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Étienne LOZES1

LIP, ENS Lyon – France

Abstract

The Ambient Logic (AL) has been proposed for expressing spatial properties of processes
of the Mobile Ambient calculus (MA). Restricting both the calculus and the logic to their
static part yields static ambients (SA) and the static ambient logic (SAL), that form a model
for queries about semistructured data. SAL also includes the non-standard fresh quantifier
(I).

This work adresses the questions of expressiveness and minimality of SAL from the
point of view of adjuncts. We define the intensional fragment of the logic (SALint), the
logic without adjuncts, and prove that it captures all the expressiveness of the logic.

We moreover study the question of adjuncts elimination in SAL∀, whereI quantifier
is replaced by the classical∀ quantifier. We conclude with a proof of the minimality of
SALint.

1 Introduction

The Mobile Ambients calculus (MA) [CG98] is a proposal for a new paradigm in
the field of concurrency models. Its originality is to set as data the notion ofloca-
tion, and as notion of computation the reconfiguration of the hierarchy of locations.
The calculus has a spatial part expressing the topology of locations as a labelled
unordered tree with binders, and a dynamic part describing the evolution of this
topology. The basic connectives for the spatial part are0, defining the empty tree,
a[P], defining the tree rooted ata with subtreeP, P | Q for the tree consisting of
the two subtreesP andQ in parallel, and (νn)P for the treeP in which the label (or
name)n has been hidden.

Type systems are commonly used to express basic requirements on programs.
In the case of MA processes, the Ambient Logic, AL [CG00] provides a very flexi-
ble descriptive framework. As for a type system, one may ask a processP to match
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some specificationA, written
P |= A .

The AL approach is however much more intensional than in the case of standard
type systems. Indeed, all the spatial structure of the calculus is reflected in the
logic. For instance, the formulan[A] is satisfied by processes of the formn[P]
with P |= A. AL also handles to the dynamics of computation through the usual^
modality. Finally, AL includesadjunct connectivesfor every spatial construct. For
instance, theguaranteeoperator

A . B

specifies that a process is able to satisfyB whenenever it is put in parallel with any
process satisfyingA. This connective gives a functional flavour to the logic, in
the sense that the formulas may then describe a service offered by the process they
refer to. It has been shown that adjuncts, together with the^ connective, allow one
to express some very intensional properties, and in fact to capture all constructs of
the calculus [San01,HLS02].

Leaving out from MA all capabilities, we get rid of the dynamics of the cal-
culus, working with what we callstatic ambients, SA. The logic may then be
restricted to its spatial part by forgetting thêconnective; we call it thestatic
ambient logic, SAL.

SA, associated to SAL, has appeared to be an interesting model forsemistruc-
tured data[CG01a]. Datas are modeled by unordered labelled trees, where the
binders may represent pointers [CGG03], and the logic is used at the basis for a
language for queries involving such data. For instance, the process

(νptr)(Cardelli[Ambients[ptr[text[0]]]] |Gordon[Ambients[ptr[0]]] )

is a database containing the two authors Cardelli and Gordon with one copy of their
article about Ambients stored at Cardelli’s and linked to Gordon’s. The query

Iptr. ptrr (Cardelli[>] | >)

asks whether the database contains some author named Cardelli.
HereIn.A is the fresh quantification [GP99]. Intuitively, its meaning is “for

almost all namesn, A is true”. This quantification is related toα conversion of
bound names. This is complementary with the spatial connectivenrA that forces
the process to reveal a hidden name by calling itn.

There may be several ways to answer the question “what is SAL able to tell
about data”? A first answer can be to study theseparabilityof the logic, that is
how far the logic can go into distinguishing two datas. This is usually achieved by
characterising the logical equivalence, that is the relation=L relating the datas that
satisfy the same formulas. A more refined answer is to characterise completely the
set of queries that can be formulated, what we call theexpressivenessof the logic.
For this, one may like to compare the formalism at hand with another, standard,
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logic, or to state equivalences in terms of other models for data analysis, such as
automata.

The next question is then “what is really needed” for both separate datas and
express properties?” For instace, in the case of the classical propositionnal logic,
the nandconnective is known to generate all the expressiveness. In SAL, the in-
tensional connectives surely bring some expressive power. For the adjunct connec-
tives, the situation is not so clear. Some formulas clearly make an unefficient use
of ajduncts; for instance, the formulan[0] . n[0] is equivalent to the adjunct-free
formula 0. However, the model-cheking problem for SAL is known to be unde-
cidable [GC03], whereas it is decidable for SALint, the fragment without adjuncts.
This suggests that adjuncts may express non trivial properties, out of the expressive
power of SALint.

This paper study the question of the adjunct elimination in SAL in relation with
the nature of the quantification on formulas. The main contribution establishes the
adjunct elimination in SAL equiped with fresh quantifier (Theorem 5.4), namely
we prove SAL and SALint to be equally expressive. This shows that the adjuncts do
not improve the expressiveness of the logic. In particular, the guarantee operator
A . B does not bring extra expressive power.

This result is derived in two steps. We first establish it for the quantifier-free for-
mulas (Theorem 4.4), and then extend it to fresh-quantified formulas by the use of
prenex forms (Proposition 5.3). To establish the adjunct elimination on quantifier-
free formulas, we first define a notion of intensional bisimilarity, along the lines of
[San01], in which we bound the number of test steps. Then, two properties justify
the encoding: a property we callprecompactness, which expresses finiteness of
behaviours, and the existence of characteristic formulas for the classes of bounded
intensional bisimilarities.

