EXPRESS 2003 Preliminary Version

Adjuncts elimination
In the static ambient logic

Etienne LOZES

LIP, ENS Lyon — France

Abstract

The Ambient Logic (AL) has been proposed for expressing spatial properties of processes
of the Mobile Ambient calculus (MA). Restricting both the calculus and the logic to their
static part yields static ambients (SA) and the static ambient logic (SAL), that form a model
for queries about semistructured data. SAL also includes the non-standard fresh quantifier
(V).

This work adresses the questions of expressiveness and minimality of SAL from the
point of view of adjuncts. We define the intensional fragment of the logic {(QAlthe
logic without adjuncts, and prove that it captures all the expressiveness of the logic.

We moreover study the question of adjuncts elimination in $Akherel1 quantifier
is replaced by the classicdl quantifier. We conclude with a proof of the minimality of
SALijnt.

1 Introduction

The Mobile Ambients calculus (MA) [CG98] is a proposal for a new paradigm in
the field of concurrency models. Its originality is to set as data the notitocaf
tion, and as notion of computation the reconfiguration of the hierarchy of locations.
The calculus has a spatial part expressing the topology of locations as a labelled
unordered tree with binders, and a dynamic part describing the evolution of this
topology. The basic connectives for the spatial partCaefining the empty tree,
a[P], defining the tree rooted atwith subtreeP, P | Q for the tree consisting of
the two subtreeB andQ in parallel, and ¥n)P for the treeP in which the label (or
name)n has been hidden.

Type systems are commonly used to express basic requirements on programs.
In the case of MA processes, the Ambient Logic, AL [CGO0O] provides a very flexi-
ble descriptive framework. As for a type system, one may ask a prédessatch
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some specificatiorf, written
PE A.

The AL approach is however much more intensional than in the case of standard
type systems. Indeed, all the spatial structure of the calculus is reflected in the
logic. For instance, the formula[.A] is satisfied by processes of the fomjP]

with P = A. AL also handles to the dynamics of computation through the usual
modality. Finally, AL includesadjunct connectivefor every spatial construct. For
instance, thguaranteeoperator

A> B

specifies that a process is able to sati8fyhenenever it is put in parallel with any
process satisfyingd. This connective gives a functional flavour to the logic, in
the sense that the formulas may then describe a serffieeed by the process they
refer to. It has been shown that adjuncts, together witktthennective, allow one

to express some very intensional properties, and in fact to capture all constructs of
the calculus/[San(1,HLSD?].

Leaving out from MA all capabilities, we get rid of the dynamics of the cal-
culus, working with what we calstatic ambientsSA. The logic may then be
restricted to its spatial part by forgetting tke connective; we call it thestatic
ambient logi¢ SAL.

SA, associated to SAL, has appeared to be an interesting modsdrfustruc-
tured dataJCGOla]. Datas are modeled by unordered labelled trees, where the
binders may represent pointers [CGG03], and the logic is used at the basis for a
language for queries involving such data. For instance, the process

(vptr)(Cardellif Ambientptr[tex{0]]]] | Gordoq Ambient§ptr[Q]]])

is a database containing the two authors Cardelli and Gordon with one copy of their
article about Ambients stored at Cardelli's and linked to Gordon’s. The query

WNptr. ptr® (Cardelli[ T] | T)

asks whether the database contains some author named Cardelli.

Herelin. A is the fresh quantification [GP99]. Intuitively, its meaning is “for
almost all name®, A is true”. This quantification is related @ conversion of
bound names. This is complementary with the spatial connea§ivéd that forces
the process to reveal a hidden name by calling it

There may be several ways to answer the question “what is SAL able to tell
about data™ A first answer can be to study fieparabilityof the logic, that is
how far the logic can go into distinguishing two datas. This is usually achieved by
characterising the logical equivalence, that is the relatiorelating the datas that
satisfy the same formulas. A more refined answer is to characterise completely the
set of queries that can be formulated, what we callekgressiveness the logic.
For this, one may like to compare the formalism at hand with another, standard,
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logic, or to state equivalences in terms of other models for data analysis, such as
automata.

The next question is then “what is really needed” for both separate datas and
express properties?” For instace, in the case of the classical propositionnal logic,
the nand connective is known to generate all the expressiveness. In SAL, the in-
tensional connectives surely bring some expressive power. For the adjunct connec-
tives, the situation is not so clear. Some formulas clearly make afficiapt use
of ajduncts; for instance, the formutg0] > n[0] is equivalent to the adjunct-free
formula 0. However, the model-cheking problem for SAL is known to be unde-
cidable [GCO03], whereas it is decidable for SALthe fragment without adjuncts.

This suggests that adjuncts may express non trivial properties, out of the expressive
power of SALy;.

This paper study the question of the adjunct elimination in SAL in relation with
the nature of the quantification on formulas. The main contribution establishes the
adjunct elimination in SAL equiped with fresh quantifier (Theofenj 5.4), namely
we prove SAL and SAk; to be equally expressive. This shows that the adjuncts do
not improve the expressiveness of the logic. In particular, the guarantee operator
A B does not bring extra expressive power.

