
International Journal of Information Security manuscript No.
(will be inserted by the editor)

Using Ambients to Control Resources?

David Teller1, Pascal Zimmer2, Daniel Hirschkoff1

1 LIP - ENS Lyon, France
e-mail: [David.Teller, Daniel.Hirschkoff]@ens-lyon.fr

2 INRIA Sophia Antipolis, France e-mail: Pascal.Zimmer@sophia.inria.fr

Abstract Current software and hardware systems, being parallel and re-
configurable, raise new safety and reliability problems, and the resolution
of these problems requires new methods. Numerous proposals attempt at
reducing the threat of bugs and preventing several kinds of attacks. In this
paper, we develop an extension of the calculus of Mobile Ambients, named
Controlled Ambients, that is suited for expressing such issues, specifically
Denial of Service attacks. We present a type system for Controlled Ambients,
which makes static resource control possible in our setting, and enhance it
with a rich notion of resources.

Introduction

The latest generation of computer software and hardware makes use of nu-
merous new technologies in order to enhance flexibility or performances.
Most current systems may be dynamically reconfigured or extended, allow
parallelism or use it, and can communicate with other systems. This flexi-
bility, however, induces the multiplication of subsystems and protocols. In
turn, this multiplication greatly increases the possibility of bugs, the fea-
sibility of attacks and the sensitivity to possible breakdown of individual
subsystems.

This paper presents a formalism for resource control in parallel, dis-
tributed, mobile systems, called Controlled Ambients (CA for short). The
calculus of CA is based on Mobile Ambients [5], extends Safe Ambients [18],
and is equipped with a type system to express and verify resource control
policies.

? Work supported by european project FET - Global Computing

2 David Teller et al.

In the first section, we present our point of view on the problem of
resource control. We provide motivations for using ambient calculi to repre-
sent the notion of resource in a distributed setting, and claim that a specific
calculus should be designed for the purpose of guaranteeing some control
on the use of resources. In Section 2, we introduce our calculus of Con-
trolled Ambients and explain why it matches our goals. We then develop in
Section 3 a type system which uses the specifics of this language to make
resource control possible; we prove its correctness (i.e. that it does indeed
monitor the acquisition and release of resources), and use it to treat several
examples. We discuss some refinements of our type system in Section 4. We
then sketch a generalization of our type system allowing us to guarantee
properties that are not directly related to resource control (Section 5). We
discuss related work and conclude in Section 6.

This paper is an extended version of [26], that contained no proof. With
respect to that paper, the material presented in Section 4 and Section 3 is
more detailed here, and the system of Section 5 is new.

1 Resource Control

For the sake of the present study, we define a resource as an entity which may
at will be acquired, used, then released. We thus work with a rather broad
notion of resource, that encompasses ports, CPUs, computers or RAM, but
not time, or (presumably) money. A resource-controlled system is a system in
which no subsystem will ever require more resources than may be available.

In order to prevent problems such as Denial of Service attacks, we need
a formalism making resource control possible. This formalism should in par-
ticular provide means to describe systems in terms of resource availability
and resource requirement, and should also support the description of con-
current and mobile computations. Lastly, the model should provide some
kind of entity that can be regarded as a resource. We now present Ambient
calculi, and explain why they can be used for these purposes (see also Sec. 6
for a discussion of related works).

Ambient Calculi. Ambient Calculi are based on the notion of locality: each
ambient is a site. In turn, any ambient may contain subambients, as well
as processes, controlling its behaviour through the use of capabilities. Capa-
bilities let the structure of ambients evolve: in m and out m let an ambient
move (resp. entering ambient m or leaving ambient m), while open m opens
ambient m and releases its contents in the current ambient. This is expressed
by the following reduction rules of the Mobile Ambients calculus [5], that
describe the basic evolution steps (captured by relation −→) of terms:

m[in n.P |Q] | n[R] −→ n[m[P |Q] | R] m entering ambient n

n[m[out n.P |Q] | R] −→ m[P |Q] | n[R] m exiting ambient n

open m.P | m[Q] −→ P |Q opening ambient m

Using Ambients to Control Resources 3

Message emitted by client client at site from to call a cab

call from client
∆
=

call[out client.out from.in cab.in from.loading[out cab.in client]]