We conclude with two strongly related contributions. First, we prove the ab-
sence of adjunct elimination for SAL∀, that is SAL equiped with classical quantifi-
cation (Theorem 6.1). Then we establish that SALint is minimal (Theorem 7.1), in
the sense that any subfragment of SALint is less expressive.

Related work.
Out of [Mey], this is, to our knowledge, the first result delimiting completely the

expressiveness of a spatial logic. Other works about expressiveness only give some
hints; a first hint has been given about the separation power of AL in [San01]. Other
examples of expressive formulas of AL are shown in [HLS02], such as formulas
for persistence and finiteness.

A compilation result has been derived for a spatial logic for trees without quan-
tification and private names [Mey]. There the target logic includes some new fea-
tures such as Presburger arithmetic, and the source logic includes a form of Kleene
star.

In the present work, the target logic is a sublogic of the original. In this sense,
we also address for the first timeminimalityof a spatial logic, that is the indepence
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of its connectives.
The setting in which we obtain our encoding is rather different in the dynamic

case [HLS02]. There, the presence of adjuncts considerably increases the expres-
sive power of the logic. For instance,. allows one to construct formulas to charac-
terise processes of the formopen n. P, and, using the @ connective, we may define
a formula to capture processes of the formout n. P.

The use of a bounded intensional bisimilarity and the notion of precompactness
is original. Intensional bisimilarity plays an important role in the characterisation
of the separation power of the logic [San01]. Our proof suggests that it is also a
powerful and meaningful concept for the study of expressiveness.

The presence of the. connective in the logic is crucial for decidability issues.
The undecidability of the model-checking of SAL with classical quantification has
been firstly established in [CT01]. Quite unexpected decidability results for spa-
tial logics with. and without quantification were then established in [CYO01] and
[CCG03]. [CCG03] is very related to our purpose; roughly, the decidability result
of [CCG03] relies on finiteness ofprocesses, whereas our encoding exploits finite-
ness ofobservations. Most recently, the undecidability of the model-checking of
SAL has been established [GC03]. This last work study many variations around
SAL, derives also decidability results with. andI, and presents a prenex form
result similar to our.

We introduce SA and the logics we use to reason about data in Sec. 2. We prove
the adjunct elimination for quantifier-free formulas in Sec. 4, based on the notion
of intensional bisimilarity, discussed in Sec. 3. The general result for SAL is then
established in Sec. 5, based on prenex forms. We discuss the adjunct elimination for
SAL∀ in Sec. 6, and show minimality of SALint in Sec. 7; Sec. 8 gives concluding
remarks.

2 Background

In all what follows we assume an infinite setN of names, ranged over byn,m. Tree
terms are defined by the following grammar:

P ::= P | P | n[P] | (νn)P | 0 .

The set fn(P) ⊂ N of free names ofP is defined by saying thatν is the only binder
on trees. We callstatic ambientstree terms quotiented by the smallest congruence
≡ (calledstructural congruence) such that:

P | 0 ≡ P (νn) 0 ≡ 0

(P | Q) | R ≡ P | (Q | R) (νn) m[P] ≡ m[(νn)P] (n , m)

P | Q ≡ Q | P (νn)P | Q ≡ (νn)(P | Q) (n < fn(Q))
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Formulas, ranged over withA,B, . . ., are described by the following grammar:

A ::= A∧A | ¬A | In.A | 0 | A | A | n[A] | nrA

| A .A |A@n | A W n

These formulas formthe static ambient logic, and we callintensional fragmentthe
subset of the formulas not using the connectives., @, andW (ajduncts). We note
them respectively SAL and SALint.

We will say thatA is quantifier-freeif A does not contain anyI quantification.
The set of free names of a formulaA, written fn(A) is the set of names appearing
in A that are not bound by aI quantification.A(n ↔ n′) is the formulaA in
which namesn andn′ are swapped.

Definition 2.1 (Satisfaction) We define the relation|=⊂ (S A× SAL) by induction
on the formula as follows:

• P |= A1 ∧A2 if P |= A1 and P |= A2

• P |= ¬A if P 6|=A
• P |= In.A if ∀n′ ∈ N − (fn(P) ∪ fn(A)), P |= A(n↔ n′)
• P |= A1 | A2 if there is P1,P2 s.t. P≡ P1 | P2 and Pi |= Ai for i = 1,2
• P |= 0 if P ≡ 0
• P |= n[A] if there is P′ such that P≡ n[P′] and P′ |= A
• P |= nrA if there is P′ such that P≡ (νn)P′ and P′ |= A
• P |= A1 .A2 if for all Q such that Q |= A1, P | Q |= A2

• P |= A@n if n[P] |= A
• P |= A W n if (νn)P |= A

We noteA a` B if for all P ∈ S A, P |= A iff P |= B. A context is a formula con-
taining ahole; if C is a context,C[A] stands for the formula obtained by replacing
the hole withA in C. The following property stresses a first difference between
SAL and the∀/∃ version of the logic:

Lemma 2.2 For all A,B, and all contextC, if A a` B, thenC[A] a` C[B].

Remark 2.3

• The formula⊥, that no process satisfies, can be defined as 0∧ ¬ 0. As e.g.
in [CG00], other derived connectors include∨, andI: P satisfiesA I B iff
there existsQ satisfyingA such thatP | Q satisfiesB.

• If P |= A andP ≡ Q, thenQ |= A. Moreover,|= is equivariant, that isP |= A iff
P(n↔ n′) |= A(n↔ n′) for anyn,n′.