This resultis derived in two steps. We first establish it for the quantifier-free for-
mulas (Theorerp 4]4), and then extend it to fresh-quantified formulas by the use of
prenex forms (Propositidn 5.3). To establish the adjunct elimination on quantifier-
free formulas, we first define a notion of intensional bisimilarity, along the lines of
[San01], in which we bound the number of test steps. Then, two properties justify
the encoding: a property we cagltecompactnessvhich expresses finiteness of
behaviours, and the existence of characteristic formulas for the classes of bounded
intensional bisimilarities.

We conclude with two strongly related contributions. First, we prove the ab-
sence of adjunct elimination for SA[ that is SAL equiped with classical quantifi-
cation (Theorer 6]1). Then we establish that Ak minimal (Theoren 7.11), in
the sense that any subfragment of SAILS less expressive.

Related work.

Out of [Mey], this is, to our knowledge, the first result delimiting completely the
expressiveness of a spatial logic. Other works about expressiveness only give some
hints; a first hint has been given about the separation power of AL in [San01]. Other
examples of expressive formulas of AL are shown in [HL'S02], such as formulas
for persistence and finiteness.

A compilation result has been derived for a spatial logic for trees without quan-
tification and private names [Mey]. There the target logic includes some new fea-
tures such as Presburger arithmetic, and the source logic includes a form of Kleene
star.

In the present work, the target logic is a sublogic of the original. In this sense,
we also address for the first timm@nimality of a spatial logic, that is the indepence
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of its connectives.

The setting in which we obtain our encoding is rathdfedent in the dynamic
case[[HLSOR]. There, the presence of adjuncts considerably increases the expres-
sive power of the logic. For instanceallows one to construct formulas to charac-
terise processes of the foropen n. P, and, using the @ connective, we may define
a formula to capture processes of the faratn. P.

The use of a bounded intensional bisimilarity and the notion of precompactness
is original. Intensional bisimilarity plays an important role in the characterisation
of the separation power of the logic [San01]. Our proof suggests that it is also a
powerful and meaningful concept for the study of expressiveness.

The presence of theconnective in the logic is crucial for decidability issues.
The undecidability of the model-checking of SAL with classical quantification has
been firstly established in [CTD1]. Quite unexpected decidability results for spa-
tial logics with> and without quantification were then established in [CYO01] and
[CCGO03]. [CCGO3] is very related to our purpose; roughly, the decidability result
of [CCGO03] relies on finiteness @irocesseswvhereas our encoding exploits finite-
ness ofobservations Most recently, the undecidability of the model-checking of
SAL has been established [GCO03]. This last work study many variations around
SAL, derives also decidability results withand 1, and presents a prenex form
result similar to our.

We introduce SA and the logics we use to reason about data in|Sec. 2. We prove
the adjunct elimination for quantifier-free formulas in S¢c. 4, based on the notion
of intensional bisimilarity, discussed in Sg¢. 3. The general result for SAL is then
established in Sec] 5, based on prenex forms. We discuss the adjunct elimination for
SAL" in Sec| 6, and show minimality of SAk in Sec|7; Sed.|8 gives concluding
remarks.

2 Background

In all what follows we assume an infinite g¢tof names, ranged over oym. Tree
terms are defined by the following grammar:

P .= P|PInP]|(Wn)P]|O.
The set fnP) c N of free names oP is defined by saying thatis the only binder

on trees. We cabtatic ambientsree terms quotiented by the smallest congruence
= (calledstructural congruencesuch that:

P|0O=P (vn)0 =0
PIQIR=PI(QIR (vn)m[P] = m{(vn)P] (n#m)
PIQ=QIP OGP 1 Q = (v)(P | Q) (n¢fn(Q)
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Formulas, ranged over witf, 8, . . ., are described by the following grammar:

A= ANA|-A|INNA|O0|A| A |n[A] | N®A
| A> A |AG@N | AN

These formulas fornthe static ambient logiand we calintensional fragmenthe
subset of the formulas not using the connective®, ands (ajduncts). We note
them respectively SAL and SA.

We will say thatA is quantifier-freef A does not contain anyl quantification.
The set of free names of a formuf@, written fn(A) is the set of names appearing
in A that are not bound by Bl quantification. A(n < ') is the formulaA in
which names andn’ are swapped.

Definition 2.1 (Satisfaction) We define the relatiog c (S Ax SAL) by induction
on the formula as follows:

e PE ALNAIP E Arand P E A,

cPE-AIfPREA

« P E VNnAIfYY e N - (fIn(P) Ufn(A)), P E A(nh - ')

e PE A | AsifthereisR,Pys.t. P=Py|P,and R E A fori=1,2
«PEOIfP =0

« P E n[A] ifthereis Psuchthat P= n[P]Jand P £ A

e P E n®eAifthereis Psuchthat P= (yn)P and P E A

e PE AvxAsifforall Qsuchthat QF A, P Q E A

« P E A@NIfN[P] E A

e PE Aonif(vn)P E A

We noteA 4 Bifforall Pe SAPE Aiff P E B. A context is a formula con-
taining ahole if C is a contextC[.A] stands for the formula obtained by replacing

the hole withA in C. The following property stresses a firstfdrence between
SAL and thev/3 version of the logic:

Lemma 2.2 For all A, B, and all context, if A 4+ B, thenC[A] 4+ C[B].