Instructions given by client client going from site from to site to

trip from to c
∆
= trip[out client.out from.in to.unloading[in c]]

The client itself, willing to go from from to to

client from to
∆
= (νc)c[call from c | open loading.in cab.trip from to c
| open unloading.out cab.bye[out c.in cab.out to]]

The cab and the city

cab
∆
= cab[rec X.open call.open trip.open bye.X]

city
∆
= city[cab | · · · | cab
| site1[client site1sitei | client site1 sitej | · · ·] | · · · | sitei[· · ·]]

Fig. 1 Cab protocol - first attempt

In the terms above, n[P] stands for process P running at site (or, equiv-
alently, ambient) n, while | denotes parallel composition of terms. Hence
for instance n[P] | n′[P ′] represents two adjacent sites named n and n′,
with their corresponding contents P and P ′. A capability can be used to
prefix a term (as for instance in open m.P), which results in a process li-
able to execute this capability when appropriate, as defined by the rules for
−→. When a capability is triggered, it is consumed by the corresponding
reduction step. A more precise, formal, definition of the syntax and seman-
tics of Ambients will be provided below, when we present our calculus of
Controlled Ambients.

To draw some analogies with real systems, the in and out primitives can
represent the movement of data in a computer or in a network, while open
could be used for cleaning memory, for reading data or for loading programs
into memory. As for ambients, they could stand for computers, programs,
data, components. . .

These correspondences open the way for a natural model of resource
control, where each site may have a finite (or infinite) quantity of resources
of a given category. Resources will be used for data, programs, . . . In other
words, each ambient has a given capacity and each subambient uses a part of
this capacity. Basically, controlling resources means checking the number of
direct subambients (according to the amount of resources these are using)
which may be present in one ambient at any time.

Do note that we could have chosen different points of view and decided
to take into account all subambients at all depths, or possibly only “leaf”
ambients. We believe, however, that our approach is more general and flex-
ible, which is the reason why we chose it.

An example. We shall use as our main running example a cab protocol:
the system consists of one city, n sites, and several cabs and clients. Cabs
may be either “anywhere in the city” or in a precise site. Each client may

4 David Teller et al.

be either in a given site or in a cab. Any client may call a cab, asking for a
trip from a site to another site.

In this scenario, several non-trivial properties concerning the interaction
among participants and the managment of resources may be expressed.
Typically, we impose that if a cab is available, one (and only one) cab
must come fetch the client and bring her to her destination. Moreover, if we
consider the unique passenger seat of a cab as a resource, the system will
be resource-controlled if each cab contains at most one client at any time.

Fig. 1 presents the cab protocol as written in the calculus of Mobile
Ambients1. The city itself is an ambient, which may contain sites and cabs.
Each site s is in turn an ambient, which may contain clients, and ambient
movements are used to simulate the movements in the protocol (client en-
tering a cab, cab moving from site to site,. . .). . In order for this protocol to
work, there must be at least one cab and each “client from to” declaration
must be coherent, i.e. from must be the name of the site which hosts the
client and to must be the name of some site.

In order to call a cab, the client sends a call ambient. This ambient then
enters a cab, where it gets opened. Opening ambient call unleashes process

in from.loading[out cab.in client] .
Therefore, after opening, the cab goes in from, to meet its client, and
releases ambient loading. Once loading has been released, it enters client.
As soon as the client opens loading, she knows that the cab is present, and
therefore that she may enter it. Consequently, the client enters the cab and
releases ambient trip, which the cab, in turn, receives and opens. Once again,
a process is unleashed: out from.in to.unloading[in c]. This process moves
the cab to its destination and releases another synchronization ambient,
unloading, to tell the client she may get out. When the client receives this
ambient, she opens it, leaves, and sends the last synchronization ambient
bye to the cab, to tell it it may leave.

Limitations. By examining the code of Fig. 1, one may see that several
aspects of this implementation may lead to unwanted behaviors. The most
visible flaw is the sending of ambient bye: if, for any reason, there are several
cabs in the site, nothing guarantees that bye will reach the right cab. And
if it does not, it may completely break the system by making one cab wait
forever for its client to exit, although it already has left, while making the
other cab leave its destination site with its unwilling client. In turn, the
client may then get out of the cab about anywhere.

