
IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
46

31
--

F
R

+
E

N
G

appor t
de r echerche

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

XML Schema, Tree Logic and Sheaves Automata

Silvano Dal Zilio — Denis Lugiez

N° 4631

Novembre 2002

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

XML Schema, Tree Logic and Sheaves Automata

Silvano Dal Zilio , Denis Lugiez∗

Thème 1 � Réseaux et systèmes
Projet Mimosa

Rapport de recherche n 4631 � Novembre 2002 � 31 pages

Abstract: We describe a new class of tree automata, and a related logic on trees, with
applications to the processing of XML documents and XML schemas.

XML documents, and other forms of semi-structured data, may be roughly described as
edge labeled trees. Therefore it is natural to use tree automata to reason on them and try to
apply the classical connection between automata, logic and query languages. This approach
has been followed by various researchers and has given some notable results, especially
when dealing with Document Type De�nition (DTD), the simplest standard for de�ning
XML documents validity. But additional work is needed to take into account XML schema,
a more advanced standard, for which regular tree automata are not satisfactory. A major
reason for this inadequacy is the presence of an associative-commutative operator in the
schema language, inherited from the & -operator of SGML, and the inherent limitations of
regular tree automata in dealing with associative-commutative algebras.

The class of automata considered here, called sheaves automata, is a tailored version
of automata for unranked trees with both associative and associative-commutative symbols
already proposed by the authors. In order to handle both ordered and unordered operators,
we combine the transition relation of regular tree automaton with regular word expression
and counting constraints. This extension appears quite natural since, when no counting
constraints occurs, we obtain hedge automata, a simple model for XML schemata, and when
no constraints occur, we obtain regular tree automata.

Building on the classical connection between logic and automata, we also present a
decidable tree logic that embeds XML Schema as a plain subset.

Key-words: XML, XML Schema, tree automata, modal logic

∗ The authors work at the Laboratoire d'Informatique Fondamentale de Marseille, UMR 6166, CNRS

et Université de Provence, and are partly supported by ATIP �Fondements de l'Interrogation des Données

Semi-Structurées� and IST Profundis.

Schéma XML, logique d'arbres et Sheaves Automata

Résumé : Nous proposons une nouvelle classe d'automates d'arbres, ainsi qu'une logique
modale d'arbres associée, spécialement dédiée à la manipulation de documents et de schémas
XML.

Les documents XML, comme de nombreuses autres formes de données semi-structurées,
peuvent être grossièrement décrits par des arbres étiquetés. Il apparaît alors naturel d'utiliser
des automates d'arbres pour raisonner sur ces documents et d'essayer d'appliquer la relation
classique qui lie automates, logiques et langage de requêtes. Cette approche a déjà été suivie
et a donnée plusieurs résultats intéressants, en particulier dans l'étude des Document Type
De�nition, ou DTD, le standard le plus simple permettant de dé�nir des critères de validité
pour les documents XML.

Des recherches supplémentaires sont nécessaires pour prendre en compte les schémas
XML, un standard plus avancé, pour lequel les automates d'arbres réguliers ne sont pas
satisfaisants. Une des raisons principale de cette inadéquation est la présence d'un opérateur
associatif-commutatif dans la dé�nition des schémas, hérité de l'opérateur & de SGML, et
les limitations inhérentes des automates d'arbres réguliers à traiter des algèbres abélienne.

La classe d'automates considérée dans ce rapport, appelée sheaves automata, est une
restriction spéciale d'une classe d'automates d'arbres déjà proposée par les auteurs et qui
manipule des arbres de degré non borné muni de symboles associatif-commutatif. De manière
à pouvoir prendre en compte, à la fois, des opérateurs manipulant des données ordonnées et
des opérateurs manipulant des données non ordonnées, nous avons ajouté aux règles de tran-
sitions des automates d'arbres, des contraintes de séquencement, sous forme d'expressions
régulières, et des contraintes de comptage, sous forme de formule arithmétique. Cette ex-
tension apparaît naturelle puisque, lorsque l'on retire les contraintes de comptage on obtient
les hedge automata, un modèle simple pour les schémas XML, et lorsque l'on retire toutes
les contraintes on obtient les automates d'arbres réguliers.

En se basant sur cette nouvelle classe d'automates, nous présentons une logique modale
pour les arbres qui est décidable et qui étend de manière naturelle les schémas XML.

Mots-clés : XML, Schéma XML, automates d'arbres, logique modale

XML Schema, Tree Logic and Sheaves Automata 3

1 Introduction

We describe a new class of tree automata, and a related logic on trees, with applications
to the processing of XML documents and XML schemas [1]. This work is interesting from
a programming language point of view since it could provide a structured and uniform ap-
proach to the implementation of tools targeting XML documents, in the same way that,
for example, pushdown automata is the established �assembly language� for parsing appli-
cations.

XML documents, and other forms of semi-structured data [2], may be roughly described
as edge labeled trees. It is therefore natural to use tree automata to reason on them and try to
apply the classical connection between automata, logic and query languages. This approach
has already been followed by various researchers, both from a practical and a theoretical
point of view, and has given some notable results, especially when dealing with Document
Type De�nition (DTD), the simplest standard for de�ning XML documents validity.

A good example is the XDuce system of Pierce, Hosoya et al. [3], a typed functional
language with extended pattern-matching operators for XML documents manipulation. In
this tool, the types of XML documents (or regular expression types) are modeled by regular
tree automata and the typing of pattern matching expressions is based on closure operations
on automaton. Another example is given by the hedge automaton theory [4], an extension of
regular tree automaton for unranked trees (that is, tree with nodes of un�xed and unbounded
degrees.) Hedge automata are at the basis of the implementation of RELAX-NG [5], an al-
ternative proposal to XML Schema. Various extension of tree automata [6] and monadic
tree logic [7] have also been used to study the complexity of manipulating tree structured
data but, contrary to our approach, these work are not directly concerned with schemas and
are based on ordered content models. More crucially, several mentions to automata theory
appear in the XML speci�cations, principally to express restrictions on DTD and Schemas
in order to obtain (close to) linear complexity for simple operations.

Document type de�nitions are expressed in a language akin to regular expressions and
specify the set of elements that may be present in a valid document, as well as constraining
their occurrences order. Nonetheless, the �document types� expressible by means of DTD
are sometimes too rigid and, for example, a document may become invalid after permutation
of some of its elements. A new standard, XML Schema, has been proposed to overcome some
of the limitations of the DTD model. In particular, we can interpret XML schemata as terms
built using both associative and associative-commutative (AC) operators with unbounded
arity, a situation for which regular tree automata are not satisfactory. Indeed, while regular
tree automata constitute a useful framework, it has sometimes proved inadequate for prac-
tical purposes and many applications require the use of an extended model. To the best
of our knowledge, no work so far has considered unranked trees with both associative and
associative-commutative symbols, a situation found when dealing with XML Schemata.

We propose a new class of tree automata, named sheaves automata, for dealing with XML
documents and schema. We believe it is the �rst work on automata theory applied to XML
that consider the �all-group� composition (a simpli�ed version of the SGML & -connector.)

RR n 4631

4 Dal Zilio & Lugiez

By restricting our study to deterministic automaton, we obtain a class of recognizable lan-
guages that enjoys good closure properties and we de�ne a related modal logic for documents
that is decidable and exactly matches the recognizable languages. A leading goal in the de-
sign of our logic is to include a simpli�ed version of XML Schema as a plain subset.

The content of this paper is as follows. Section 2 introduces the syntax of XML docu-
ments and XML schema [1]. XML documents are the basic objects considered in this work.
A document is modeled as an ordered sequences of unranked, labeled trees. In this frame-
work, an element refers to a single rooted tree, and an element's tag refers to the label of its
root. We also introduce a notion of document schema, that can be viewed as a type system
for documents. A distinctive aspect of the simpli�ed schema language studied in this paper
is to include the & -operator, that is used to state properties of a document regardless of the
order of its elements.

In Section 4, we present a decidable tree logic intended for querying XML documents,
the Sheaves Logic (SL). This logic can be interpreted as a direct extension of the schema
�type system� with logical operators. The sheaves logic deliberately resembles (and extends
on some points) TQL, a query language for semi-structured data based on the ambient
logic [8, 9]. We present here a similar logic, with the di�erence that we deal both with ordered
and unordered data structures, while TQL only deals with multiset of elements. Another
di�erence with TQL lies in the addition of arithmetical constraints. In this extended logic,
it becomes for instance possible to express cardinality constraints on the occurrences of an
element in a document, such as �there are more �elds labeled a than labeled b� or �there is
an even number of �elds labeled a.�

While the addition of counting constraints was purely motivated by the presence of
commutative operators, it may incidentally provide a model for cardinality constraint on
repetitions. These constraints, generally denoted e{m,n} in regular word expressions, match
k repetition of the expression e, where k,m and n are integers such that m 6 k 6 n, and
are also found in the XML Schema speci�cation. Although this is an enjoyable coincidence,
the study of cardinality constraints on repetition is not one of our goals.

In Section 5, we introduce a new class of automaton for unranked trees with both associa-
tive and associative-commutative symbols, called Sheaves Automata (SA). These automata
are a tailored version of automata already proposed by the authors [10]. In the transition
relation of sheaves automata, we combine the general rules for regular tree automata with
regular word expression and counting constraints. In this framework, regular word expres-
sions allow to express constraints on sequences of elements and are used when dealing with
associative operators, as in the hedge automata approach. Correspondingly, the counting
constraints are used with associative-commutative operators.