Remark 2.3

« The formula.L, that no process satisfies, can be defined as-0. As e.g.
in [CGOQ], other derived connectors incluge and»: P satisfiesA » B iff
there exists) satisfyingA such thatP | Q satisfiesB.

o If PE AandP = Q, thenQ E A. Moreover = is equivariant that isP E A iff
P(n & ') E A(n < ) for anyn, n'.

« For anyP, there is a characteristic formula (fa) Ap, using the same tree rep-
resentation, such that for &), Q £ Ap iff Q = P. In particular, two static
ambients are logically equivalent if and only if they are structurally congruent.
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3 Intensional bisimilarity

In this section, we define a notion of partial observation over trees corresponding to
logical testing with a bound on the formulas’ size and on free names. This notion

Is an incremental version of the intensional bisimilarity presented in [San01]. We

then derive two determinant results:

« the congruence of the intensional bisimilarity, which roughly says thats&L
as separative as SAL; as an important consequence, the bisimilarity is proved to
be correct respect to logical equivalence.

« a construction of symbolic sets that represent the classes of bisimilarity by col-
lecting all the necessary information, which will serve for the proofs of next
section.

We assume in the remainder some fixedéet N.

3.1 Definition

We now introduce the intensional bisimilarity. Intuitively, y equates processes
that may not be distinguished by logical tests involving at mateps where the
names used for the tests are pickedin

Definition 3.1 (Intensional bisimilarity) We define the famikg; \)icy Of Symetric

relations overSA by induction on i:zo,Nd:ef SA X SA, and for any i> 1, ~  is the
greatest relation such that if B; y Q, then the following conditions are verified:

(i) ifP = 0thenQ=0
(i) forall Py, P,, if P = Py | P, then there is @ Q, such that Q= Q; | Q. with
Ps =i-1N Qa e=12.
(i) foralln e N and for all P, if P = n[P’], then there is Qsuch that Q= n[Q’]
and P =i_1N Q’.
(iv) foralln € N andforall P, if P = (vn)P’, then there is Qsuch that Q= (vn)Q’
and P ~i_1N Q’.

Lemma 3.2 For all i, =~ is an equivalence relation.

We shall write SA.., for the equivalence classes inducedsy;, and range
over equivalence classes withC,, C,.

We may observe that the bisimilarities define a stratification of observations
on terms, namely; » C~jy fori < i” andN € N’. This may be understood in
a topological setting. Given a fixeld, we consider the ultrametric distance over
models defined bg(P,Q) = 27 if i is the smallest natural for whicR #;y Q,
andd(P,Q) = 0 if P ~,n Qwhere~, = Niay ~in. We call it theN-topology. It
somehow captures the granularity of the logical observations with respect to their
cost.
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3.2 Correction

The key step in proving correction of the intensional bisimilarities with respect to
the logic is their congruence properties for the connectives admittting an adjunct.
Lemma 3.3 If P ~;\ Q, then:

« forallR, PR~y Q| R;

« forallne N, n[P] = NQI;

« forallne N, (vn)P =y (vn)Q.

Proof. By induction oni. m|

Note that the last point cannot be improved: consiet {n}, P = my[Q],
Q = mp[0]. ThenP =, Q, but (ymy)P #,n (vmy)Q. For this reasors; v is not a
pure congruence.

We notes(A) the size ofA, defined as the number of its connectives.

Proposition 3.4 (Correction) For all P, Q,i such that P~; y Q, for all quantifier
free formula#A such that §A) <iandfn(A) € N,

PEA if QE®A.

Proof. By induction onA. For the adjuncts, apply the congruence properties of
Lemmg 3.8, and for the other connectives use the definitien of O

3.3 Signature functions

Definition 3.5 (Signature) Fori > 1, we set:
(i) ZY(P) = 0if P = 0, otherwise-0
(i) pN(P) = {(C1,C) € (SA~, ., )? : P=Py|Pand R e Cj}

(i) aN(P) = [n,C]ifthereis Ps.t. P=n[P],ne Nand Pe C,C € SA.. ,,,
otherwise &(P) = noobs, wherenoobs is a special constant.

(iv) rN(P)={(n,C)e NxSA. ,, :3P. P=(vn)P’and P € C}
We callsignature of at (i, N) the quadruplet N (P) = [ZY(P), pM(P), a"(P), rN(P)].

The following lemma says that the signature actually collects all the information
that may be obtained from the bisimilarity tests.

Lemma 3.6 Assume & 1. Then P~y Q if xN(P) = xN(Q).

4 Adjuncts elimination on quantifier-free formulas

In this section, we show that the quantifier free formulas of SAL have equivalent
formulas in SAL. This result is then extended to all formulas of SAL in the next
section.
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In all what follows, we will assum& is a finitesubset ofN; it is intended to
bound the free names of the considered formulas. The encoding result is based on
two key properties:

« Precompactness of thé-topology. In other words, wheinN are fixed, only a
finite number of scenari may be observed.

« Existence of intensional characteristic formulas for the classeg\of
Lemma 4.1 The codomain of is finite.