Although this problem is partly due to the way this implementation has
been designed, its roots are deeply nested within the calculus of Mobile
Ambients itself. One may notice that any malicious ambient may, at any
time, enter the cab: in the calculus of Mobile Ambients, there is no such
thing as a filtering of entries/exits. This lack of filtering and accounting is

1 As a matter of fact, we are not exactly using the original MA calculus, since
we work with a recursion operator (rec) instead of replication, which suits better
our purposes.

Using Ambients to Control Resources 5

a security threat as well as an obstacle for resource control: for security,
since it prevents modeling a system which could check and refuse entry
to unwanted mobile code, and for control, since one cannot maintain any
information about who is using which resources in a given ambient.

Towards a better control. Difficulties with security and control are due, for
the greatest part, to the nature of capabilities in, out and open. Actually,
the way these capabilities are used seems too simplistic: in any real sys-
tem, arrival or departure of data cannot happen without the consent of the
acting subsystem, much less go unnoticed, not to mention the opening of a
program. In practice, if a program wishes to receive network information,
it must first “listen” on some communication port. If a binary file is to
be loaded and executed, it must have some executable structure and some
given entry point.

A calculus derived from Mobile Ambients is presented in [18]; in this
calculus of Safe Ambients, three cocapabilities are introduced, which we will
note SAin, SAout and SAopen. When executed in m, capability SAin m al-
lows an ambient to enter m (by execution of capability in m). Similarly,
SAout m allows an ambient to leave m using out m, while SAopen m allows
m’s parent to open m using open m. These cocapabilities make synchroniza-
tions more explicit and considerably decrease the risk of security breaches.
Getting back to the example above, a rewritten cab may thus easily refuse
entry right to parasites as long as it is not in any site, or while it con-
tains a client. Moreover, a form of resource control is indeed possible, since
an ambient having no more available resource may refuse entrance of new
subambients.

However, in this model, ambients are not always warned when they re-
ceive or lose subambients by some kind of side effect: in Safe Ambients,
when the process h[m[n[out m] | SAout m]] evolves to h[m[0] | n[0]], h re-
ceives n from m but is not made aware of this. Moreover, while SAin m
serves as a warning for m that it will receive a new subambient, m does not
know which one. Since a subambient representing static data and another
one modeling some internal message will not occupy the same amount of
resources, this model is probably not sufficient for our purposes.

[13] offers an alternative to these cocapabilities, in order to further en-
hance systems’ robustness: in this formalism, in m does not allow entering
m but rather m to enter. This approach solves one of our problems: iden-
tifying incoming data. Controlled Ambients, that shall be presented in the
next section, may be considered as a development of [13] towards even more
robustness as well as resource control. Let us also mention [19], where a dif-
ferent mechanism for the SAout cocapability w.r.t. [18] is introduced. Our
proposal subsumes the solutions of [19] and [18].

Embedding resource control. In Sec. 3, we equip our language with a type
system for resource control. Basically, the type of an ambient carries two
informations:

6 David Teller et al.

P ::= 0 null process
| M.P capability
| m[P] ambient
| P1 | P2 parallel composition
| (νn : A)P restriction
| rec X.P recursion
| X process variable
| (n : A)P abstraction
| 〈m〉 message emission

M ::= in m enter m
| out m leave m
| open m open m

| in↑ m m may enter upwards

| in↓ m m may enter downwards
| out↑ m m may leave upwards
| out↓ m m may leave downwards
| open {m, h} h may open m

Fig. 2 Controlled Ambients – Syntax

– its capacity - how many resources the ambient offers to its subambients;
– its weight - how many resources it requires from its parent ambients.

The type system allows one to statically divide the available resources be-
tween parallel processes, and check that resources will be controlled along
movements and openings of ambients.