The counting constraints are Presburger's arithmetic constraints over the number of oc-
currences of each di�erent type of elements. Intuitively, counting constraints appear as the
counterpart of regular expressions in the presence of a commutative composition operator.
Indeed, when the order of the elements becomes irrelevant, that is, when we deal with
bags instead of sequences, the only pertinent constraints are arithmetical. We choose Pres-

INRIA

XML Schema, Tree Logic and Sheaves Automata 5

burger's constraints because they naturally appear when we extend schema with a �xpoint
operator and also because they represent a large and decidable class of constraints over pos-
itive natural numbers. Moreover, while the complexity of many operations on Presburger's
arithmetic is hyper-exponential (in the worst case), the constraints observed in practice are
very simple and it seems possible to neglect the complexity of constraints solving in realistic
circumstances. Indeed, some simple limitations on the acceptable schemas, such as those
found in the W3C recommendations, are likely to yield algorithms with polynomial or linear
complexity.

Our extension of regular tree automaton appears quite natural since, when no count-
ing constraints occurs, we obtain hedge automata, a simple yet e�ective model for XML
schemata, and when no constraints occur, we obtain regular tree automata. Moreover, the
class of languages recognized by sheaves automata enjoys many of the typical properties of
regular languages: closure under union and intersection, decidability of the test for empti-
ness, ... as well as some new ones, like closure properties under composition by associative
and associative-commutative operators. Nonetheless, due to the combination of both regu-
lar word expressions and counting constraints, we have no determinisation procedure in the
general case, and therefore it is not always possible to compute the complement of accepted
languages. However, deterministic SA are closed under all the boolean operations, including
complementation.

Before concluding, we give some results on the complexity of basic problems for schemas.
By design, every formula of our extended tree logic directly relates to a deterministic sheaves
automaton. As a consequence, we obtain the decidability of the model-checking problem for
SL, that is �nding the answers to a query, and of the satis�ability problems, that is �nding if a
query is trivially empty. Moreover, since schemas are directly embedded in the models of SL,
we can relate a XML schema to an accepting sheaves automaton obtaining the decidability
of all basic problems concerning schemas: checking that a document conforms to a schema,
computing the set of documents typed by a schema, computing the set of documents typed
by the di�erence of two schemas ...

2 Documents and Schemata

XML documents are a simple textual representation for unranked, edge labeled trees, that is
trees with an un�xed (and an unbounded) number of children at each nodes. In this report,
we follow the notations found in the XDuce system [3] and choose a simpli�ed version of XML
documents by leaving aside attributes among other details. Most of the simpli�cations and
notation conventions taken here are also found in the presentation of MSL [11], an attempt
to formalize some of the core idea found in XML Schema.

2.1 Documents

A document, d, is an ordered sequence of elements, a1[d1] · . . . ·an[dn], where ai is a tag name
and di is a sub-document. A document may also be empty, denoted ε, or be a constant.

RR n 4631

6 Dal Zilio & Lugiez

We consider given sets of atomic data constant partitioned into primitive data types, like
String or Integer for instance. Documents may be concatenated, denoted d1 · d2, and
this composition operation is associative with identity element ε. In order to simplify our
presentation, we only consider that the set of tag names and the set of data constants are
both �nite, but all our results can be extended to the case of in�nite sets.

Elements and Documents

e ::= element
a[d] element labeled a, containing d

d ::= document
ε empty document
cst constant (any type)
a[d] element
d1 · d2 document composition

Example 1 A typical entry of a bibliographical database could be the document:

book [title["Art of Computer Programming"] · author ["Knuth"] · year [1970]]

�

2.2 XML Schemas

The de�nition of XML Schema mostly follows the presentation made in MSL [11]. Nonethe-
less, we bring some simpli�cations and modi�cations to better �t our objective. In particular,
we consider three separate syntactical categories: E for element schema de�nitions, S for
(regular) schemata, and T for schemata that may only appear at top level of an element
de�nition.

Schemas

E ::= Element schema
a[T] element with tag a and interior matching T
a[T]? optional element
Datatype datatype constant

S ::= Regular schema
ε empty schema
E element
S1, S2 sequential composition
S | S choice
S∗ inde�nite repetition (Kleene star)

T ::= Top-level schema
AnyT any type (match everything)

INRIA

XML Schema, Tree Logic and Sheaves Automata 7

S regular schema
E1 & . . . & En interleaving composition

A schema is basically a regular expression that constrains the order and number of
occurrences of elements in a document. An element, a[T], describes documents that contains
a single top element tagged with a and enclosing a sub-document satisfying the schema T .
An optional element, a[T]?, matches one or zero occurrence of a[T].

The constructors for (regular) schemata include the standard operators found in regular
expression languages, where S, S′ stands for concatenation and S | S′ for choice. For simplic-
ity reasons, we have chosen both iteration, S∗, and option, a[T]?, instead of the repetition
operator S{m,n} found in the Schema recommendation.

The most original operator is the interleaving operator, E1 & . . . & En, which describes
documents containing (exactly) elements matching E1 to En regardless of their order. Our
simpli�ed Schema de�nition also contains a constant, AnyT , which stands for the most
general type, or anyType in the XML Schema terminology [1], which does not constrain its
content in any way. For example, the following schema states that a valid book entry has
an author name, a title and possibly a publication year (in any order).

Example 2 Assuming that String and Year are the datatype associated to string and date
constants, the following schema matches the book entry given in Example 1:

book [author [String] & title[String] & year [Year]?]

�

In this report, like in the presentation of MSL, we prefer to stick to an algebraic de�nition
of schemas instead of using the concrete syntax given in the XML Schema speci�cation [1].
In particular, in the XML Schema speci�cation, composite schemas are formed using groups
of elements instead of the basic operators introduced here. For instance, using XML schema
terminology, the sequential composition (E1, . . . , En) corresponds to a sequence group and
the tensor product (E1 & . . . & En) corresponds to an all group. We will retain this
vocabulary in the remainder of this text.

The distinction of a top-level schema allows expressing some of the constraints associated
to the interleaving operator, like for example that & must appear as the sole child at the
top of an element schema. For instance, under this restriction, the terms E1, (E2 & E3) and
(E1 & E2)∗ are ill-formed. Another restriction found in the XML Schema speci�cation is
obtained by limiting the option operator to element schemas, precluding terms of the form
(E1 & E2)? & E3. An advantage of our approach is that, like in the XML Schema speci-
�cation, optional elements may still be used inside an interleaving operator. For instance,
the term (E1 & E2?) corresponds to a valid schema.

To capture some situations arising in practice, we enrich schemata by recursive de�nitions
presented by a system of equations. This can be simply obtained by enriching the syntax of

RR n 4631

8 Dal Zilio & Lugiez

schemas with a set of (schema) variables, ranged over by X ,Y, Then, a recursive schema
is an expression of the following form, where X1, . . . ,Xn are free schema variables occurring
in S, S1, . . . , Sn.

S where X1 = S1, . . . ,Xn = Sn

The where construct is a binder for the variables X1, ..,Xn in S, S1, . . . , Sn and we
consider this operator up-to α-renaming of bound names1

Example 3 We may want to extend book entries with a ref element, that lists the entries
cited in the book. This is possible using the following recursive schema, where Book is a
schema variable, meaning that a book entry may also contain a sequence of book in its ref
element:

Book where Book = book [author [String] & title[String] & Ref],
Ref = ref [Book∗]?

This example may be expressed in the following way using the concrete syntax found in the
XML Schema speci�cation:

<xsd:element name="book" type="BookType"/>

<xsd:element name="ref" type="RefType"/>

<xsd:complexType name="BookType">

<xsd:all>

<xsd:element name="author" type="xsd:string"/>

<xsd:element name="title" type="xsd:string"/>

<xsd:element ref="ref" minOccurs="0"/>

</xsd:all>

</xsd:complexType>

<xsd:complexType name="RefType">

<xsd:sequence>

<xsd:element ref="book" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

�

Next, we explicit the role of Schema as a type system for documents.

2.3 Schema as types for documents

We de�ne the relation Γ ` d : S, meaning that the document d satis�es the schema S under
the hypothesis Γ, where Γ is a mapping from variables to schema. We simply write this
relation d : S when the set of hypothesis is empty.

1The XML Schema speci�cation provides the ability to name each group de�nition. We do not consider

this extension here, but recursive variables may provide a nice way to model naming.

INRIA

XML Schema, Tree Logic and Sheaves Automata 9

The empty typing environment is denoted ∅ and Γ,X : S denotes the mapping Γ extended
with an association between X and S. The domain of Γ is denoted dom(Γ) and Γ(X) = S
means that the variable X is mapped to S in Γ. In the following, we only consider well-
formed hypothesis, denoted Γ ` �, such that there is only one schema associated to each
variable in dom(Γ).

Good Environments

∅ ` �
Γ ` � X 6∈ dom(Γ)

Γ,X : S ` �

The relation Γ ` d : S is based on an auxiliary function, inter(d), which computes
the interleaving of the elements in d, that is all the documents obtainable from d after
permutation of its elements. More formally, inter(ε) = {ε} and, if d is the document e1·. . .·en,
then inter(d) is the set containing the documents eσ(1) · . . . · eσ(n) for all permutation σ of
the interval 1..n.

Good Documents

Γ ` d : T
Γ ` a[d] : a[T]

Γ ` d : T
Γ ` d : a[T]?

Γ ` �
Γ ` ε : a[T]?