Proof. We reason by induction ain First notice that the codomain gf is:
codomy = {0,-0} x (SA.,,)* X ({noobs}+NxSA.. ) x (NxSA.. )

hencecodomy! is finite iff SA,-, ,, is finite too (here we use that is finite). For
i =1, SA.,, = {SA}, henceyy is finite, and so isodomy)'. Fori > 2, we have by
inductioncodomy*, finite. By Lemm, there is an injection of A  into
codomy',, so SA., ,, is finite, and so isodomy?\. O

Here is an immediate consequence of Lemima 4.1:
Proposition 4.2 (Precompactness}or all i, the number of classes ef \ is finite.

These results roughly say that there is only a finite amount of information in the
determination of a given bisimilarity class. The next result makes it more precise:
this information may be collected in a single formula of SAL

Proposition 4.3 (Characteristic formulas) For any i € N and for any process P,
there is a formulaAy" € SAL;y such that

/6] QF AN & ~n P.

Proof. By induction oni. Fori = 0, we may takefﬂiF’,N = T. Then assume> 1,
and we have formula%(',;l*'\‘ for all P. This obviously gives a characteristic formula
AN for any clas<C of SA,. .. Let us consider some fixeRl We set

A, = 0if 2Y(P) = 0, otherwise-0
Ap = Nercant® Ae, " 1A, A = Viec® Ae, | A,
7 Anen = N[T] if @¥(P) = noobs

a— .

nAc™M if a¥(P) = [n,C]

Ar = AinclerNp) n®ﬂic_1’N A = VinclerNe) n®ﬂi§1’N
AN = A, AN Ay A Aa A Ay
where the finiteness of the conjunctions and disjunctions is ensured by Lemma 4.1.
ThenQ E A" iff xN(Q) = xN(P), hence the result. O
8
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The precompactness property says that if we bound the granularity of the ob-
servations, only finitely many distinct situations may occur. The characteristic for-
mula property says that each of these situations is expressible in the intensional
fragment. The idea of the encoding is then just to logically enumerate all these
possible situations.

Theorem 4.4 For all quantifier-free formulaA € SAL, there is a formuld A] €
SALj,: such that

A A4 [A].

Proof. We define [A] as follows:
[A] & \/ A forCeSAL,.CEA

fori = s(A) andN = fn(A). The disjunction is finite by Propositipn 4.R.= [ A]
iff there isQ such thaQ = A andP =~y Q, that is, by Proposition 3£ £ A. O

Effectiveness of the encoding

According to its finiteness, the construction of our proof could seem alnfiest-e

tive. However, this cannot be the case due to an undecidability result for the model-
checking problem on SALIGCO03]. This is quite surprising, since it misses only an
effective enumeration of the bisimilarity classes to turn the proof in a constructive
way. Moreover, such an enumeration exists $ohwithout name restriction, via
testing sets as defined in [CCGO03]. This reveals an unexpected richn&sA of
compared to pure trees.

5 Adjuncts elimination and fresh quantifier

In this section we establish the adjunct elimination for the full SAL. The essential
result that entails this extension is the existence of prenex forms for the fresh quan-
tifier. Intuitively, the fresh quantifier may “float” on the formula without changing

its meaning.

Proposition 5.1 (Correction of w») The term rewriting system» defined by the
rules of Fig.[]1 conserves the semantic: for anyBAe SAL, if A ~» B, then
A 4+ B.
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(A (NMn.A) A Az~ VI (A A Ap) (n ¢ fn(Ay))
(=) - Un. A; ~» Nn. = A,
() (In.Ay) | A ~ V. (A | Ay) (n ¢ fn(A2))

(kL) (Nn.Ay) > Ay ~» Un. ((n®T A Ay >ﬂ2) (n ¢ fn(Ay))
(R A (Un.Ap) ~ VIn (M®T A Ay) > Az) (n ¢ in(AL))

(Amb mn. A] ~ VIn. m[A] (m#n)
(@) Nn. A)@m ~» UIn. (A@m) (m=#n)
(®) MmN, A ~» Nn. mMRA (m=#n)
() (Nn. A) © M ~» . (A S m) (m#n)

Fig. 1. Term rewriting system on formulas

Proof. (sketched) We only detail the rulel().

P E (n.A)> A
oV, VN ¢ in(A)Un(Q). QF Ax(nen) = PIQE A
o VO,V ¢ iIn(Ay» A)Un(P| Q). QF Ai(ne-n) = P|QE A
o VQ, VN ¢ In(Axs A)UM(P| Q). QF Ai(ne— ') = P|QE Axn < n')
o v ¢ fn(Ay > Ay) U In(P),
V. ¢f(Q) = QF Aln o n) = P|QE Axn & )
o P E WUn (AL A N®T) > Ay

O

Remark 5.2 Some of the rules above (such as1b, (- ), and a variant of|(L))
have already been presented|in [CGO01b], under the form of equalities. The same
result is independantly developped/in [GCO03].

We say that a formuleA is wellformedif every variable bound byl is dis-
tinct from all other (bound and free) variablesd For such formulas, the side
conditions in~» are always satisfied.