• For anyP, there is a characteristic formula (for≡) AP, using the same tree rep-
resentation, such that for allQ, Q |= AP iff Q ≡ P. In particular, two static
ambients are logically equivalent if and only if they are structurally congruent.
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3 Intensional bisimilarity

In this section, we define a notion of partial observation over trees corresponding to
logical testing with a bound on the formulas’ size and on free names. This notion
is an incremental version of the intensional bisimilarity presented in [San01]. We
then derive two determinant results:

• the congruence of the intensional bisimilarity, which roughly says that SALint is
as separative as SAL; as an important consequence, the bisimilarity is proved to
be correct respect to logical equivalence.

• a construction of symbolic sets that represent the classes of bisimilarity by col-
lecting all the necessary information, which will serve for the proofs of next
section.

We assume in the remainder some fixed setN ⊂ N .

3.1 Definition

We now introduce the intensional bisimilarity. Intuitively,'i,N equates processes
that may not be distinguished by logical tests involving at mosti steps where the
names used for the tests are picked inN.

Definition 3.1 (Intensional bisimilarity) We define the family('i,N)i∈N of symetric

relations overSA by induction on i:'0,N
def
= SA× SA, and for any i≥ 1, 'i,N is the

greatest relation such that if P'i,N Q, then the following conditions are verified:

(i) if P ≡ 0 then Q ≡ 0

(ii) for all P1,P2, if P ≡ P1 | P2 then there is Q1,Q2 such that Q≡ Q1 | Q2 with
Pε 'i−1,N Qε, ε = 1,2.

(iii) for all n ∈ N and for all P′, if P ≡ n[P′], then there is Q′ such that Q≡ n[Q′]
and P′ 'i−1,N Q′.

(iv) for all n ∈ N and for all P′, if P ≡ (νn)P′, then there is Q′ such that Q≡ (νn)Q′

and P′ 'i−1,N Q′.

Lemma 3.2 For all i, 'i,N is an equivalence relation.

We shall write SA/'i,N for the equivalence classes induced by'i,N, and range
over equivalence classes withC,C1,C2.

We may observe that the bisimilarities define a stratification of observations
on terms, namely'i′,N′ ⊆'i,N for i ≤ i′ andN ⊆ N′. This may be understood in
a topological setting. Given a fixedN, we consider the ultrametric distance over
models defined byd(P,Q) = 2−i if i is the smallest natural for whichP 6'i,N Q,
andd(P,Q) = 0 if P 'ω,N Q where'ω,N=

⋂
i∈N 'i,N. We call it theN-topology. It

somehow captures the granularity of the logical observations with respect to their
cost.
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3.2 Correction

The key step in proving correction of the intensional bisimilarities with respect to
the logic is their congruence properties for the connectives admittting an adjunct.

Lemma 3.3 If P 'i,N Q, then:

• for all R, P | R'i,N Q | R;
• for all n ∈ N , n[P] 'i,N n[Q];
• for all n ∈ N, (νn)P 'i,N (νn)Q.

Proof. By induction oni. �

Note that the last point cannot be improved: considerN = {n}, P ≡ m1[0],
Q ≡ m2[0]. ThenP '2,N Q, but (νm1)P 6'2,N (νm1)Q. For this reason,'i,N is not a
pure congruence.

We notes(A) the size ofA, defined as the number of its connectives.

Proposition 3.4 (Correction) For all P,Q, i such that P'i,N Q, for all quantifier
free formulaA such that s(A) ≤ i and fn(A) ⊆ N,

P |= A iff Q |= A.

Proof. By induction onA. For the adjuncts, apply the congruence properties of
Lemma 3.3, and for the other connectives use the definition of'i,N. �

3.3 Signature functions

Definition 3.5 (Signature) For i ≥ 1, we set:

(i) zN
i (P) = 0 if P ≡ 0, otherwise¬0

(ii) pN
i (P) = {(C1,C2) ∈ (SA/'i−1,N)2 : P ≡ P1 | P2 and Pi ∈ Ci}

(iii) aN
i (P) = [n,C] if there is P′ s.t. P≡ n[P′], n ∈ N and P∈ C, C ∈ SA/'i−1,N ,

otherwise aNi (P) = noobs, wherenoobs is a special constant.

(iv) rN
i (P) = {(n,C) ∈ N × SA/'i−1,N : ∃P′. P ≡ (νn)P′ and P′ ∈ C}

We callsignature ofPat (i,N) the quadrupletχN
i (P) = [zN

i (P), pN
i (P),aN

i (P), rN
i (P)].

The following lemma says that the signature actually collects all the information
that may be obtained from the bisimilarity tests.

Lemma 3.6 Assume i≥ 1. Then P'i,N Q iff χN
i (P) = χN

i (Q).

4 Adjuncts elimination on quantifier-free formulas

In this section, we show that the quantifier free formulas of SAL have equivalent
formulas in SALint. This result is then extended to all formulas of SAL in the next
section.
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In all what follows, we will assumeN is a finitesubset ofN ; it is intended to
bound the free names of the considered formulas. The encoding result is based on
two key properties:

• Precompactness of theN-topology. In other words, wheni,N are fixed, only a
finite number of scenari may be observed.

• Existence of intensional characteristic formulas for the classes of'i,N.

Lemma 4.1 The codomain ofχN
i is finite.

Proof. We reason by induction oni. First notice that the codomain ofχN
i is:

codomχN
i = {0,¬0} × (SA/'i−1,N)2

× ({noobs}+N×SA/'i−1,N) × (N×SA/'i−1,N)

hencecodomχN
i is finite iff SA/'i−1,N is finite too (here we use thatN is finite). For

i = 1, SA/'0,N = {SA}, henceχN
0 is finite, and so iscodomχN

1 . For i ≥ 2, we have by
inductioncodomχN

i−1 finite. By Lemma 3.6, there is an injection of SA/'i−1,N into
codomχN

i−1, so SA/'i−1,N is finite, and so iscodomχN
i . �

Here is an immediate consequence of Lemma 4.1:

Proposition 4.2 (Precompactness)For all i, the number of classes of'i,N is finite.