Γ ` � cst ∈ Datatype

Γ ` cst : Datatype

Γ ` �
Γ ` ε : ε

Γ ` d1 : S1 Γ ` d2 : S2

Γ ` d1 · d2 : S1, S2

Γ(X) = S Γ ` d : S
Γ ` d : X

Γ ` d : S
Γ ` d : S | S′

Γ ` d : S′

Γ ` d : S | S′
Γ ` d1 : S, . . . ,Γ ` dn : S

Γ ` d1 · . . . · dn : S∗

Γ,X1 : S1, . . . ,Xn : Sn ` � Γ,X1 : S1, . . . ,Xn : Sn ` d : S
Γ ` d : S where X1 = S1, . . . ,Xn = Sn

Γ ` �
Γ ` d : AnyT

d ∈ inter(e1 · . . . · en) Γ ` e1 : E1, . . . ,Γ ` en : En
Γ ` d : E1 & . . . & En

In the next section, we introduce some basic mathematical tools that will be useful in
the de�nition of both our tree logic and our new class of tree automata.

RR n 4631

10 Dal Zilio & Lugiez

3 Basic Results on Presburger's Arithmetic and Words

Some computational aspects of our tree automaton rely on arithmetical properties over the
group (N,+) of positive natural numbers with addition. The �rst-order theory of equality
on this structure is also known as Presburger's arithmetic. In this section we review some
basic results on Presburger's arithmetic and the relation with semilinear sets.

A possible presentation for Presburger's arithmetic is given by the following grammar,
where Exp is an integer expression and ψ is a Presburger's formula, also called Presburger's
constraint. We use N,M, . . . to range over integer variables and n,m, . . . to range over
natural numbers.

Presburger's Constraint

Exp ::= Integer expression
n positive integer constant
N positive integer variable
Exp1 + Exp2 addition

φ, ψ, . . . ::= Presburger's constraint
(Exp1 = Exp2) test for equality
¬φ negation
φ∨ψ disjunction
∃N.φ existential quanti�cation

Presburger's constraints allow the de�nition of �exible, yet decidable, properties over
positive integer like for example: the value of X is strictly greater than the value of Y , using
the formula ∃Z.(X = Y + Z + 1); or X is an odd number, ∃Z.(X = Z + Z + 1).

We denote φ(X1, . . . , Xp) a Presburger's formula with free integer variables X1, . . . , Xp

and we shall simply write |= φ(n1, . . . , np) when φ(n1, . . . , np) is satis�ed. We will also
use the constant True for tautologies, like for example the formulas (N = N) or (N =
M)∨¬(N = M).

3.1 Presburger Arithmetic and Semilinear Sets

Presburger's arithmetic has a decidable theory. This result can be proved using a connec-
tion with semilinear sets of natural numbers. More precisely, the models of Presburger's
arithmetic formulas in free variables N1, . . . , Nn are the semilinear sets of Nn, the set of
integer vectors of size n. Addition on Nn is de�ned as the pointwise addition on the vectors
coordinates.

A linear set of Nn, L(b, P), is a set of vectors generated by a basis, b ∈ Nn, and a set
of periods, P = {p1, . . . ,pk}, with pi ∈ Nn for all i ∈ 1..k. A linear set L(b, P) consists of
all the possible elements obtained by linear combination of the periods with the base, and
a semilinear set is a �nite union of linear sets.

L(b, P) = {b +
∑
i∈1..k

λipi λ1, . . . , λk ∈ N}

INRIA

XML Schema, Tree Logic and Sheaves Automata 11

An important result is that semilinear sets are closed under union, sum and iteration [10],
where: L+M = {x+y x ∈ L, y ∈M}, and Ln = L+ . . .+L (n times) and L∗ =

⋃
n≥0 L

n.
In the case of iteration, the semilinear set L∗ may be a union of exponentially many linear
sets (in the number of linear sets in L.)

Another useful mathematical tool needed in the presentation of our new class of automa-
ton is the notion of Parikh mapping.

3.2 Parikh mapping

Given some �nite alphabet Σ = {a1, . . . , an}, that we consider totally ordered, the Parikh
mapping of a word w of Σ∗ is a n-uple of natural numbers, #(w) = (m1, . . . ,mn), where
mi is the number of occurrences of the letter ai in w. We shall also use the notation #a(w)
to denote the number of occurrences of the letter a in w, or simply # a when there is no
ambiguity on the word w.

The Parikh mapping of a set of words is the set of Parikh mappings of its elements. This
mapping can be easily computed when the set of words is a regular language. Indeed, if
reg is a regular expression, then #(reg), the Parikh mapping of reg , is the semilinear set
obtained as follows.

If ai is the i
th letter in the alphabet, then #(ai) is the ith unit vector of Nn, the vector

with all elements equal to 0 except the ith that is equal to 1: (0, . . . , 0, 1, 0, . . . , 0).

The Parikh mapping for choice is the union of the Parikh mappings:

#(reg1 + reg2) = #(reg1) ∪ #(reg2).

The Parikh mapping for sequential composition is the pointwise addition:

#(reg1.reg2) = #(reg1) + #(reg2).

The Parikh mapping for iteration, #(reg∗) is the iterate of #(reg):
#(reg∗) = #(reg)∗.

A regular expression associated to a regular word automaton A can be computed in
O(|A|3). Therefore, using regular expressions of semilinear sets, we can compute the Parikh
mapping of a regular word language in time O(|A|3).

3.3 Relation Between Presburger's Arithmetic and XML Schema

We clarify the relation between Presburger's constraint, Parikh's mapping and the semantics
of the interleaving operator and try to give an intuition on how the & -operator may add
�counting capabilities� to Schema.

The Parikh mapping introduced in the previous section provides a straightforward map-
ping between documents and tuples of natural numbers. Let a1, . . . , ap be distinct element

RR n 4631

12 Dal Zilio & Lugiez

tags. We can easily obtain an injective mapping, [[.]], from Np to the set of documents with
the following de�nition:

[[(n1, ..., np)]] =def a1[ε] · ... · a1[ε]︸ ︷︷ ︸
n1 times

·... · ap[ε] · ... · ap[ε]︸ ︷︷ ︸
np times

Conversely, if d is a document accepted by the regular word expression (a1| . . . |ap)∗, then
#(d) is an injective function from documents to N

p.
Suppose that we extend the Schema language with a �xpoint operator, µX .S, in the style

of recursive type for the λ-calculus [12], and that we slightly relax the syntactic constraints
on schemas in order to accept expressions of the form ((E1 & · · · & En) | E) and (E1 & · · · &

En & X). Then, for any Presburger's constraint, φ, it is possible to de�ne an (extended
recursive) schema that matches the vectors of integers satisfying φ.

For example, the schema µX .((a1 & a2 & X)|ε) is associated to the formula # a1 = # a2

(there are as many a1's than a2's) and µX .((a1 & a1 & X)|a1) to the formula ∃N.# a1 =
N +N + 1 (there is an odd number of a1's.)

Proposition 3.1 For every Presburger's formula φ, there is an extended recursive schema,
S, such that d : S if and only if |= φ#(d).

Proof Any Presburger's formula, φ, is associated to a �nite union of linear sets that
correspond to the model of φ.

Assume the models of φ is a single linear set, L(b, P), with P = {p1, ...,pk}. Let [[p]]
and ![[p]] be the following extended recursive schema, where p is the vector (n1, ..., np):

[[p]] =def (a1[ε] & ... & a1[ε]︸ ︷︷ ︸
n1 times

& ... & ap[ε] & ... & ap[ε]︸ ︷︷ ︸
np times

)

![[p]] =def µX .(ε | a1[ε] & ... & a1[ε]︸ ︷︷ ︸
n1 times

& ... & ap[ε] & ... & ap[ε]︸ ︷︷ ︸
np times

& X)

Therefore a document d satis�es [[p]] if and only #(d) = p. Likewise, a document d satis�es
![[p]] if and only if it is the combination of several documents, d1, ..., dλ, such that #(di) = p
for all i ∈ 1..λ, that is, there exists λ ∈ N such that #(d) = λ.p.

Let S be the extended recursive schema [[b]] & ![[p1]] & ... & ![[pk]]. Then a document d
satis�es the schema S if and only if d is a combination of a document satisfying [[b]] with
(any number) of documents satisfying one the schema [[pi]], with i ∈ 1..k. Therefore, d
satis�es the schema S if and only if #(d) is in L(b, P), that is |= φ#(d).

Assume the models of φ is a combination of the linear sets L1, ..., Lm. From the previous
case, we can construct the schemas (Si)i∈1..m such that for all i ∈ 1..m, d : Si if and only
if #(d) ∈ Li. Let S be the schema S1 | ... | Sm. Therefore, d satis�es S if and only if there
exists an indices i ∈ 1..m such that #(d) ∈ Li, that is |= φ#(d). �

We conjecture that this ability to count is exactly circumscribed to Presburger's arith-
metic, that is, for every schema denoting a set of natural numbers, there is a Presburger's
formula denoting the same set.

INRIA

XML Schema, Tree Logic and Sheaves Automata 13

In the next section, we introduce a modal logic for documents that directly embeds
counting constraint. Indeed, Proposition 3.1 indicates that it is necessary to take into
account Presburger's constraints when dealing with the interleaving operator. Moreover,
aside from the fact that counting constraints add expressiveness to our logic, a valuable
result of adding Presburger's formulas is to obtain a logic with good (and decidable) closure
properties.

4 The Sheaves Logic

We extend the schema language with a set of logical operators and relax some of its syn-
tactical constraints in order to de�ne a modal logic for documents, the Sheaves Logic (SL).
The sheaves logic is a logic in the spirit of the Tree Query Logic (TQL) of Cardelli and
Gordon [9], a modal logic for unranked, edge-labeled trees that has recently been proposed
as the basis of a query language for semi-structured data. A main di�erence between TQL
and SL is that the latter may express properties on both ordered and unordered sets of
trees. In contrast, our logic lacks some of the operators found in TQL like recursion or
quanti�cation over tag names, which could be added at the cost of some extra complexity.

