state is reached in two different computations, different histories
could be assigned to its names. Symmetries , i.e. permutation groups of names,
are used to declare the name correspondences which do not affect behaviours.
Symmetries are necessary to define the minimal HD-automata thus providing a
more compact representation of the state space of the computations [5, 3]

Hence, HD-automata provide a finite state, finite branching representation
of the behaviour of name passing calculi. The finiteness property given by the
HD-automata has been exploited to automatize the check of behavioral proper-
ties. Indeed, a semantic-based verification environment for the π-calculus, called
HD Automata Laboratory (HAL) [1, 2] has been implemented and experimented
(http://fmt.isti.cnr.it:8080/hal). HAL is written in C++ and compiles with the

GNU C++ compiler (the GUI is written in Tcl/Tk), and runs on SUN stations
(under SUN Solaris 2.x) and on Linux machines.

HAL supports verification of logical formulae expressing properties of the be-
haviour of π-calculus agents. The construction of the HAL model checker facility
is done in two stages. We first introduce an high level logic with modalities in-
dexed by π-calculus actions and we provide a mapping which translates logical
formulae into a classical modal logic for standard automata. The distinguished
and innovative feature of the approach is that translation mapping is driven
by the finite state representation of the system (the π-calculus process) to be
verified.

HAL has been used to perform the verification of several case studies, as for
example the GSM handover protocol [6]. However, a main limitation of the cur-
rent implementation of HAL is due to the state explosion problem that arises
when dealing with real systems. A way to solve this problem is to extend the envi-
ronment with a minimization facility which provides the minimal HD-automata
associated of a given π-calculus processes.
The work reported in [3] tackles the problem of minimizing labelled transition

systems for name passing calculi in the abstract setting of coalgebraic theories.
The main result of the paper is to provide a concrete representation of the
terminal coalgebra giving the minimal HD-automaton.
The architecture of the toolkit, called Mihda performing minimization of

HD-automata is described in [8]. The structure of the toolkit is developed from
the co-algebraic formulation of the partition-refinement minimization algorithm.
Indeed, the concrete software architecture of the minimization toolkit is di-
rectly suggested by the abstract semantical structure of the coalgebraic spec-
ification. Mihda is written in ocaml, runs under Linux and it is available at
http://jordie.di.unipi.it:8080/mihda, where also an interactive WEB in-
terface is accessible.

3 Service Orchestration

This section describes the issues related to the development of a verification
toolkit which exploits the WEB as a service distributor. Here, we consider only
two services, namely HAL and Mihda; however the same techniques can be
exploited to integrate in a modular fashion a variety of services. The fundamental
techniques which enables the dynamic integration of services is the separation
between the service facilities (what the service provides) and the mechanisms
that coordinate the way services interact (service orchestration). Indeed, our
main contribution consists in making service orchestration usable in the context
of formal verification.

HAL and Mihda provide several functionalities. The main issue we have to
face consists of making these toolkits accessible and usable via a WEB interface.
This is done into two steps. The first step defines the WEB orchestration inter-
face which, independently from the implementation technologies, describes the
WEB interaction capabilities. In other words, the WEB orchestration interface

describes what a service can do and how to invoke it. The second step transforms
the program facilities which correspond to publish the orchestration interface on
the WEB. via WEB.
The main programming construct we exploit to program service orchestration

is XML-RPC. XML-RPC is a protocol that defines a way to perform remote
procedure calls using HTTP as underlying communication protocol and XML for
encoding data. XML-RPCensures interoperability among components available
over the WEB at the main cost of parsing and serializing XML documents.

3.1 Service Creation

In our running example, the WEB orchestration interface of Mihda provides
three interaction capabilities: compile, reduce and Tofc2. The first interaction
capability takes a π-calculus agent as input and yields as output the correspond-
ing HD-automaton. The capability reduce performs minimization. Finally, the
capability Tofc2 transforms theMihda representation of HD-automata into the
FC2 format used inside HAL. The WEB orchestration interface of HAL provides
the check capability to perform model checking, the capability unfold which
generates a standard automaton out of an HD-automaton, and the capability
visualize allowing to graphically operate over HD-automata.
The publication on the WEB of the orchestration interfaces has been per-

formed by exploiting the facilities of Zope. Zope is a web application server.
Hence, it provides mechanisms to ”publish” information on the WEB. How-
ever Zope is much more. Indeed, Zope provides a comprehensive framework for
management of web contents ranging from simple HTML pages to complete
components. In particular, through Zope mechanisms the calls to the capabili-
ties of the orchestration interface are dynamically transformed into calls of the
corresponding programs (e.g. via XML-RPC).

3.2 Programming Service Orchestration

In our experiment, the service orchestration language is python. python is an
interpreted object oriented scripting language which is widely used to connect
existing components together. Expressiveness of python gives us the oppor-
tunity of programming service orchestration in the same way traditional pro-
gramming languages makes use of software libraries. In particular, services are
invoked exactly as “local” libraries and all the issues related to data marshal-
ing/unmarshalling and remote invocation are managed by the XML-RPC sup-
port.
An example of service orchestration is illustrated in Figure 2 to verify a

property of a specification, i.e. to test whether a π-calculus process A is a model
for a formula F .
We can briefly comment on the orchestration code of Figure 2. First, XML-

RPC connections with the Mihda server and with HAL server are created and
recorded in variables mihda and hal, respectively. Now, a service of Mihda is

from xmlrpclib import *

import sys

try:

mihda = Server("http://jordie.di.unipi.it:8080/mihda/hd")

hal = Server("http://fmt.isti.cnr.it:8080/hal")

hd = mihda.compile(A)

reduced_hd = mihda.reduce(hd)

reduced_hd_fc2 = mihda.Tofc2(reduced_hd)

aut = hal.unfold(reduced_hd_fc2)

if hal.check(aut, F):

print ’ok’

else:

print ’ko’

except Exception, e:

print "*** error ***"