It is easy to see that» defines a terminating rewriting system, and that the
normal forms of the wellformed formulas are formulas in prenex form. Confluence
holds modulo permutation of consecutidequantifiers.

Proposition 5.3 (Prenex forms) For any formulaA, there arei, A’ such thatA -
M. A" and A’ is quantifier free.

10
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This result directly implies the following generalisation of Theofem 4.4:

Theorem 5.4 (Adjunct elimination) For all formulaA € SAL, there is a formula
[A] € SAL;, such that

A 4 [A]

Proof. There isA’ quantifier free ane Such thatA -+ Nh. A’ by Propositior 53.
Then by Lemma 2]2 and Theor¢m}4.4, we may write

A 4+ VALA 4 WA [A]

Example 5.5 : We sketch an example to illustrate how Saformulas can capture
non trivial properties expressed using the adjuncts. Let

A = (Hrrf.m’[‘r] » (Hny. ny[O] | Hny. ny[HN3. n3[0]]))®m@m

whereHn. A (H being thehidden name quantifigCC01]) stands foin. n®.A.
The prenex form ofA is

WY, Ny, g, N ((M@T A mT@M[T]) » (m®[0] | n®nz[ns®. ns[0]])) © m@m

ThenP E A iff there isQ such that

(vmymP] | () m[Q] = (vn)(vnz)(vng)(me[0] | nz[Ns[O]])

The only solutions of this equation alre= 0 or P = (vn3)n3[0]. In other words,A
Is equivalent ta8 = 0 v Hng. n3[0].

6 Adjuncts elimination and classical quantifiers

In this section we consider a variant of SAL. Instead of fresh quantified formulas,
we consider formulas quantified on names of the febmA and Ax. A with the
natural semantic:

PE VXA if Yne N. P E A"/

Let note SAL:rIt the intensional fragment with the classical quantification. We
ask the question of adjuncts elimination for extensions of this logic. The undecid-
ability result of [CTO1] implies that there is ndfective adjunct elimination for
SAL?nt + {>}. We establish now a more precise result:

Theorem 6.1 (Adjuncts expressivity inSAL;{nt) SAL?nt + {»}, SAL?nt + {@} and
SAL;, + {S} are strictly more expressive th&@AL.

11



LOZES

The proof of this theorem is based on the following observation. In any of the
considered extension, this is possible to define a forifutaich that

(1) PEA iff #fP) <1

For the> and @ connectives, we may first encode the formutamas(n[T] A
-m[T])> L and Q[T])@m. Then [1) is satisfied by the formula

X VY. (y®T) - x=Yy
For thes connective, there is a direct formula satisfyipg (1):
X (VY. y®T) O X

However, SAL . cannot bound the number of free names of its model. More
precisely,

Proposition 6.2 There is no formula irSAL?m that satisfies&]l).

The proof of this proposition is quite technical and given in appendix.

7 Minimality

In this section, we show minimality w.r.t. expressive power of ALOur result
follows from several technical lemmas that are given in appendix.

Theorem 7.1 (Minimality) SAL;y is a minimal logic, that is all fragments &AL;y
are less expressive.

Proof (Sketch) We show that for each connectixgthe logic resulting from the
removal ofx is stricly less expressive than SAL We give an idea of the argument
in each case.

e k = A: then we may not express[n,[0]] V ny[n.[0]].
« k = —: then we may not expressn®T, saying thah occurs free. To prove this,
we remark that for a formul&d without negation, there is a heightsuch that

forall P, if P E A then so does the truncation Bfat heighth, so we may find
a contradiction by considering a process having a deep enough occurrance of

« k = W: then we may not expre$$n. n®—-n®T: P is a model of this formulafi
there isn, P’ s.t. P = (vn)P’ with n € fn(P’). ForN = {ny,...n;} we consider
Py = n[ny[0] | ... | n[O]] for somen ¢ N. Then for any quantifier free formula
A with fn(A) € N, P E A iff (vn)P E A.

» k = 0: here we assume we takeinstead of 0 as a primitive formula. Then 0 is
not expressible. For this, we remark that for afiwithout 0 and fom ¢ fn(A),

0 Aiff n[Q] E A.

« k =.|.: the separation power isfterent. For instance, we may not distinguish
n[Q] | n[O] from n[Q] | n[O] | n[O].

« x = n[.]: we may not distinguisim;[n,[0]] from n,[ny[0O]].

12
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* k = N®.: we may not distinguishv)n[0] and (vn)n[n[0]].

Remark 7.2

« In the proof above, the cases involving the intensional connectives|.] and
n®. are treated by showing that tlseparation powenf the logic is reduced.
This entails a loss in terms of expressiveness, since equally expressive logics
have the same separation power.

« SAL;y is minimal in terms of expressiveness, but as far as separation power is
concerned, the minimal fragment is SAl= {1, —, A, 0}, since for this fragment
logical equivalence coincides with intensional bisimilarity.