The formulas of SL ranged over by A,B, . . . are given by the following grammar. The
formulas are partitioned into three syntactical categories: (1) elements formula, E, to express
properties of a single element in a document; (2) regular formulas, S, corresponding to
regular expressions on sequences of elements; (3) counting formulas, T , to express counting
constraints on bags of elements, that is in the situation where the order of the elements is
irrelevant.

Logical Formulas

E ::= Element
a[S] element with tag a and regular formula S
a[T] element with tag a and counting formula T
AnyE any type (match any element)
Datatype datatype constant
cst constant

S ::= Regular formula
ε empty
E element
S, S′ sequential composition
S∗ inde�nite repetition (Kleene star)
S ∨S choice
¬S negation

T ::= Counting formula
∃N : φ(N) : N1E1 & . . . & NpEp generalized interleaving (N = (N1, . . . , Np))
T ∨T choice
¬T negation

RR n 4631

14 Dal Zilio & Lugiez

A,B, . . . ::= Formula
S regular formula
T counting formula
A∨A choice
¬A negation

Aside from the usual propositional logic operators, our main addition to the logic is
the �Any Element� modality, AnyE , and a constrained form of existential quanti�cation,
∃N : φ(N) : N1E1 & . . . & NpEp, that matches documents made of n1 + ... + np elements,
with ni elements matching Ei, regardless of their order, and such that (n1, ..., np) satis�es
the formula φ.

The improved interleaving operator, inspired by the relation between schema and count-
ing constraint given in Section 3.1, is useful to express more liberal properties on documents
than with Schemas. For example, it is now possible to de�ne the type (E1∗ & E2), of
documents made only of elements matching E1 but one matching E2, using the formula:
∃N1, N2 : (N1 > 0)∧(N2 = 1) : N1E1 & N2E2.

The AnyE modality matches documents made of a single element. It has been chosen
instead of the less general AnyType schema since it could be used in a constrained existential
quanti�cation. In particular, it is possible to model AnyT using the formula ∃N : (N > 0) :
NAnyE .

4.1 Satisfaction relation

We de�ne the relation d |= A, meaning that the document d satis�es the formula A. This
relation is de�ned inductively on the de�nition of A and the evaluation rules are the same for
regular and counting formulas. in the following, we use the symbol Ψ to stand for formulas
of sort S, T or A.

Satisfaction

d |= a[Ψ] i� (d = a[d′]) ∧ (d′ |= Ψ)
d |= AnyE i� (d = a[d′])
d |= Datatype i� (d = cst) ∧ (cst ∈ Datatype)
d |= cst i� d = cst
d |= ε i� d = ε
d |= S, S′ i� (d = d1 · d2) ∧ (d1 |= S) ∧ (d2 |= S′)
d |= S∗ i� (d = ε)∨(d = d1 · . . . · dp ∧ ∀i ∈ 1..p, di |= S)
d |= ∃N : φ(N) : N1E1 & . . . & NpEp i� ∃n1, . . . , np, ∃(ej1)j∈1..n1 , . . . , (ejp)j∈1..np

eji |= Ei ∧ |= φ(n1, . . . , np) ∧ d ∈ inter(e11 · . . . · enp
p)

d |= Ψ∨Ψ′ i� (d |= Ψ) ∨ (d |= Ψ′)
d |= ¬Ψ i� not (d |= Ψ)

INRIA

XML Schema, Tree Logic and Sheaves Automata 15

Given a formula A of SL, the models of A is the set Mod(A) =def {d | d |= A} of all
documents matching A.

4.2 Example of Formulas

We start by de�ning some syntactic sugar. The modality True will be used for tautologies,
that is formulas satis�ed by all documents (like T ∨¬T for instance.) We also de�ne the
notation E1 & . . . & Ep, for the formula satis�ed by documents made of a sequence of p
elements matching E1, . . . , Ep, regardless of their order. Likewise, we de�ne the notation
(a[S] & · · ·) for the formula satis�ed by documents containing at least one element matching
a[S]:

(E1 & . . . & Ep) =def ∃N : (N1 = 1)∧ . . .∧(Np = 1) : N1E1 & . . . & NpEp
(a[S] & · · ·) =def ∃N1, N2 : (N1 = 1)∧(N2 > 0) : N1a[S] & N2AnyE

Let us assume that a book reference is given by the author �eld, the title and the year
of publication. A collection is a sequence of such entries. The references may have been
collected in several databases and we cannot be sure of the order of the �elds. The following
formula matches collections of books written by Knuth or Lamport and that contains as
many occurrences of books written by Knuth than written by Lamport.

collection [book [author [String] & title[String] & year [String]]∗]
∧
collection [∃N,M : (N = M) :

Nbook [(author ["Knuth"] & · · ·)]
& Mbook [(author ["Lamport"] & · · ·)]]

Next, we de�ne a new class of tree automata that will be used to decide SL, in the sense
that the set of documents matched by a formula will correspond to the set of terms accepted
by an automaton.

5 A New Class of Tree Automata

We de�ne a class of automata speci�cally designed to operate with XML schemata. A main
distinction with other automata-based approach, like hedge automata [4] for example, is
that we do not focus on regular expressions over paths but, instead, concentrate on the
& -operator, that is one of the chief addition of XML Schema with respect to DTD.

The de�nitions presented here have been trimmed down for the sake of brevity, but the
framework that we have proposed is far more rich and general. For example, in the complete
version of our class of automaton, we consider rich sets of constraints between subtrees [10].
Moreover, the de�nition of SA can be extended to any signature involving free function
symbols and an arbitrary number of associative and AC symbols, giving an elegant way to
model XML attributes.

RR n 4631

16 Dal Zilio & Lugiez

5.1 Sheaves Automata

A (bottom-up) sheaves automaton, A, is a triple 〈QA, Q�n, R〉 where QA is a �nite set of
states, {q1, . . . , qp}, Q�n is a set of �nal states included in QA, and R is a set of transition
rules. Transition rules are of three kinds:

(Type 1) c→ q
(Type 2) a[q′] → q
(Type 3) φ(N1, . . . , Np) ` Reg(QA) → q

Type 1 and type 2 rules correspond to the transition rules found in regular tree automata
for constants (leave nodes) and unary function symbols. Type 3 rules, or constrained rules,
are the only addition to the regular tree automata model and are used to compute on
nodes built using the concatenation operator (the only nodes with an unbounded arity.)
In type 3 rules, Reg(QA) is a regular expression on the alphabet QA = {q1, . . . , qp} (with
concatenation ·, union + and iteration ∗) and φ(N1, . . . , Np) is a Presburger's arithmetic
formula in the free variables N1, . . . , Np. Intuitively, the variable Ni denotes the number of
occurrences of the state qi in a run of the automata. A type 3 rules may �re if we have a
term of the form d1 · . . . · dn such that:

the term di leads to a state qji ∈ QA for all i ∈ 1..n;

the word qj1 · . . . · qjn is in the language de�ned by Reg(QA);

the formula φ#(qj1 · . . . · qjn) is satis�ed, i.e. |= φ(n1, . . . , np), where ni is the number
of occurrences of qi in (qj1 · . . . · qjn).

In order to better stress the connection between the variableNi, in the formula φ(N1, . . . , Np),
and the number of occurrences of qi in the words accepted by Reg(QA) (where QA is the
set {q1, . . . , qp}), we will often use # qi instead of Ni as a variable name in a Presburger's
formula, and write type 3 rules in the following way:

(Type 3) φ(# q1, . . . ,# qp) ` Reg(QA) → q

Example 4 Let Σ be the signature {c, a[_], b[_]} (we always implicitly add sequential com-
position, ·, and its unit, ε, to the signature.) An example of automaton is given by the set
of states QA = {qa, qb, qs}, the set of �nal states Q�n = {qs} and the set of transition rules
R,

ε→ qs a[qs] → qa (# qa = # qb)∧(# qs > 0) ` (qa + qb)∗ → qs
c→ qs b[qs] → qb

We will see, when we de�ne the transition relation, that this particular automaton accepts
terms with as many a's than b's at each node, like for example the terms a[ε] · b[ε] · b[ε] · a[ε]
and b[ε] · a[c · b[ε] · a[ε]]. �

INRIA

XML Schema, Tree Logic and Sheaves Automata 17

If we drop the Presburger's arithmetic constraint and restrict to type 3 rules of the form
True ` Reg(QA) → q, we get hedge automata [4]. Conversely, if we drop the regular word
expression and restrict to rules of the form2 φ(# q1, . . . ,# qp) ` AnyT → q, we get a class of
automata which enjoys all the good properties of regular tree automata, that is closure under
boolean operations, a determinisation algorithm, decidability of the test for emptiness, ...
When both counting and regular word constraints are needed, some of these properties are
no longer valid (at least in the case of non-deterministic SA.)

5.2 Transition Relation

The transition relation of an automaton A, denoted d→A q, is the transitive closure of the
relation de�ned by the following three inference rules. When there is no ambiguity on the
automaton, we simply write → instead of →A.