These results roughly say that there is only a finite amount of information in the
determination of a given bisimilarity class. The next result makes it more precise:
this information may be collected in a single formula of SALint.

Proposition 4.3 (Characteristic formulas) For any i ∈ N and for any process P,
there is a formulaAi,N

P ∈ SALint such that

∀Q Q |= Ai,N
P ⇔ Q 'i,N P .

Proof. By induction oni. For i = 0, we may takeAi,N
P = >. Then assumei ≥ 1,

and we have formulasAi−1,N
P for all P. This obviously gives a characteristic formula

A
i−1,N
C for any classC of SA/'i−1,N . Let us consider some fixedP. We set

Az = 0 if zN
i (P) = 0, otherwise¬0

Ap =
∧

(C1,C2)∈pN
i (P)A

i−1,N
C1
| A

i−1,N
C2

∧ ¬
∨

(C1,C2)<pN
i (P)A

i−1,N
C1
| A

i−1,N
C2

Aa =


∧

n∈N ¬n[>] if aN
i (P) = noobs

n[Ai−1,N
C ] if aN

i (P) = [n,C]

Ar =
∧

[n,C]∈rN
i (P) nrAi−1,N

C ∧ ¬
∨

[n,C]<rN
i (P) nrAi−1,N

C

A
i,N
P = Az ∧ Ap ∧ Aa ∧ Ar

where the finiteness of the conjunctions and disjunctions is ensured by Lemma 4.1.
ThenQ |= Ai,N

P iff χN
i (Q) = χN

i (P), hence the result. �
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The precompactness property says that if we bound the granularity of the ob-
servations, only finitely many distinct situations may occur. The characteristic for-
mula property says that each of these situations is expressible in the intensional
fragment. The idea of the encoding is then just to logically enumerate all these
possible situations.

Theorem 4.4 For all quantifier-free formulaA ∈ SAL, there is a formula[A] ∈
SALint such that

A a` [A ].

Proof. We define [A] as follows:

[A ]
def
=
∨
A

i,N
C for C ∈ SA/'i,N ,C |= A

for i = s(A) andN = fn(A). The disjunction is finite by Proposition 4.2.P |= [A ]
iff there isQ such thatQ |= A andP 'i,N Q, that is, by Proposition 3.4,P |= A. �

Effectiveness of the encoding:
According to its finiteness, the construction of our proof could seem almost effec-
tive. However, this cannot be the case due to an undecidability result for the model-
checking problem on SAL[GC03]. This is quite surprising, since it misses only an
effective enumeration of the bisimilarity classes to turn the proof in a constructive
way. Moreover, such an enumeration exists forS Awithout name restriction, via
testing sets as defined in [CCG03]. This reveals an unexpected richness ofS A
compared to pure trees.

5 Adjuncts elimination and fresh quantifier

In this section we establish the adjunct elimination for the full SAL. The essential
result that entails this extension is the existence of prenex forms for the fresh quan-
tifier. Intuitively, the fresh quantifier may “float” on the formula without changing
its meaning.

Proposition 5.1 (Correction of ) The term rewriting system defined by the
rules of Fig. 1 conserves the semantic: for any A, B ∈ SAL, if A  B, then
A a` B.
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(∧) (In.A1) ∧ A2  In. (A1 ∧A2) (n < fn(A2))

(¬ ) ¬In.A1  In.¬A1

(|) (In.A1) | A2  In. (A1 | A2) (n < fn(A2))

(.L) (In.A1) . A2  In.
(
(nr> ∧ A1) .A2

)
(n < fn(A2))

(.R) A1 . (In.A2)  In.
(
(nr> ∧ A1) .A2 ) (n < fn(A1))

(Amb) m[In.A]  In.m[A] (m, n)

(@) (In.A)@m In. (A@m) (m, n)

(r) mrIn.A  In.mrA (m, n)

(W) (In.A) Wm In. (A Wm) (m, n)

Fig. 1. Term rewriting system on formulas

Proof. (sketched) We only detail the rule (.L).

P |= (In.A1) .A2

⇔ ∀Q,∀n′ < fn(A1) ∪ fn(Q). Q |= A1(n↔ n′) ⇒ P | Q |= A2

⇔ ∀Q,∀n′ < fn(A1 .A2) ∪ fn(P | Q). Q |= A1(n↔ n′) ⇒ P | Q |= A2

⇔ ∀Q,∀n′ < fn(A1 .A2) ∪ fn(P | Q). Q |= A1(n↔ n′) ⇒ P | Q |= A2(n↔ n′)

⇔ ∀n′ < fn(A1 .A2) ∪ fn(P),

∀Q.n′ < fn(Q) ⇒ Q |= A1(n↔ n′) ⇒ P | Q |= A2(n↔ n′)

⇔ P |= In. (A1 ∧ nr>) .A2

�

Remark 5.2 Some of the rules above (such as (Amb), (¬ ), and a variant of (| L))
have already been presented in [CG01b], under the form of equalities. The same
result is independantly developped in [GC03].

We say that a formulaA is wellformedif every variable bound byI is dis-
tinct from all other (bound and free) variables inA. For such formulas, the side
conditions in are always satisfied.

It is easy to see that defines a terminating rewriting system, and that the
normal forms of the wellformed formulas are formulas in prenex form. Confluence
holds modulo permutation of consecutiveI quantifiers.

Proposition 5.3 (Prenex forms)For any formulaA, there arẽn,A′ such thatA a`
Iñ.A′ andA′ is quantifier free.
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This result directly implies the following generalisation of Theorem 4.4:

Theorem 5.4 (Adjunct elimination) For all formulaA ∈ SAL, there is a formula
[A] ∈ SALint such that

A a` [A ].