 Notice that we do not show that SALis theuniqueminimal fragment of SAL.
This is far from being obvious. For instance, the fragment SAl} is surpris-
ingly quite expressive, as the formula

= UIn. n®-n® (Mmy. m@®VIm,. m®my[m,[0]]) o ny o n,

shows. This formula is equivalent t@[n,[0]] Vv ny[ny[0]], and hence the case

k = A in the proof of Theorem 7|1 does not apply here. We do not know the
exact expressiveness of this fragment, one could think that it captures any finite
set of processes. The interested reader may want to look for a formulg@w
ny[Nn,[0]] in this fragment.

8 Conclusion

We have established the adjuncts elimination property for SAL, a logic for trees
with binders including the fresh quantifiet. This involves putting a formula in
prenex form and then doing the transformation on the quantifier-free formula. The
adjunct-free fragment SA| turns then to be eninimallogic.

We established the absence of adjunct elimination for the same logic Where
replaced by the usual quantifier, whatever adjunct is considered. This result, to-
gether with the dference of the model-checking treatment on pure trees, illustrates
the significant gap existing between both forms of quantification.
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A Proof of Theorem([7.1 (minimality)

We detail the removal of each connective in the minimality proof for fASome
connectives are coinedxpressive’ in the sense that removing them hinders the
expressive power of the logic, others &eparative, because their removaffacts
the separation power (and hence expressiveness) of the logic.

A.1 A s expressive

We noteP,(N) = {{ny, Ny} : Ny # ny}. We noteK, = {{n,m} : m # n}. We say that
K C P,(N) is cofinite if there isN € N, N finite, such that for alhy, n, ¢ N, if
ny # N, then{ny, Ny} € K. We may remark thak,, K, are cofinite ff K; N K5 is
cofinite, andK is cofinite ff K — K, is cofinite.

Lemma A.1 AssumeA is a formula ofSAL;,; — {A} such thalOlA. We set

Ka € {{n,ny):ny #n, mno0]] E A and n[m[0]] £ A .

Then either Kz = 0 or K4 is cofinite.

Proof. By induction on#:

« A = Wn.A;. ThenOFEA,, and for anyng, np s.t. ng # n,n; # nandng # ny,
{n1, No} € Ky, iff {ng, Ny} € Kg,. ThatisKg — K, = Kg, — Kp.

e A=0:0F A.
o A=-=0:thenKp =P,

o A=A | Ay sinceOEA, we may assume by symetry tia A, . If alsoOEAy,
thenK4 = 0. OtherwiseK# = Kg,.

A = Ay || Ay sinceOEA, OFEA; andOEA,. thenKg = Kg, N Ka,.
A = n[A,]: thenK4 = 0.

A = = n[A]: thenP,(N) — K, € Kg, SOK4 is cofinite.

A = nN®A;: thenOEA;, andK g4 — K, = Kg, — K.

A = 2 N®A;: thenOFEA;, andK 4 — K, = Ko 4, — K.

O

Lemma A.2 Let n, n, be two distinct names. Then there is no formAac
SALin — {A} equivalent to R[ny[0]] V ny[n[0]].

Proof. By absurd: if there is such a formuld, thenO¥A. Then by Lemma Al
#K 4 # 1, and the contradiction. m|

Remark: Surprisingly, there is a formula in SAk—{A} equivalent ta1,[0] v n,[0].
This is
N ®-nz[0] || = n®—ny[O]
15
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A.2 - is expressive

Definition A.3 We define the truncation at height N asty(P) = 0, and
t(OA)(M[P] [ I [P])) = OA)(Malth-a(P)] T ... I ne[th-a(P]).

Note that fnt,(P)) < fn(P).
Lemma A.4 If Ais aformula without-, (A) < h and PE A, then t(P) E A.

Proof. By induction on#:
s A=A A Ay then by inductioriy(P) E A, th(P) E Ay, SOty(P) E AL A As.

e A = VIn. Ay then there igY ¢ In(P) s.t. P E Ai(n < n’). By induction
th(P) E Au(n & 1), 0" ¢ fn(ta(P)), sotn(P) E Nn. A;.

e A=0:thent,(P)=P=0

e A=A | A thenP = P, | P, with P, E A,, and by induction,(P,) E A., so
th(P) E A.

o A = n[Ay]: thenP = n[P,] andP; E A;. By induction,t,_;(P;) E Ay, and so
th(P) E A.

s A =n®A;: thenP = (vn)P, with P; E A;. Then by induction,(P;) E A;, so
ta(P)  A.
m|

Lemma A.5 There is no formulaA € SAL;y — {— } equivalent to- n®_L.

Proof. SupposeA exists, and také = s(A). We noteP = m[m[...m[0]...]] and
Q= m[m[...m[n[Q]] .. .]] a nesting oth ambientsm, for somem # n. ThenQ E A,
PEA, andP = t,(Q), which contradicts Lemmja A.4 o

A.3 Wis expressive
ForN = {ny,...n;}, we setPy = n[m[0Q] | ... | n;[O]].

Lemma A.6 Assume some finite set of names N and a quantifier free fordiula
such thattn(A) c N, and n¢ N. Then

PR E A F (PR A

Proof. By induction on#:

 the casesA = A; A A,, andA = - Ay, are straightforward.
« if A = 0: then none of the two processes satisftes

o if A = A | A Assume first thaP = A. By symmetry, we may assume
Py E Ay and0  A,. So ¢n)Py, E Ay by induction, andn)Py, E A. If we
assumeyn)Py, E A, we may do the same reasoning.