Transition Relation: →A

(Type 1)
c→A q ∈ R

c→A q

(Type 2)
d→A q′ n[q′] →A q ∈ R

n[d] →A q

(Type 3)
e1 →A qj1 . . . en →A qjn φ(# q1, . . . ,# qp) ` Reg(QA) →A q ∈ R (n > 2)

qj1 · . . . · qjn ∈ Reg(QA) |= φ#(qj1 · . . . · qjn)
e1 · . . . · en →A q

The rule for constrained transitions (type 3 rules), can only be applied to sequences of
length at least 2. Therefore it could not be applied to the empty sequence, ε, or to sequence
made of one element, like a[q] for example. It could be possible to extend the transition
relation for type 3 rules to these two particular cases, but it would needlessly complicate
our de�nitions and proofs without adding expressivity.

Example 5 Let A be the automaton de�ned in Example 4 and d be the document a[c] ·
b[a[c] · b[c]]. A possible accepting run of the automaton is given below:

d → a[c] · b[a[qs] · b[c]] → a[qs] · b[a[qs] · b[c]] → a[qs] · b[a[qs] · b[qs]]
→ qa · b[a[qs] · b[qs]] → qa · b[a[qs] · qb] → qa · b[qa · qb]
?→ qa · b[qs] → qa · qb ?→ qs

Transitions marked with a ? symbol (transitions 7 and 9) use the only constrained rule of
A. It is easy to check that, in each case, the word used in the constraints is qa · qb, that this
word belongs to (qa | qb)∗ and that it contains as many qa's than qb's (its Parikh mapping is
(1, 1, 0).) More generally, the automaton A accepts only documents in which every sequences
contains as many a's than b's as top elements. �

2In this setting, AnyT refers to the �all-accepting� regular word expression (q1 | . . . | qp)∗.

RR n 4631

18 Dal Zilio & Lugiez

As it is usual with automata, we say that a document (or term) d is accepted by a sheaves
automaton A if there is a �nal state q ∈ Q�n such that t →A q. The language L(A) is the
set of terms accepted by A. Our example shows that SA can accept languages which are
very di�erent from regular tree languages, in fact closer to those accepted by context-free
languages. For example, the constrained rule in Example 4 can be interpreted as: �the word
q1 · . . . · qn belongs to the context-free language of words with as many qa's than qb's.� It is
even possible to write constraints de�ning languages which are not even context-free, like
qna · qnb · qnc (just take the Presburger's constraint (# qa = # qb)∧(# qb = # qc) in Example 4.)

5.3 Properties of Sheaves Automata

In this section, we survey several properties of sheaves automata, like the closure under
boolean operations or the decidability of the test for emptiness, and we study the complexity
of some basic problems, like checking whether a document is accepted by an automaton.

An important practical result is that, contrary to the case of regular tree automata,
the class of deterministic sheaves automata is strictly weaker than the class of sheaves
automata. We say that a sheaves automaton is deterministic if and only if a term reach
at most one state. This strict separation between the discriminative power of deterministic
and non-deterministic automata is mainly a result of interactions between counting and
regular constraints and it retrospectively supports our choice to separate these two sorts of
properties in our tree logic.

5.3.1 Deterministic SA are less Powerful than Non-deterministic SA

Let consider the following language, L, over a two letters alphabet, Σ = {a, b}:

L = { w1 · w2 · w3 · w4 | w1, w3 ∈ a∗, w2, w4 ∈ b∗,
#a w1 = #bw2 > 1,
#a w3 = #bw4 > 1 }

The language L consists of the terms an · bn · am · bm, with n,m > 0. We can identify
each word in L with a document and de�ne a non-deterministic automaton, 〈Q,Q�n, R〉,
accepting all the documents in L. This automaton is such that Q = {qa1, qa2, qb1, qb2, qs},
with Q�n = {qs}, and has the following �ve transition rules:

a→ qa1 b→ qb1 a→ qa2 b→ qb2
(# qa1 = # qb1) ∧ (# qa2 = # qb2) ` qa1 ∗ ·qb1 ∗ ·qa2 ∗ ·qb2∗ → qs

We show that the language L cannot be accepted by a deterministic SA, and therefore
prove our separation result between the expressivity of deterministic and non-deterministic
sheaves automata.

Proposition 5.1 There is no deterministic sheaves automaton accepting L.

INRIA

XML Schema, Tree Logic and Sheaves Automata 19

Proof Assume there is a deterministic automaton, A, accepting L. Let qa (resp. qb) be
the unique state reached by a (resp. b). We will use # qa and # qb as the variable names
that refer to the number of occurrences of qa and qb in Presburger's constraints.

Given the special structure of the language L, we can assume some extra conditions on
the constrained rules of the deterministic automaton. Indeed, in an accepting run of A, a
constrained transition rule may only be applied to a word of (qa|qb)∗. Therefore we may
assume that Reg is a regular expression on the alphabet {qa, qb} only, and that the only free
variables in the formula φ are # qa and # qb.

Since the language L is in�nite and that the number of transition rules are �nite, there
is at least one constrained rule, (?) φ ` Reg → qs, such that both φ is satis�ed by an in�nite
number of values for # qa and # qb and Reg accepts an in�nite number of words.

By de�nition of the language L, the terms accepted by the rule (?) are of the form
t(n,m) = qan · qbn · qam · qbm and, by hypothesis, the set of words t(n,m) accepted by Reg
should be in�nite. Using a standard �pumping lemma� on the minimal deterministic �nite
state automaton (FSA) associated to Reg, it must be the case that Reg accepts a much
larger set of words. More precisely, if max(Reg) is the size of the minimal deterministic
�nite state automaton (FSA) associated with Reg, then there exists two natural numbers,
k and l, such that for all m,n > max(Reg), if t(m,n) is accepted by Reg, then the following
word is accepted by Reg for all λ, µ > 0:

qan+λ.k · qbn · qam+µ.l · qbm

The proof of this property is similar to the proof of the standard pumping lemma for
FSA and is based on the fact that the number of states in the FSA associated to Reg is
�nite, whereas the set of recognized words if in�nite. Therefore, for each part of an accepted
word of size greater than max(Reg), there should correspond a cycle in the automaton. For
example, in the case where n,m > max(Reg) and t(n,m) is accepted, there are two states
q1, q2 of the FSA for Reg such that an accepting run for t(n,m) is as follows:

position in t(n,m) p1 p2 p3 p4

t(n,m) = a · · a · b · . . . · b · a · . . . · a · b · · b
↓ ↓ ↓ ↓ ↓

states reached q1 q1 q2 q2 q (�nal)

Let k = |p2| − |p1| and l = |p4| − |p3|. Then k is the length of the part of an that can
be iterated without modifying the �nal state reached by t(n,m), and similarly for l and am.
Moreover, since the automata implementing Reg is deterministic, every accepting run should
include the cycles of size k and l that we have identi�ed (for words of su�cient length.)

Next, we choose some values of n,m such that n,m > max(Reg) + k.l and that t(n,m) is
accepted by (?). This is always possible since the set of words �accepted� is in�nite. Since
n,m > max(Reg)+k.l we may also write these two numbers n = n0 +k.l and m = m0 +k.l,
with n0,m0 > max(Reg).

By de�nition of the transition relation we have both:

RR n 4631

20 Dal Zilio & Lugiez

(1) qan0+k.l · qbn · qam0+k.l · qbm is accepted by Reg

(2) |= φ(n0 +m0 + 2.k.l, n+m)

By property (1) and our (extended) pumping lemma, we have that t = qan0+2.k.l · qbn ·
qam0 · qbm is also accepted by Reg. Indeed, we only need to �pump� l times the �rst series
of a and to �reverse-pump� k times the second.

By property (2), since the Parikh mapping of t is equal to the mapping of t(n,m), we
have that φ is satis�ed by t. Therefore the word t is accepted by the rule (?), that is by A.
This contradicts the fact that t is not in L, the language recognized by the automaton. �

Next, we de�ne some constructions for basic operations on SA. Since the class of de-
terministic sheaves automata is strictly weaker than the class of sheaves automata, we will
try to preserve determinism as much as possible. This results in constructions for basic
operations that are a little bit more complex than the classical ones.

In these constructions, it may be necessary to add a state to an automaton without
changing its transition relation. The only complication in doing so is that, in constrained
rules, the set of states is used both as the alphabet of the regular expressions and as the set
of variables in the Presburger's formula. For the sake of simplicity, we allow to write the
new constrained rules as the old ones.

5.3.2 Completion

A sheaves automaton is complete when every term reach some state. For instance, the
automaton A de�ned in Example 4 is not complete since the term a[c] · a[c] does not reach
any state (the transitions of the automaton are blocked when it reach the expression qa ·qa.)

From any automatonA, we can build a complete automaton, Ac, that recognize the same
language than A. The completed automaton is obtained using the following algorithm:

add a new junk state, say q⊥,

if there is a constant c without any type 1 rules associated to it, add the rule c→ q⊥,

add the rule a[q⊥] → q⊥ for any unary function symbol a[_] in the signature,

add the rule True ` (Q ∪ {q⊥})∗, q⊥, (Q ∪ {q⊥})∗ → q⊥,

Let (φi ` Regi → qji)i∈1..k be the �nite family of constrained rules in A, then for every

subset I of 1..n, add the rule:
∧
i∈J

¬φi `
⋂
i6∈J

Regi → q⊥.

Proposition 5.2 The automaton Ac is complete, it accepts the same language than A and
it is deterministic if A is deterministic.