Proof. There isA′ quantifier free and ˜n such thatA a` Iñ.A′ by Proposition 5.3.
Then by Lemma 2.2 and Theorem 4.4, we may write

A a` Iñ. A′ a` Iñ. [A′]

�

Example 5.5 : We sketch an example to illustrate how SALint formulas can capture
non trivial properties expressed using the adjuncts. Let

A ::=
(
Hm′.m′[>] I (Hn1.n1[0] | Hn2.n2[Hn3.n3[0]] )

)
Wm@m

whereHn.A (H being thehidden name quantifier[CC01]) stands forIn.nrA.
The prenex form ofA is

Im′,n1,n2,n3.
(
(m′r>∧.m′rm′[>]) I (n1rn1[0] | n2rn2[n3r.n3[0]] )

)
Wm@m

ThenP |= A iff there isQ such that

(νm) m[P] | (νm′) m′[Q] ≡ (νn1)(νn2)(νn3)(n1[0] | n2[n3[0]] )

The only solutions of this equation areP ≡ 0 or P ≡ (νn3)n3[0]. In other words,A
is equivalent toB = 0∨ Hn3.n3[0].

6 Adjuncts elimination and classical quantifiers

In this section we consider a variant of SAL. Instead of fresh quantified formulas,
we consider formulas quantified on names of the form∀x.A and∃x.A with the
natural semantic:

P |= ∀x.A if ∀n ∈ N . P |= A{n/x}

Let note SAL
∀

int the intensional fragment with the classical quantification. We
ask the question of adjuncts elimination for extensions of this logic. The undecid-
ability result of [CT01] implies that there is no effective adjunct elimination for
SAL

∀

int + {.}. We establish now a more precise result:

Theorem 6.1 (Adjuncts expressivity inSAL
∀

int) SAL
∀

int + {.}, SAL
∀

int + {@} and
SAL

∀

int + {W} are strictly more expressive thanSALint.
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The proof of this theorem is based on the following observation. In any of the
considered extension, this is possible to define a formulaA such that

P |= A iff ] fn(P) ≤ 1(1)

For the. and @ connectives, we may first encode the formulan = mas(n[>] ∧
¬m[>]) . ⊥ and (n[>])@m. Then (1) is satisfied by the formula

∃x. ∀y. (¬ yr>)→ x = y

For theW connective, there is a direct formula satisfying (1):

∃x. (∀y.yr>) W x

However, SAL
∀

int cannot bound the number of free names of its model. More
precisely,

Proposition 6.2 There is no formula inSAL
∀

int that satisfies (1).

The proof of this proposition is quite technical and given in appendix.

7 Minimality

In this section, we show minimality w.r.t. expressive power of SALint. Our result
follows from several technical lemmas that are given in appendix.

Theorem 7.1 (Minimality) SALint is a minimal logic, that is all fragments ofSALint

are less expressive.

Proof (Sketch) We show that for each connectiveκ, the logic resulting from the
removal ofκ is stricly less expressive than SALint. We give an idea of the argument
in each case.

• κ = ∧: then we may not expressn1[n2[0]] ∨ n2[n1[0]].
• κ = ¬ : then we may not express¬nr>, saying thatn occurs free. To prove this,

we remark that for a formulaA without negation, there is a heighth such that
for all P, if P |= A then so does the truncation ofP at heighth, so we may find
a contradiction by considering a process having a deep enough occurrence ofn.

• κ = I: then we may not expressIn.nr¬nr>: P is a model of this formula iff
there isn,P′ s.t. P ≡ (νn)P′ with n ∈ fn(P′). For N = {n1, . . .nr} we consider
PN = n[n1[0] | . . . | nr [0]] for somen < N. Then for any quantifier free formula
A with fn(A) ⊆ N, P |= A iff (νn)P |= A.

• κ = 0: here we assume we take> instead of 0 as a primitive formula. Then 0 is
not expressible. For this, we remark that for anyA without 0 and forn < fn(A),
0 |= A iff n[0] |= A.

• κ =. |.: the separation power is different. For instance, we may not distinguish
n[0] | n[0] from n[0] | n[0] | n[0].

• κ = n[. ]: we may not distinguishn1[n2[0]] from n2[n1[0]].

12
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• κ = nr.: we may not distinguish (νn)n[0] and (νn)n[n[0]].
�

Remark 7.2

• In the proof above, the cases involving the intensional connectives .|. , n[. ] and
nr. are treated by showing that theseparation powerof the logic is reduced.
This entails a loss in terms of expressiveness, since equally expressive logics
have the same separation power.

• SALint is minimal in terms of expressiveness, but as far as separation power is
concerned, the minimal fragment is SALint − {I,¬ ,∧,0}, since for this fragment
logical equivalence coincides with intensional bisimilarity.

• Notice that we do not show that SALint is theuniqueminimal fragment of SAL.
This is far from being obvious. For instance, the fragment SAL− {∧} is surpris-
ingly quite expressive, as the formula

¬In.nr¬nr (Im1.m1rIm2.m2rm1[m2[0]] ) W n1 W n2

shows. This formula is equivalent ton1[n2[0]] ∨ n2[n1[0]], and hence the case
κ = ∧ in the proof of Theorem 7.1 does not apply here. We do not know the
exact expressiveness of this fragment, one could think that it captures any finite
set of processes. The interested reader may want to look for a formula forn1[0]∨
n2[n2[0]] in this fragment.