« A = m[A4]: none of Py, (vn)P}, does satisfyA.
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* A =mBA;: thenm e fn(A) < N, hence none dPy, (vn)Py, does satisfyA.
i

Lemma A.7 There is no formulaA € SAL;y — {1} equivalent td/In. N®N®_L.

Proof. By absurd, letA be such a quantifier free formula, afmd, . . ., n;} = fn(A).
ThenPy[EA, so ¢n)PEA, by Lemmg A.6, and the contradiction. m|

A.4 Qis expressive
In this case, the logic is enriched within order to have a 0-ary connector.

Lemma A.8 LetA be a formula withou®, and n¢ fn(A). Then
O A iff n[0] A

Proof. We reason by induction ol
e A=T,A=A AN Ay, A =~ A, : straightforward.

e A = Mm. A; : We assume without loss of generality= n. If 0 E im. Aj,
then0 E A;. n[0] E A; by induction, son[0] £ WVn.A;. Conversely, if
n[0] E im. Ay, thenn[Q] E A3, so0 E A, by induction, and thef  n. Aj;.

o if A=A, | Ap,. Assume first thad £ A; | A,. ThenO E A, A Ay, hence
by inductionn[0] E Aj, andn[0] E A; | Ay If OFA; | Ay, then we may
assume by symmetry th@§A;. Assume by absurd thaf0] £ A; | A,. Then
n[0] E A; and0 E A,. By induction0 | A; and the contradiction.

o if A =m[A.]. Thenm # n by hypothesis, and bo®iA andn[O]EA.

o if A = MRAL, m# nby hypothesis. 1D E A, then0 E A, and by induction
n[0] E A, andn[0] E A. Conversely, iin[0] £ A, thenn[Q] E A, and0 E A,
so0 E A by induction.

m]

Lemma A.9 There is no formulaA € SAL;,; — {0} equivalent td.

Proof. By absurd, ifA is such a formula am ¢ fn(A), then by Lemma AJ8,
n[0] E A and the contradiction. O

A.5 |,n[.],n®. are separative

Lemma A.10 If A € SALi — {I}, then B = n[0] | n[O] E A iff P, = n[Q] | n[0] |
n[0] E A.

Proof. By absurd, suppose there exists a formdlelling apartP; from P,, take
a minimal suchA, and reason by case analysisd@n
 the casedA = A A Ay, A = = Ay andA = ImA; are straightforward.
« if A =0, then none oP,, P, does satisfyA.
17
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« A =mRA;: if m=n, then none of those processes do sati&fyotherwise the
process satisfyingd does satisfyA;, andA; is a smaller separating formula.

o A = mA4]: none of the two processes do satisty
m|

LemmaA.11 If A € SALyy — {n[.]}, then for any names;m,, we set P =
ny[Ny[0]] and P, = ny[ny[Q]]. Then R E A iff P, E A.

Proof. As above, by absurd and case analysis on a minifal

 the casesA = A A Ay, A = = Ay andA = VImA; are straightforward.
 if A =0, then none oP,, P, do satisfyA.
e A=A | A. We may assume by symmetry tHat E A. Also by symmetry,

we may assum®; £ A; and0 E A,. If PlEA, thenA, separate®; from P,
and is a smaller formula: contradiction.

o A =mMRA;: if me {n, Ny}, then none of the two processes do satigfyoth-
erwise the process satisfyitgy also satisfiesA;, andA; is a smaller separating
formula.

m|

Lemma A.12 AssumeA € SALjy — {n[.]}, We set P = (vn)n[n[0]] and B, =
(vn)n[Q]. Then R E A iff P, E A.

Proof. Again, by absurd and case analysis on a minirial
 the casesAl = A A Ay, A = = Ay andA = VImA; are straightforward.

« if A =0, then none oP,, P, do satisfyA.

e A=A | A. We may assume by symmetry tHat £ A. Also by symmetry,
we may assum®; £ A; and0  A,. If P.lEA, thenA, separate®; from P,
and is a smaller formula: contradiction.

o A= mM[A;]: none ofP,, P, do satisfyA.

B Proof of Proposition[6.2 ( quantifier)

In this section, we establish the Proposition 6.2 that is used for the proof of Theo-
rem[6.]. It follows from LemmA BJ2, that itself depends on Lemima B.1. Roughly
speaking, the aim of this section is to find som#éisient conditions so that substi-
tutions can be operated on formula side and process side without alterating satis-
faction.