Fig. 2. Orchestrating HAL and Mihda services

invoked. More precisely, the result of executing the service compile is stored in
the variable hd.
Next, hd is minimized, by invoking the service reduce of Mihda; and, by

applying the Mihda service Tofc2, the minimal automaton is transformed into
the FC2 format. Variable reduced_hd_fc2 contains a HD-automaton in a format
suitable for being processes by the HAL service unfold that generate an ordinary
automaton from a HD-automaton represented in FC2 format.
Finally, a message on the standard output is printed. The message depends

on whether π-calculus process A satisfies the formula F or not. This is obtained
by invoking the HALmodel checking facility check. Notice that the orchestration
code may handle both local and remote exceptions.
Notice that the service orchestration program runs under WindowsXP, thus

pointing out the interoperability nature of the toolkit.
We want to point out that the only part of the orchestration code in Figure 2

that includes network dependencies is

mihda = Server("http://jordie.di.unipi.it:8080/mihda/hd")

hal = Server(""http://fmt.isti.cnr.it:8080/hal")

namely, the operation that open the connections with the HAL and Mihda

servers. However, this network dependency can be removed by introducing a
further module, namely the directory of services together with a simple trader
facility. A directory of services is a structure that maps the description of the
WEB services represented by suitable types into the corresponding network ad-
dresses. Moreover, the directory of services performs the binding of services. In
other words, the directory of services can be thought of as being a sort of en-
riched DNS for WEB services. The directory has two facilities. The publish

facility is invoked to make available WEB service. The query facility which is
is used by applications to discover which are the services available. Hence, the
trader can be used to obtain a WEB service of a certain type and to bind it
inside the application.
The directory of services and the trader allow us to avoid specifying the ef-

fective names (and localities) of services into the source code and to dynamically
bind services during the execution only on demand. Moreover, this mechanism
makes transparent the distribution of services: when writing the orchestration
code the programmer is not aware of the localities of services. Hence, a service
can also be replicated or re-allocated into a new locality without requiring any
change into service orchestration programs.
In our running example, to use a trader it is sufficient to substitute the

assignments to mihda and hal variables with the following code:

import Trader

offers = Trader.query("reducer/mihda")

mihda = offers[0] # choose the first

offers = Trader.query("hal")

hal = offers[0] # choose the first

The invocation of the query procedure of the Trader library yields the list of
services that match the parameter (i.e. the string describing the kind of services
we are interested in).
Directories and traders permits to hide network details in the service or-

chestration code. A further benefit is given by the possibility of replicating the
services and maintaining a standard access modality to the WEB services un-
der orchestration. For instance, by substituting the assignment to offers in the
previous code with

offers = Trader.query("reducer")

we obtain a polymorphic orchestration code that, at run-time, is able to find,
bind and finally invoke any service registered as “reducer”.

4 Lessons Learned

We started our experiment with the goal of understanding whether the WEB
service metaphor could be effectively exploited to develop in a modular fashion
semantic-based verification environments. In this respect, the prototype imple-
mentation of a toolkit supporting verification of mobile processes specified in the
π-calculus is a significative example.
Our approach adopts a service orchestration model whose main advantage

resides in reducing the impact of network dependencies and of dynamic ad-
dition/removal of WEB services by the well-identified notions of directory of

services and trader. To the best of our knowledge, this is the first verification
toolkit that specifically addresses the problem of exploiting WEB services.
The service orchestration mechanisms presented in this paper, however, have

some disadvantages. In particular, they do not exploit the full expressive power
of SOAP to handle types and signatures. For instance, the so called “version
consistency” problem (namely the client program can work with one version of
the service and not with others) can be solved by types and signatures.
SOAP is well integrated inside the .NETramework which provides other pow-

erful mechanisms to deal with types and metadata (i.e. the description of types).
In particular, metadata information can be extracted from programs at run time,
and supplied to the emitter to generate the corresponding data structures to-
gether with their operations. Furthermore, the Just-in-time compiler to makes
them native code. We plan to investigate and experiment the .NET framework
to design “next generation” semantic-based verification environments.

References

1. G. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. An au-
tomata based verification environment for mobile processes. In E. Brinksma, ed-
itor, Proceedings of the Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’97), Enschede, The Netherlands, volume 1217 of
LNCS, pages 275–289. Springer, Apr. 1997.

2. G. Ferrari, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. Verifying mobile
processes in the HAL environment. In Proc. 10th International Computer Aided
Verification Conference, pages 511–515, 1998.

3. G. Ferrari, U. Montanari, and M. Pistore. Minimizing transition systems for name
passing calculi: A co-algebraic formulation. In M. Nielsen and U. Engberg, editors,
FOSSACS 2002, volume LNCS 2303, pages 129–143. Springer Verlag, 2002.

4. I. S. Group. Web services conceptual architecture. In IBM White Papers, 2000.
5. U. Montanari and M. Pistore. π-calculus, structured coalgebras and minimal hd-

automata. In Proc. MFCS’2000, volume 1893 of LNCS. Springer, 2000.
6. F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal

Aspects of Computing, 4(1):497–543, 1992.
7. M. Pistore. History dependent automata. PhD thesis, Computer Science Depart-

ment, Università di Pisa, 1999.
8. E. Tuosto. Non-Functional Aspects of Wide Area Network Programming. PhD

thesis, Dipartimento di Informatica, Università di Pisa, 2002.