8 Conclusion

We have established the adjuncts elimination property for SAL, a logic for trees
with binders including the fresh quantifierI. This involves putting a formula in
prenex form and then doing the transformation on the quantifier-free formula. The
adjunct-free fragment SALint turns then to be aminimal logic.

We established the absence of adjunct elimination for the same logic whereI is
replaced by the usual∀ quantifier, whatever adjunct is considered. This result, to-
gether with the difference of the model-checking treatment on pure trees, illustrates
the significant gap existing between both forms of quantification.
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A Proof of Theorem 7.1 (minimality)

We detail the removal of each connective in the minimality proof for SALint. Some
connectives are coined‘expressive’, in the sense that removing them hinders the
expressive power of the logic, others are‘separative’, because their removal affects
the separation power (and hence expressiveness) of the logic.

A.1 ∧ is expressive

We noteP2(N) = {{n1,n2} : n1 , n2}. We noteKn = {{n,m} : m , n}. We say that
K ⊆ P2(N) is cofinite if there isN ⊆ N , N finite, such that for alln1,n2 < N, if
n1 , n2 then{n1,n2} ∈ K. We may remark thatK1,K2 are cofinite iff K1 ∩ K2 is
cofinite, andK is cofinite iff K − Kn is cofinite.

Lemma A.1 AssumeA is a formula ofSALint − {∧} such that06|=A. We set

KA
def
= { {n1,n2} : n1 , n2, n1[n2[0]] |= A and n2[n1[0]] |= A }.

Then either KA = ∅ or KA is cofinite.

Proof. By induction onA:

• A = In.A1. Then06|=A1, and for anyn1,n2 s.t. n1 , n,n2 , n andn1 , n2,
{n1,n2} ∈ KA1 iff {n1,n2} ∈ KA1. That isKA − Kn = KA1 − Kn.

• A = 0: 0 |= A.
• A = ¬0: thenKA = P2

• A = A1 | A2: since06|=A, we may assume by symetry that06|=A1. If also06|=A2,
thenKA = ∅. Otherwise,KA = KA1.

• A = A1 || A2: since06|=A, 06|=A1 and06|=A2. thenKA = KA1 ∩ KA2.
• A = n[A1]: thenKA = ∅.
• A = ¬n[A1]: thenP2(N) − Kn ⊆ KA, soKA is cofinite.
• A = nrA1: then06|=A1, andKA − Kn = KA1 − Kn.
• A = ¬nrA1: then06|=A1, andKA − Kn = K¬A1 − Kn.

�

Lemma A.2 Let n1,n2 be two distinct names. Then there is no formulaA ∈
SALint − {∧} equivalent to n1[n2[0]] ∨ n2[n1[0]] .

Proof. By absurd: if there is such a formulaA, then06|=A. Then by Lemma A.1
]KA , 1, and the contradiction. �

Remark: Surprisingly, there is a formula in SALint−{∧} equivalent ton1[0]∨n2[0].
This is

¬n1r¬n2[0] || ¬n2r¬n1[0]

15
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A.2 ¬ is expressive

Definition A.3 We define the truncation at heighth ∈ N ast0(P) = 0, and

th((νñ)(n1[P1] | . . . | nr [Pr ])) = (νñ)(n1[th−1(P1)] | . . . | nr [th−1(Pr)]).

Note that fn(th(P)) ⊆ fn(P).

Lemma A.4 If A is a formula without¬ , s(A) ≤ h and P|= A, then th(P) |= A.

Proof. By induction onA:

• A = A1 ∧A2: then by inductionth(P) |= A1, th(P) |= A2, soth(P) |= A1 ∧A2.
• A = In.A1: then there isn′ < fn(P) s.t. P |= A1(n ↔ n′). By induction

th(P) |= A1(n↔ n′), n′ < fn(th(P)), soth(P) |= In.A1.
• A = 0: thenth(P) ≡ P ≡ 0
• A = A1 | A2: thenP ≡ P1 | P2 with Pε |= Aε, and by inductionth(Pε) |= Aε, so

th(P) |= A.
• A = n[A1]: thenP ≡ n[P1] andP1 |= A1. By induction,th−1(P1) |= A1, and so

th(P) |= A.
• A = nrA1: thenP ≡ (νn)P1 with P1 |= A1. Then by inductionth(P1) |= A1, so

th(P) |= A.
�

Lemma A.5 There is no formulaA ∈ SALint − {¬ } equivalent to¬nr⊥.

Proof. SupposeA exists, and takeh = s(A). We noteP ≡ m[m[. . .m[0] . . .]] and
Q ≡ m[m[. . .m[n[0]] . . .]] a nesting ofh ambientsm, for somem, n. ThenQ |= A,
P6|=A, andP ≡ th(Q), which contradicts Lemma A.4 �

A.3 I is expressive

For N = {n1, . . .nr}, we setPn
N = n[n1[0] | . . . | nr [0]].

Lemma A.6 Assume some finite set of names N and a quantifier free formulaA

such thatfn(A) ⊂ N, and n< N. Then

Pn
N |= A iff (νn)Pn

N |= A

Proof. By induction onA:

• the casesA = A1 ∧A2, andA = ¬A1, are straightforward.
• if A = 0: then none of the two processes satisfiesA.
• if A = A1 | A2. Assume first thatPn

N |= A. By symmetry, we may assume
Pn

N |= A1 and0 |= A2. So (νn)Pn
N |= A1 by induction, and (νn)Pn

N |= A. If we
assume (νn)Pn

N |= A, we may do the same reasoning.
• A = m[A1]: none ofPn

N, (νn)Pn
N does satisfyA.

16



LOZES

• A = mrA1: thenm ∈ fn(A) ⊆ N, hence none ofPn
N, (νn)Pn

N does satisfyA.
�

Lemma A.7 There is no formulaA ∈ SALint − {I} equivalent toIn.nrnr⊥.