We callthread contexa contexiC of the form

C[P] = OA)mi...nP]...]

with i C {ny, ..., ng}. We noten(C) &ef {ny,...,ng andd(C) 'k Fora formula#,
we noted(A) the number of[. ] connectives.
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Lemma B.1 LetA be aformula oSAL?m, andC athread context such thatd) >
d(A). Let n m be two names such thi@t m} N n(C) = 0, and

P < ¢[nl0] | m0]]
Then PE AiffP E A"/ m}.
Proof. By induction on the size ofA:

» the casesA = A A Ay, A = = Ay, andA = 0 are trivial.

e A=A | Ay. Assume firsP E A. Sinced(C) > 1, we may assume by symetry
thatO E A, andP  A;. ThenP E A{"/m} by induction, and® E A{"/m}. The
reciproque is the same.

o A = alA;]. Assume firstP  A. ThenC = a[C’] and P’ & C’'[n[O] | M[O]] E

Ap. By inductionP” E A {"/m}. Since{n,m} N n(C), a # m, SOA{"/m} =
A" /m}], andP E A{"/m}.
Assume nowP £ A{"/m}. Letb = a{"/m). ThenC = b[C’] and P’ £ ¢’[n[0] |
m0]] E A{"/m}. Thenb € n(C), sob ¢ {mn}, andb = a. By induction
P E Ay, soP E b[A;] = A.

s A=a®A;. Assume firsP  A. ThenC = (va)C’ andP’ -4 C’[n[Q] | m[O]] E
Ai. Sincen,m are free inP, a # manda # n. So{n,m} n n(C’) = 0, and
by induction,P” £ A{"/n}. A{"/m} = a®A{"/n}, andP E A{"/n}. The
reciprogue is the same.

e A = VX Ay Assume firsP = A. Let takea € N. ThenP E A{?/«}, and by
inductionP k£ A{3/,{"/m}. Fora # m, this is alsoP £ A{"/m}ax. Fora = m,
this requires a bit more. Consider tHate A{"/x}. ThenP E A"/« H{"/m}
by induction. ButA{"/xH"/m} = (AL"/mH{™/x){"/m}, SO by inductionP E
A"/ H™/x}. HenceP E A{"/m}H?/x} for all a, that isP E VX A" /m} =
A" m}.

Assume now thaP E A{"/m}. Lettakea e N. ThenP & A {"/mH3/«}. If a# m,
this isP E A{?/«}{"/m}, SO by inductiorP = A,{?/4}. Fora = m, consider that
P E A"/mi"/x}, that isP E A{"/xH"/m}, SO by inductionP | A {™/«}.
HenceP E A1{?/4} for all a, that isP | A.

m|

Lemma B.2 LetA be a formula oSAL; ., andC a thread context such that@) >
d(A). Let nm be two names such thigt m} N n(C) = 0, and moreover rg fn(A).
Let

Py E o] Imo]] and R = cIn[o] | n[0]]
If P, £ A, then B E A.

Proof. By induction on the size ofd:

« the casesA = A1 A Ay, A = A1V Ay, A =0andA = =0 are trivial.

e A=A | Ay Sinced(C) > 1, we may assume by symetry thiat= A, and
P; E A;. ThenP, E A; by induction, and; E A
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e A=A || Ay Sinced(C) > 1, P, E A A Ay, 0 E A A Ay, By induction,
P, E AL A A, that iSPz EA

e A= a[Ai]. ThenC = a[C’] andC’'[n[0] | MO]] E A;. By inductionC’[n[0] |
n[0]] E Ay, thatisP, E A.

o« A=-2alA. Then eitherC is not of the formn[C’], andP; E —a[A;], orC =
n[C’] but C’[n[0] | m[Q]] E = A;. Then by inductiorC’[n[0] | n[0]] £ — A4,
that |SP2|75a[ﬂ1]

« A =a®A;. ThenC = (va)C’ andC’[n[Q] | M[0]] E A;. Sincen,mare free in
P,a ¢ {mn}, son(C’) n {mn} = 0. Then by inductionC’[n[0] | n[Q]] £ Aj,
andP; E A.

¢« A=-a®A;. Assume first thaa is free inP;. Thena # msincem ¢ fn(A) by
hypothesis. Sa is also free inP, andP,  A. Assume nowa is fresh forP;
(andPy). LetC’ be such thaC = (va)C’. ThenC’[n[0] | n[O]] A, otherwise
C’[n[Q] | MO]] E A; andP E A. SoP,a®A;.

e A=VYX A, Lettakea e N. ThenP; E A1{?/«}, and by inductiorP, E A{?/4}
for a # m. Let take some fresin'. By equivarianceP;(m < nv) E VYX. Ay, SO
Pi(m & m) E A™/«}. Applying induction onP; andA1{"/,} for ' instead
of m, we haveP, £ A{™/,}. HenceP E A.{?/} for all a, that isP, E YX. A;.

e A= 3IAXA;. Leta € N be such thaP; E A{?/,}. If a # m, then we may
apply induction onA{?/4}, and P, E Ax{?/«}, that isP, E A. Otherwise

P. E A{"/x}). By LemmaB.1,P, £ A"/ \H"/m} = A"/ xH"/m}, and again
P; E A1{"/«}. Then by inductionP, E A1{"/«}, that isP; E A.
m|

Proof of Proposition[6.2

Proof. Let assume by absurd we have safisuch that
PEA if #MP) =1

Then letC be the thread context of the forma)a[...a[.] .. .], andd(C) = d(A)+ 1.
Let m, n be two fresh names. The{n[0] | m[0]] £ — A by definition of A, so by
LemmgB.2,C[n[0] | n[0]] £ —~A. Moreover, by definition ofA, C[n[0] | n[0]] E
A, so the contradiction. m|
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