Proof The proof is by structural induction on d. �

INRIA

XML Schema, Tree Logic and Sheaves Automata 21

5.3.3 Product, Union and Intersection

Given two automata A = (Q,Q�n, R) and A′ = (Q′, Q′
�n, R

′), we can construct the product
automaton, A × A′, that will prove useful in the de�nition of the automata for union and
intersection. The product A×A′ is the automaton A× = (Q×, ∅, R×) such that:

Q× = Q×Q′ = {(q1, q′1), . . . , (qp, q′l)},
for every type 1 rules a→ q ∈ R and a→ q′ ∈ R′, the rule a→ (q, q′) is in R×,

for every type 2 rules n[q] → s ∈ R and n[q′] → s′ ∈ R′, the rule n[(q, q′)] → (s, s′) is
in R×,

for every type 3 rules φ ` Reg → q ∈ R and φ′ ` Reg ′ → q′ ∈ R, the rule φ× `
Reg× → (q, q′) is in R×, where Reg× is the regular expression corresponding to the
product Reg×Reg ′ (this expression can be obtained from the product of an automaton
accepting Reg by an automaton accepting Reg ′). The formula φ× is the product of
the two formulas φ×φ′ obtained as follows. Let #(q, q′) be the variables associated to
the numbers of occurrences of the state (q, q′), then:

φ× = φ(
∑
s∈Q′

#(q1, s), . . . ,
∑
q′∈Q′

#(qp, q′))∧φ′(
∑
q∈Q

#(q, q′1), . . . ,
∑
q∈Q

#(q, q′l))

Proposition 5.3 There is a transition d→ (q, q′) in the product automaton A×A′ if and
only if d→A q and d→A′ q′.

Proof The proof is by structural induction on d. �

Given two automata, A and A′, it is possible to obtain an automaton accepting the
language L(A)∪L(A′) and an automaton accepting L(A)∩L(A′). The intersection A∩A′

may be simply obtained from A×A′ by setting the set of �nal states to:

Q∩
�n = (Q�n ×Q′

�n) = {(q, q′) | q ∈ Q�n ∧ q ∈ Q′
�n}

Similarly, the union A∪A′ may be obtained from A×A′ by setting the set of �nal states
to:

Q∪
�n = (Q�n ×Q′) ∪ (Q×Q′

�n) = {(q, q′) | q ∈ Q�n ∨ q ∈ Q′
�n}

The union automaton may also be obtained using a simpler construction: take the union
of the states of A and A′ (supposed disjoint) and modify type 3 rules accordingly. It is
enough to simply add the new states to each type 3 rules together with an extra counting
constraint stating that the corresponding coe�cients must be nil.

Proposition 5.4 The automaton A∪A′ accepts L(A) ∪L(A′) and A∩A′ accepts L(A) ∩
L(A′). Moreover, the union and intersection automaton are deterministic whenever both A
and A′ are deterministic.

RR n 4631

22 Dal Zilio & Lugiez

5.3.4 Complement

Given a deterministic automaton, A, we may obtain a deterministic automaton that recog-
nizes the complement of the language L(A) simply by exchanging �nal and non-�nal states.
This property does not hold for non-deterministic automata.

Proposition 5.5 The class of languages accepted by non-deterministic sheaves automata is
not closed under complementation.

Proof We show that given a two-counter machine, there is a non-deterministic automaton
accepting the set of bad computations of the machine. Therefore, if the complement of
this language was also accepted by some automaton, we could easily derive an automaton
accepting the (good) computations reaching a �nal state, hence decide if the machine halts.
The halting problem for deterministic two-counter machine is a well-known undecidable
problem.

Two-counter machines are devices made from a �nite set of states, Q, some being termed
�nal, a pair of counters, C1, C2, which are natural numbers variables, and a transition
relation, δ ⊆ Q×{0, 1}2×Q×{−1, 0, 1}2. A con�guration, C, is a triple (Q,C1, C2), where
Q is a state in Q. We say that the con�guration C = (Q,C1, C2) derive the con�guration
C′ = (Q′, C′

1, C
′
2), denoted C =⇒ C′, if there is some transition (Q, x1, x2, Q

′, x′1, x
′
2) ∈ δ

such that for all i ∈ {1, 2}:
if Ci = 0 then xi = 0 else xi = 1, that is we can test whether the �rst counter is nil or
not,

C′
i = Ci + x′i

We also require that if xi = 0 then x′i > 0, that is, we cannot decrease the value of a null
counter. All these conditions can be described by a Presburger's arithmetic formula. For
instance, consider the transition rule (Q, 0, 1, Q′, 1,−1) that requires that we are in state Q,
checks if the �rst-counter is zero, that the second one is strictly positive, goes to state Q′,
increments the �rst counter and decrement the second one. The machine is deterministic
when the transition relation is a function. The corresponding operations on counters are
described by the following formula, where we may may replace the expression C2 > 0 with
the Presburger's formula ∃N.(C2 = 1+N), and (C′

2 = C2−1)with the formula (C′
2+1 = C2):

(C1 = 0)∧(C2 > 0)∧(C′
1 = 1)∧(C′

2 = C2 − 1)

A computation is a sequence of con�gurationsC0,C1, . . . such that for all i > 0, Ci−1 =⇒
Ci. It is undecidable whether there exists a computation that may reach a con�guration
with a �nal state, also called a halting con�guration.

To simulate the computations of a deterministic two-counter machine, we use the follow-
ing signature.

a constant Q for each state Q ∈ Q of the two-counter machine,

INRIA

XML Schema, Tree Logic and Sheaves Automata 23

two constants C1 and C2 to indicate the beginning of each counter,

a constant 1 used for counting. We represent the natural number n in unary format,
by n successive occurrences of the symbol 1.

With our convention, a sequence of con�gurations is a document accepted by the word
expression (

⋃
Q∈QQ,C1, 1∗, C2, 1∗)∗. Therefore there is a SA accepting the set of all se-

quences of con�gurations (a regular automaton will be enough) and also a SA accepting the
set of all sequences ending in a halting state. The construction of an automaton accepting
only the bad sequences of con�gurations, that is those not matching the de�nition of δ, is
as follows:

the automaton has states qQ (for each state of the counter machine Q ∈ Q), qC1 ,qC2 ,
1C1 , 1C2 , ⊥, as well as a unique �nal state, qerror . The state qC1 , qC2 are used to locate
the �start of counter value� symbols C1 and C2 and are associated to two type 1 rules:
C1 → qC1 and C2 → qC2 ;

the constant 1 can reach (non-deterministically) �ve di�erent states, 1C1 , 1C2 , 1C′
1
, 1C′

2

and ⊥. We have �ve type 1 rules, 1 → 1Ci and 1 → 1C′
i
for all i ∈ {1, 2} and 1 → ⊥.

The �rst four states are used to identify the value of the counter we are interested
in, while ⊥ is used for con�gurations of the machine whose counters values is not
interesting.

there is one constrained rule for each pair of states (Q,Q′) such that there is a transition
(Q, x1, x2, Q

′, x′1, x
′
2) in δ (we use the wildcard symbol q_ to denote any state of the

kind qQ for Q ∈ Q):

φ `

 (q_, qC1 ,⊥∗, C2,⊥∗)∗,

(qQ, qC1 , 1C1∗, qC2 , 1C2∗), (qQ′ , qC1 , 1C′
1
∗, qC2, 1C′

2
∗),

(q_, qC1 ,⊥∗, qC2,⊥∗)∗


 → qerror

where φ(# 1C1,# 1C2,# 1C′
1
,# 1C′

2
) is the Presburger's formula stating that the values

of the counters do not agree with any of the transitions in δ from state Q to state Q′.

Let L be the language recognized by the non-deterministic SA. The intersection of the
complement of L with the language of sequences of con�gurations ending with a �nal state is
the set of computations of the two-counter machine reaching a �nal state. If it were accepted
by a sheaves automaton, we would have a decision procedure for two-counter machines, which
leads to a contradiction. �

5.3.5 Membership

In this section, we consider the problem of checking whether a document, d, is accepted
by a non-deterministic automaton A. We use the notation |d| for the number of elements
occurring in d and |S| for the number of elements in a set S. The size of an automaton, |A|,
is the number of symbols occurring in its de�nition.

RR n 4631

24 Dal Zilio & Lugiez

Assume there is a function Const such that, for all constraints φ, the evaluation of
φ(N1, . . . , Np) can be done in time O(Const(p, n)) whenever the integer variablesN1, . . . , Np
are instantiated by values less than or equal to n. For quanti�er-free Presburger's formula
(and if n is in binary notation) such a function is given by K.p. log(n), where K is the
greatest coe�cient occurring in φ. For arbitrary situations, that is for formulas involving
any quanti�ers alternation (which is very unlikely to occur in practice), the complexity is
doubly exponential for a non-deterministic algorithm.

Proposition 5.6 For an automaton A = 〈Q,Q�n, R〉, the problem d
?∈ L(A) can be decided

in time O(|d|.|R|.Const(|Q|, |d|)) for a deterministic automaton and in time O(|d|2.|Q|.|R|.
Const(|Q|, |d|)))) for a non-deterministic automaton.

Proof The proof is standard in the case of deterministic automata. Otherwise, there are
|d|.|Q| possible labeling of the tree d by states of Q, and we check the applicability of each
rules at each internal node. �

5.3.6 Test for Emptiness

We give an algorithm for deciding emptiness that combines a marking algorithm with a
test to decide if the combination of a regular expression and a Presburger's constraint is
satis�able.

We start by de�ning an algorithm for checking when a word on a sub-alphabet satis�es
both a given regular word expression and a given counting constraint. We consider a set
of states, Q = {q1, . . . , qp}, that is also the alphabet for a regular expression Reg and a
Presburger's formula φ(# q1, . . . ,# qp).