Proof. By absurd, letA be such a quantifier free formula, and{n1, . . . ,nr} = fn(A).
ThenPn

N 6|=A, so (νn)P6|=A, by Lemma A.6, and the contradiction. �

A.4 0 is expressive

In this case, the logic is enriched with> in order to have a 0-ary connector.

Lemma A.8 LetA be a formula without0, and n< fn(A). Then

0 |= A iff n[0] |= A

Proof. We reason by induction onA

• A = >,A = A1 ∧A2,A = ¬A1 : straightforward.
• A = Im.A1 : We assume without loss of generalitym , n. If 0 |= Im.A1,

then 0 |= A1. n[0] |= A1 by induction, son[0] |= In.A1. Conversely, if
n[0] |= Im.A1, thenn[0] |= A1, so0 |= A1 by induction, and then0 |= In.A1.

• if A = A1 | A2. Assume first that0 |= A1 | A2. Then0 |= A1 ∧ A2, hence
by inductionn[0] |= A1, andn[0] |= A1 | A2. If 06|=A1 | A2, then we may
assume by symmetry that06|=A1. Assume by absurd thatn[0] |= A1 | A2. Then
n[0] |= A1 and0 |= A2. By induction0 |= A1 and the contradiction.

• if A = m[A1]. Thenm, n by hypothesis, and both06|=A andn[0] 6|=A.
• if A = mrA1, m , n by hypothesis. If0 |= A, then0 |= A1, and by induction

n[0] |= A1 andn[0] |= A. Conversely, ifn[0] |= A, thenn[0] |= A1, and0 |= A1

so0 |= A by induction.
�

Lemma A.9 There is no formulaA ∈ SALint − {0} equivalent to0.

Proof. By absurd, ifA is such a formula ann < fn(A), then by Lemma A.8,
n[0] |= A and the contradiction. �

A.5 |,n[. ] ,nr. are separative

Lemma A.10 If A ∈ SALint − {|}, then P1 = n[0] | n[0] |= A iff P2 = n[0] | n[0] |
n[0] |= A.

Proof. By absurd, suppose there exists a formulaA telling apartP1 from P2, take
a minimal suchA, and reason by case analysis onA.

• the casesA = A1 ∧A2,A = ¬A1 andA = ImA1 are straightforward.
• if A = 0, then none ofP1,P2 does satisfyA.

17
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• A = mrA1: if m= n, then none of those processes do satisfyA, otherwise the
process satisfyingA does satisfyA1, andA1 is a smaller separating formula.

• A = m[A1]: none of the two processes do satisfyA.
�

Lemma A.11 If A ∈ SALint − {n[. ]}, then for any names n1,n2, we set P1 =
n1[n2[0]] and P2 = n2[n1[0]] . Then P1 |= A iff P2 |= A.

Proof. As above, by absurd and case analysis on a minimalA:

• the casesA = A1 ∧A2,A = ¬A1 andA = ImA1 are straightforward.
• if A = 0, then none ofP1,P2 do satisfyA.
• A = A1 | A2. We may assume by symmetry thatP1 |= A. Also by symmetry,

we may assumeP1 |= A1 and0 |= A2. If P2 6|=A, thenA1 separatesP1 from P2

and is a smaller formula: contradiction.
• A = mrA1: if m ∈ {n1,n2}, then none of the two processes do satisfyA, oth-

erwise the process satisfyingA also satisfiesA1, andA1 is a smaller separating
formula.

�

Lemma A.12 AssumeA ∈ SALint − {n[. ]}, We set P1 = (νn)n[n[0]] and P2 =

(νn)n[0]. Then P1 |= A iff P2 |= A.

Proof. Again, by absurd and case analysis on a minimalA:

• the casesA = A1 ∧A2,A = ¬A1 andA = ImA1 are straightforward.
• if A = 0, then none ofP1,P2 do satisfyA.
• A = A1 | A2. We may assume by symmetry thatP1 |= A. Also by symmetry,

we may assumeP1 |= A1 and0 |= A2. If P2 6|=A, thenA1 separatesP1 from P2

and is a smaller formula: contradiction.
• A = m[A1]: none ofP1,P2 do satisfyA.

�

B Proof of Proposition 6.2 (∀ quantifier)

In this section, we establish the Proposition 6.2 that is used for the proof of Theo-
rem 6.1. It follows from Lemma B.2, that itself depends on Lemma B.1. Roughly
speaking, the aim of this section is to find some sufficient conditions so that substi-
tutions can be operated on formula side and process side without alterating satis-
faction.

We callthread contexta contextC of the form

C[ P ] ≡ (νñ) n1[. . . nk[ P ] . . .]

with ñ ⊆ {n1, . . . ,nk}. We noten(C)
def
= {n1, . . . ,nk} andd(C)

def
= k. For a formulaA,

we noted(A) the number ofn[. ] connectives.
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Lemma B.1 LetA be a formula ofSAL
∀

int, andC a thread context such that d(C) >
d(A). Let n,m be two names such that{n,m} ∩ n(C) = ∅, and

P
def
= C[ n[0] | m[0] ]

Then P |= A iff P |= A{n/m}.

Proof. By induction on the size ofA:

• the casesA = A1 ∧A2,A = ¬A1, andA = 0 are trivial.
• A = A1 | A2. Assume firstP |= A. Sinced(C) ≥ 1, we may assume by symetry

that0 |= A2 andP |= A1. ThenP |= A1{
n/m} by induction, andP |= A{n/m}. The

reciproque is the same.