The problem is to decide whether there is a word on the sub-alphabet Q′ ⊆ Q satisfying
both Reg and φ. We start by computing the regular expression Reg |Q′ that corresponds to
the words on the alphabet Q′ satisfying Reg. This expression can be easily obtained from
Reg by applying a set of simple syntactical rewritings to Reg until no rule is applicable
(where op denotes either the choice or concatenation operator):

e→ e′

e op f → e′ op f
f → f ′

e op f → e op f ′
e→ e′

e∗ → e′∗

q 6∈ Q′

q → ⊥ ⊥ op f → ⊥ e op ⊥ → ⊥ ⊥∗ → ⊥
Then we compute the Parikh mapping #(Reg |Q′) (as explained in Section 3.2) and test

the satis�ability of the following Presburger's formula:

φ(# q1, . . . ,# qp) ∧
∧
q/∈Q′

(# q = 0) ∧ #(Reg |Q′)

INRIA

XML Schema, Tree Logic and Sheaves Automata 25

When this formula is satis�able, we say that the constraint φ ` Reg restricted to Q′

is satis�able. This notion is useful in the de�nition of an updated version of a standard
marking algorithm for regular tree automaton.

The following algorithm computes a set QM ⊆ Q of states and returns a positive answer
if and only if there is a �nal state reachable in the automaton.

QM = ∅
repeat if a→ q ∈ R then QM = QM ∪ {q}

if n[q′] → q ∈ R and q′ ∈ QM then QM = QM ∪ {q}

if



φ ` Reg → q ∈ R and
the constraint φ ` Reg restricted
to QM is satis�able

then QM = QM ∪ {q}

until no new state can be added to QM
if QM contains a �nal state then return not empty

else return empty

Proposition 5.7 A state q is marked by the algorithm, that is it occurs in QM , if and only
if there exists a term t such that t→ q.

We may prove this claim using a proof similar to the one for regular tree automata.
We can also establish a result on the complexity of this algorithm. Let ConstA denote

the maximal time required to decide the satis�ability of the constraints occurring in the
type 3 rules of A = (Q,Q�n, R).

Proposition 5.8 The problem L(A) ?= ∅ is decidable in time O(|Q|.|R|.ConstA).

The bound can be improved for regular tree automata, yielding a linear complexity. We
could also get a linear bound if we have an oracle that, for each set of states Q′ ⊆ Q and
each constraint, answer if the constraint restricted to Q′ is satis�able.

6 Results on the Tree Logic and on XML Schema

We prove our main property linking sheaves automata and the sheaves logic and use this
result to derive several important properties of the simpli�ed Schema language introduced
in Section 2.

Theorem 6.1 (De�nability) For each formula Ψ of SL, we can construct a deterministic,
complete, sheaves automaton AΨ accepting the models of Ψ.

Proof By structural induction on the de�nition of Ψ. For each case, we describe the
construction of the automaton AΨ and prove that d |= Ψ if and only if d ∈ L(AΨ).

Without loss of generality, we may strengthen the proposition with the following addi-
tional conditions:

RR n 4631

26 Dal Zilio & Lugiez

(1) a state q occurring in the right-hand side of a constrained rule may not occur in the
left-hand side of a constrained rule;

(2) a state occurring in the right-hand side of an unconstrained rule may not occur in the
right-hand side of a constrained rule;

(3) Presburger's constraint may only occur when the right-hand side is not a �nal state,
i.e. constrained rules are of the form True ` Reg(Q) → q whenever q is a �nal state.

We only consider the di�cult cases. For the case Ψ = Ψ∨Ψ or ¬Ψ′, we simply use the fact
that deterministic SA are closed under union and complement.

Ψ = a[T]. Let AT be the automaton constructed for T . Let q be a �nal state and q′ be a
state occurring in a rule a[q] → q′ of AT . The idea is to choose the states of the form q′ as
the set of �nal states.

Let q be a �nal state occurring in a rule of the form a[q] → q′. Whenever q′ also occurs
in a rule c→ q′ or b[. . .] → q′ of AT , we split q, q

′ in two states qa, qa′ and qā, qā′ such that
qa′ occurs only in rules a[qa] → qa′ and that qā′ is used for the other rules, say c → qā′ or
b[. . .] → qā′. This is done for all such states q, q′ of AT . The state-splitting is necessary to
preserve determinism. The automaton AΨ is obtained by choosing the states qa′ (where q
is �nal in AT) as the set of �nal states.

A document d is accepted by AΨ if and only if there is a run of AΨ ending with a
transition a[qa] →AΨ qa′. Therefore d must be of the form a[d′] with d′ →AΨ qa. By
construction, there is a transition d′ →AT q in AT with q a �nal state in AT . By induction,
a document d is accepted by AT if and only if d |= T . Then d is accepted by AΨ if and only
if d |= Ψ.

Ψ = Datatype. Let AΨ be the complete, deterministic automaton with states {q⊥, qok},
set of �nal states {qok}, and with rules cst → qok for all constant cst in Datatype and
cst → q⊥ otherwise.

By construction, AΨ accepts a document d if and only if d = cst ∈ Datatype, that is only
if d |= Ψ. We rely on the fact that the set of constant in Datatype is �nite to obtain a �nite
automaton, but this condition could be simply relaxed by parameterizing the automaton
with a set of constants. The case Ψ = cst is similar.

Ψ = AnyE . Let AT be the complete, deterministic automaton with states {q⊥, qok}, set
of �nal states {qok}, and rules:

(type 1) cst → q⊥ for all constant cst.

(type 2) a[q⊥] → qok and a[qok] → qok for all tag name a.

(type 3) (# q⊥ + # qok > 2) ` (q⊥ | qok)∗ → q⊥, a rule that match all documents made of
more than one element.

INRIA

XML Schema, Tree Logic and Sheaves Automata 27

By construction, AΨ accepts a document d if and only if there is a transition d → qok .
Therefore, since qok appears only as the result of a type 2 rules, it must be the case that
d = a[d′] with d′ → qok or d′ → q⊥. Given that AΨ is complete, every document reach either
qok or q⊥. Therefore, d is accepted by AΨ if and only if d = a[d′], that is d |= AnyE . Like
in the previous case, we rely on the fact that the set of constants and tag names are �nite
to obtain a �nite automaton. Like in the previous case, this condition could be relaxed by
parameterizing the automaton with a set of constants and a set of tag names.

Ψ = S∗, S ∨S, S̄ or S, S′. The formula Ψ is a regular expression on some alphabet E1,. . . ,
Ep, where Ei is an element formula. By induction, there is a deterministic automaton Ai

accepting the models of Ei for all i ∈ 1..p. Let A be the product automaton of the Ai's. A
stateQ of A is of the form (q1, ..., qp), with qi a state of Ai. ThereforeQ may represent terms
accepted by several Ai's. We use the notation Q ∈ �n(Ai) to say that the ith component of
Q is a �nal state of Ai.

We consider the regular expression RegΨ, with alphabet the set of states of A, obtained
by syntactically replacing Ei in Ψ with the expression

⋃{Q | Q ∈ �n(Ai)}. The complement
of RegΨ is denoted ¯RegΨ.

For every state Q and rule φ ` Reg → Q of A, we split Q into two states, QΨ and Q̄Ψ,
and the constrained rule into two rules φ ` Reg ∩ RegΨ → QΨ and φ ` Reg ∩ ¯RegΨ → Q̄Ψ.
To conclude, we choose the states of the form QΨ (where Q is �nal in A) as the set of �nal
states.

The automaton AΨ is deterministic and complete and the property follows by showing
that d |= Ψ if and only if d ∈ L(AΨ).

We prove the �rst implication. Assume d is accepted by AΨ, that is d → QΨ, where Q
is �nal in A. By construction, d must be of the form s1 · . . . · sm and for all i ∈ 1..m we have
si → (qi1, . . . , q

i
p) with:

(1) at least one qij is a �nal state for Aj , that is sj is accepted by at least one Aj ;

(2) the word (q11 , . . . , q1p) · . . . · (qm1 , . . . , qmp) is in RegΨ.

By (1) and our induction hypothesis, we have that there is a mapping, ς, from 1..m to the
formulas E1, ..., Ep such that si |= Eς(i) for all i ∈ 1..m. With our notation, we have
(qi1, ..., q

i
p) ∈ �n(Aς(i)). Moreover, by (2) and the de�nition of RegΨ, we have that (for at

least one of such mapping ς) the word Eς(1) · . . . ·Eς(m) is accepted by Ψ. Therefore d |= Ψ
as needed.

We prove the second implication. Assume d |= Ψ. Then d is of the form s1 · . . . · sm
and there is a mapping, ς, from 1..m to the formulas E1, ..., Ep, such that si |= Eς(i) for
all i ∈ 1..m and such that Eς(1) · . . . · Eς(m) is accepted by Ψ. Let Ij be the set of indices
l such that sj |= El (hence sj 6|= El if and only if l 6∈ Ij). By construction, we have that

sj → (qj1, . . . , q
j
p) where qjl is a �nal state of Al for all indices l ∈ Ij . Moreover, the word

(q11 , . . . , q
1
p) · . . . · (qm1 , . . . , qmp) is accepted by RegΨ (and therefore is not accepted by R̄egΨ.)

By de�nition of AΨ, there is a type 3 rule matching this case such that d→ QΨ with QΨ a
�nal state of AΨ. Therefore d is accepted by AΨ as needed.

RR n 4631

28 Dal Zilio & Lugiez

Ψ = ∃N : φ : N1E1 & . . . & NpEp. By induction, there is a deterministic automaton Ai

accepting the models of Ei for all i ∈ 1..p. The construction is similar to a determinisation
process. Let A be the product automaton of the Ai's and let {Q1, ...,Qm} be the states of
A. A state Q of A is of the form (q1, ..., qp), with qi a state of Ai, and it may therefore
represent terms accepted by several Ai's. We use the notation Q ∈ �n(Ai) to say that the
ith component of Q is a �nal state of Ai.