• A = a[A1]. Assume firstP |= A. ThenC ≡ a[C′] andP′
def
= C′[n[0] | m[0]] |=

A1. By induction P′ |= A1{
n/m}. Since{n,m} ∩ n(C), a , m, soA{n/m} =

a[A1{
n/m}], andP |= A{n/m}.

Assume nowP |= A{n/m}. Let b = a{n/m}. ThenC ≡ b[C′] and P′
def
= C′[n[0] |

m[0]] |= A1{
n/m}. Thenb ∈ n(C), so b < {m,n}, andb = a. By induction

P′ |= A1, soP |= b[A1] = A.

• A = arA1. Assume firstP |= A. ThenC ≡ (νa)C′ andP′
def
= C′[n[0] | m[0]] |=

A1. Sincen,m are free inP, a , m anda , n. So {n,m} ∩ n(C′) = ∅, and
by induction,P′ |= A1{

n/m}. A{n/m} = arA1{
n/m}, and P |= A{n/m}. The

reciproque is the same.
• A = ∀x.A1. Assume firstP |= A. Let takea ∈ N . ThenP |= A1{

a/x}, and by
inductionP |= A1{

a/x}{
n/m}. Fora , m, this is alsoP |= A1{

n/m}ax. Fora = m,
this requires a bit more. Consider thatP |= A1{

n/x}. ThenP |= A1{
n/x}{

n/m}
by induction. ButA1{

n/x}{
n/m} = (A1{

n/m}{
m/x}){n/m}, so by inductionP |=

A1{
n/m}{

m/x}. HenceP |= A1{
n/m}{

a/x} for all a, that is P |= ∀x.A1{
n/m} =

A{n/m}.
Assume now thatP |= A{n/m}. Let takea ∈ N . ThenP |= A1{

n/m}{
a/x}. If a , m,

this isP |= A1{
a/x}{

n/m}, so by inductionP |= A1{
a/x}. Fora = m, consider that

P |= A1{
n/m}{

n/x}, that is P |= A1{
m/x}{

n/m}, so by inductionP |= A1{
m/x}.

HenceP |= A1{
a/x} for all a, that isP |= A.

�

Lemma B.2 LetA be a formula ofSAL
∀

int, andC a thread context such that d(C) >
d(A). Let n,m be two names such that{n,m} ∩ n(C) = ∅, and moreover m< fn(A).
Let

P1
def
= C[ n[0] | m[0] ] and P2

def
= C[ n[0] | n[0] ]

If P1 |= A, then P2 |= A.

Proof. By induction on the size ofA:

• the casesA = A1 ∧A2,A = A1 ∨A2,A = 0 andA = ¬0 are trivial.
• A = A1 | A2. Sinced(C) ≥ 1, we may assume by symetry that0 |= A2 and

P1 |= A1. ThenP2 |= A1 by induction, andP2 |= A
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• A = A1 || A2. Sinced(C) ≥ 1, P1 |= A1 ∧ A2, 0 |= A1 ∧ A2. By induction,
P2 |= A1 ∧A2, that isP2 |= A

• A = a[A1]. ThenC ≡ a[C′] andC′[n[0] | m[0]] |= A1. By inductionC′[n[0] |
n[0]] |= A1, that isP2 |= A.

• A = ¬a[A1]. Then eitherC is not of the formn[C′], andP2 |= ¬a[A1], or C ≡
n[C′] but C′[n[0] | m[0]] |= ¬A1. Then by inductionC′[n[0] | n[0]] |= ¬A1,
that isP2 6|=a[A1].

• A = arA1. ThenC ≡ (νa)C′ andC′[n[0] | m[0]] |= A1. Sincen,m are free in
P, a < {m,n}, son(C′) ∩ {m,n} = ∅. Then by induction,C′[n[0] | n[0]] |= A1,
andP2 |= A.

• A = ¬arA1. Assume first thata is free inP1. Thena , m sincem < fn(A) by
hypothesis. Soa is also free inP2 andP2 |= A. Assume nowa is fresh forP1

(andP2). Let C′ be such thatC ≡ (νa)C′. ThenC′[n[0] | n[0]] 6|=A1, otherwise
C′[n[0] | m[0]] |= A1 andP |= A. SoP2 6|=arA1.

• A = ∀x.A1. Let takea ∈ N . ThenP1 |= A1{
a/x}, and by inductionP2 |= A1{

a/x}
for a , m. Let take some freshm′. By equivariance,P1(m↔ m′) |= ∀x.A1, so
P1(m↔ m′) |= A1{

m/x}. Applying induction onP1 andA1{
m/x} for m′ instead

of m, we haveP2 |= A1{
m/x}. HenceP |= A1{

a/x} for all a, that isP2 |= ∀x.A1.
• A = ∃x.A1. Let a ∈ N be such thatP1 |= A1{

a/x}. If a , m, then we may
apply induction onA1{

a/x}, and P2 |= A2{
a/x}, that is P2 |= A. Otherwise

P1 |= A1{
m/x}. By Lemma B.1,P1 |= A1{

m/x}{
n/m} = A1{

n/x}{
n/m}, and again

P1 |= A1{
n/x}. Then by induction,P2 |= A1{

n/x}, that isP2 |= A.
�

Proof of Proposition 6.2

Proof. Let assume by absurd we have someA such that

P |= A iff ] fn(P) = 1

Then letC be the thread context of the form (νa)a[. . . a[. ] . . .], andd(C) = d(A)+1.
Let m,n be two fresh names. ThenC[n[0] | m[0]] |= ¬A by definition ofA, so by
Lemma B.2,C[n[0] | n[0]] |= ¬A. Moreover, by definition ofA, C[n[0] | n[0]] |=
A, so the contradiction. �
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