The constrained rules of A are of the form ψ(M1, . . . ,Mm) ` Reg → Q, whereMi stands
for the number of occurrences of the state Qi in a run. The idea is to de�ne a Presburger's
formula, φ∃(M1, . . . ,Mm), satis�ed by con�gurations Qj1 · ... · Qjn containing a number of
�nal states of the Ai's satisfying φ, and to augment all the type 3 rules with this counting
constraint. To de�ne φ∃, we decompose Mi into a sum of integer variables, xij for j ∈ 1..p,
with xij corresponding to a number of �nal states of Aj occurring in Qi.

φ∃ =def ∃(xij)i∈1..m
j∈1..p

·
∧

i∈1..m

(Mi =
∑
j∈1..p

Qi∈�n(Aj)

xij) ∧ φ(
∑
i∈1..m

Qi∈�n(A1)

xi1, . . . ,
∑
i∈1..m

Qi∈�n(Ap)

xip)

Finally, we split each constrained rule ψ ` Reg → Q of A into the two rules ψ ∧φ∃ ` Reg →
QΨ and ψ ∧¬φ∃ ` Reg → Q̄Ψ, splitting also the state Q into QΨ and Q̄Ψ. The automaton
AΨ is obtained by choosing the states of the form QΨ (where Q is �nal in A) as the set of
�nal states.

The automaton AΨ is deterministic and complete and the property follows by showing
that d |= Ψ if and only if d ∈ L(AΨ).

We prove the �rst implication. Assume d is accepted by AΨ, that is d → QΨ, where Q
is �nal in A. By construction, d must be of the form s1 · . . . · sm and for all i ∈ 1..m we have
si → (qi1, . . . , qip) and qil is �nal in Al if and only if si |= El. Since we have an accepting

run, it must be the case that the counting constraint φ∃ is satis�ed. Therefore, we can �nd
a decomposition of the si's in n1 documents satisfying E1, ..., np documents satisfying Ep,
such that |= φ(n1, ..., np). For example, we can choose nj =

∑{xij | i ∈ 1..m,Qi ∈ �n(Aj)},
where the xij 's are values obtained from solving the constraint φ∃. Therefore d |= Ψ as
needed.

We prove the second implication. Assume d |= Ψ. Then d is of the form s1 · . . . · sm
and there is a partition of the si's in p distinct groups, of respective size n1, ..., np, such
that, for all i ∈ 1..p, the documents in the ith group satis�es Ei and that |= φ(n1, ..., np).
By induction hypothesis, we have for each i ∈ 1..m that si →A (qi1, ..., q

i
p), where A is the

product of the automaton E1, ..., Ep and where qil is �nal in Al if and only if si |= El. For all
i ∈ 1..m and j ∈ 1..p, take xij = 1 if si is in the partition of the sub-documents satisfying Ej
and xij = 0 otherwise. These values for the xij 's provide a solution to the counting constraint

φ∃. Therefore, there is a transition d→ QΨ in Ψ with QΨ a �nal state, that is, d is accepted
by AΨ as needed. �

As a direct corollary of Th. 6.1 and Propositions 5.6 and 5.8, we obtain key results on
the decidability and on the complexity of the sheaves logic. Let |Q(AΨ)| be the number of
states of the SA associated to Ψ.

INRIA

XML Schema, Tree Logic and Sheaves Automata 29

Theorem 6.2 (Decidability) The logic SL is decidable.

Theorem 6.3 (Model Checking) For any document d and formula Ψ, the model checking
problem d |= ψ is decidable in time O(|d|.|Aψ |.Const(|Q(AΨ)|, |d|)|.

Since the schema language is a plain subset of our tree logic, we can directly transfer
these results to schemas and decide the relation d : S using sheaves automata.

Proposition 6.4 For every schema, S, there is a deterministic sheaves automaton, A, such
that L(A) = {d | d : S}.

Proof Similar to the proof of Th. 6.1. The only di�erence is that we must replace the
choice operator, a[T]?, which does not occur in SL, by the formula (ε∨ a[T]). �

We have a similar but weaker results for recursive schemata.

Proposition 6.5 For every recursive schema, S, there is a (non-necessarily deterministic)
sheaves automaton such that L(A) = {d | d : S}.

Proof Similar to the proof of Proposition 6.4. For recursive schemas, we need to introduce
a special state qX for each de�nition X = T occurring in S. Then we construct the automata
corresponding to T and replace qX in AS by any �nal state of AT . �

Combined with our previous results, we obtain several decidability properties on schemas.
Most importantly, we obtained an automata-based decision procedure for all these problems.
We can, for example, easily de�ne the intersection and di�erence of two schemas (that are
not necessarily well-formed schemas.)

Theorem 6.6 (XML Typing) Given a document, d, and a schema, S, the problem d : S
is decidable.

Theorem 6.7 (Satisfaction) Given a schema S, the problem ∃d.d : S is decidable.

7 Conclusion

Our contribution is a new class of automaton for unranked tree aiming at the manipulation
of XML schemas. We believe it is the �rst work on applying tree automata theory to XML
that consider the & -operator. This addition is signi�cant in that interleaving is the source of
many complications, mainly because it involves the combination of ordered and unordered
data models. This led us to extend hedge automaton [4] with counting constraints as a way
to express properties on both sequences and multisets of elements. This extension appears
quite natural since, when no counting constraints occurs, we obtain hedge automata and,
when no constraints occur, we obtain regular tree automata.

RR n 4631

30 Dal Zilio & Lugiez

The interleaving operator has been the subject of many controversial debates among
the XML community, mainly because a similar operator was responsible for di�cult imple-
mentation problems in SGML. Our work gives some justi�cations for these di�culties, most
particularly the undecidability of computing the complement of non-deterministic languages.
To elude this problem, and in order to limit ourselves to deterministic automaton, we have
introduced two separate sorts for regular and counting formulas in our logic. It is interesting
to observe that a stronger restriction appears in the schema speci�cation [1], namely that
the & -operator may only appears at top-level position in an element de�nition.

Another source of problems is linked to the size and complexity of counting constraints.
Again, we may �nd syntactical restrictions to avoid this problem. For example, we may
obtain polynomial complexity by imposing that each element tags in an expression a1[S1] &

. . . & ap[Sp] be distinct. And again, a similar restriction may be found in the XML schema
speci�cation.

Our goal is not to devise a new schema or pattern language for XML, but rather to �nd
an implementation framework compatible with schemas. An advantage of using tree au-
tomata theory for this task is that it also gives us complexity results on problems related to
XML schema (and to possible extensions of schemas with logical operators.) As indicated by
our previous remarks, we may also hope to use our approach to de�ne improved restrictions
on schema and to give a better intuition on their impact. Another advantage of using tree
automata is that it suggests multiple directions for improvements. For example, a most de-
sirable extension to our model is to add the capacity for the reverse traversal of a document.
This could be achieved using some form of backtracking, like a parallel or alternating [13]
variant of our tree automata, or by considering tree grammars (or equivalently top-down
tree automata.) The same extension is needed if we want to process tree-structured data in
a streamed way, a situation for which bottom-up tree automata are not well-suited.

INRIA

XML Schema, Tree Logic and Sheaves Automata 31

References

[1] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn, editors.
XML Schema Part 1: Structures. W3C (World Wide Web Consortium), 2001. Available
at http://www.w3.org/TR/xmlschema-1/.

[2] S. Abiteboul and P. Buneman. Data on the Web : From Relations to Semistructured
Data and XML. Morgan Kaufmann, 1999.

[3] H. Hosoya and B. C. Pierce. Regular expression pattern matching for XML. In Proc.
of Principles of Programming Languages (POPL), pages 67�80. ACM Press, 2001.

[4] Murata Makoto. Extended path expression for XML. In Proc. of Symposium on Prin-
ciples of Database Systems (PODS). ACM Press, 2001.

[5] James Clark andMurata Makoto, editors. RELAX NG Tutorial. OASIS, 2001. Available
at http://www.oasis-open.org/committees/relax-ng/tutorial.html.

[6] Alexandru Berlea and Helmut Seidl. Binary queries. In Extreme Markup Languages,
2002.

[7] F. Neven and T. Schwentick. Automata- and logic-based pattern languages for tree-
structured data. (manuscript), 2001.

[8] L. Cardelli and A. Gordon. Anytime, anywhere: Modal logic for mobile ambients. In
Proc. of Principles of Programming Languages (POPL). ACM Press, January 2000.

[9] L. Cardelli and G. Ghelli. A query language based on the ambient logic. In Proc. of
ESOP'01, volume 2028 of Lecture Notes in Computer Science, pages 1�22. Springer-
Verlag, 2001.

[10] Denis Lugiez and Silvano Dal Zilio. Multitrees Automata, Presburger's Constraints and
Tree Logics. Research report 08-2002, LIF, Marseille, France, June 2002. Available at
http://www.lim.univ-mrs.fr/LIF/Rapports/08-2002-Lugiez-DalZilio.html.

[11] A. Brown, M. Fuchs, J. Robie, and P. Wadler. MSL: A model for W3C XML schema.
In WWW 10, May 2001.

[12] R. Amadio and L. Cardelli. Subtyping recursive types. ACM-TOPLAS, 15(4):575�631,
1993.

[13] H. Comon, M. Dauchet, F. Jacquemard, S. Tison D. Lugiez, and M. Tommasi. Tree
Automata and their application. (to appear as a book), 1999. Available at http:

//www.grappa.univ-lille3.fr/tata/.

RR n 4631

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