2 The Language of Controlled Ambients

2.1 Syntax and Semantics

In CA, each movement is subject to a 3-way synchronization between the
moving ambient, the ambient welcoming a new subambient and the ambient
letting a subambient go. As for the opening of an ambient, it is triggered
by a synchronization between the opener and the ambient being opened.
These forms of synchronization are somewhat reminiscent of early versions
of Seal [28]. Interaction is handled using cocapabilities: in↑, out↑, in↓, out↓
and open.

in↑ m the up coentry, welcomes m coming from a subambient;
in↓ m the down coentry, welcomes m coming from the parent ambient;
out↑ m the up coexit, allows m to leave the current ambient by exiting it;
out↓ m the down coexit, allows m to leave by entering a subambient;
open {m,h} the coopening, allows the parent ambient h to open the current

ambient m.

Do note that the direction tags ↑ and ↓ are not strictly necessary for
resource control. We added them since we found they ease the task of spec-
ification in mobile ambients. We will return on the use of these annotations
in Sec. 2.3.

The syntax of Controlled Ambients is presented in Fig. 2. We suppose
we have two infinite sets of term variables, ranged over with capital letters
(X, Y), and of names, ranged over with small letters (m,n, h, x, . . .). Name
binders (input and restriction) are decorated with some type information,
that shall be made explicit in the next section. While several proposals

Using Ambients to Control Resources 7

P ≡ P |0 P |Q ≡ Q |P P | (Q |R) ≡ (P |Q) |R

(νn : A)0 ≡ 0 (νn : A)(νm : B) P ≡ (νm : B)(νn : A) P

(νn : A) (P |Q) ≡ ((νn : A) P) |Q if n /∈ fn(Q)

(νn : A) m[P] ≡ m[(νn : A) P] if n 6= m

Fig. 3 Controlled Ambients – Structural Congruence

for Mobile Ambient calculi use replication, infinite behaviour is represented
using recursion in CA. This is mostly due to the fact that recursion allows
for an easier specification of loops, especially in the context of resource
consumption. Note also that, compared to the original calculus of Mobile
Ambients, we restrict ourselves to communication of ambient names only,
and we do not handle communicated capabilities.

The null process 0 does nothing. Process M.P is ready to execute M ,
then to proceed with P . P |Q is the parallel composition of P and Q. m[P]
is the definition of an ambient with name m and contents P . The process
(νn : A)P creates a new, private name n, then behaves as P . The recursive
construct rec X.P behaves like P in which occurences of X have been re-
placed by rec X.P . Process (n : A)Q is ready to accept a message, then to
proceed with Q with the actual message replacing the formal parameter n.
〈m〉 is the asynchronous emission of a message m. In most cases, we omit
the terminal 0 process. We say that a process is prefixed if it is of the form
M.P , rec X.P or (x : A)P .

The operational semantics of CA is defined in two steps. Structural con-
gruence, written ≡, is defined as the least congruence relation that contains
α-equivalence (capture-free renaming of bound names) and satisfying the
laws of Fig. 3. Two processes are deemed equal by ≡ when they only differ
by some elementary syntactical manipulations. Reduction (−→) is defined
by the rules of Fig. 4. The first three rules specify movement and opening in
CA as described informally above: note the three-way synchronisation for
the movement rules, and the role of the direction tags in cocapabilities. The
other reduction rules are standard: they describe communication in Am-
bients, recursion unfolding, and express the fact that reduction can occur
anywhere in non-prefixed contexts, and that −→ is defined modulo ≡. We
let −→∗ stand for the reflexive transitive closure of −→.

2.2 Examples of CA Programming

We now provide a few examples to illustrate the use of Controlled Ambients.
We omit in the examples given below type annotations in restrictions; these
will be made explicit in the next section.

The examples we discuss focus on the issue of resource control. In par-
ticular, we do not address here questions related to interference-freeness or

8 David Teller et al.

m[in n.P | Q] | n[in↓ m.R | S] | out↓ m.T −→ n[m[P | Q] | R | S] | T

n[m[out n.P | Q] | out↑ m.R | S] | in↑ m.T −→ m[P | Q] | n[R | S] | T

h[open m.P | Q | m[open {m, h}.R | S]] −→ h[P | Q | R | S]

〈n〉 | (x : A)P −→ P{x← n}

rec X.P −→ P{X ← rec X.P}

P −→ Q

(νn : A) P −→ (νn : A) Q

P −→ Q

R |P −→ R |Q
P −→ Q

n[P] −→ n[Q]

P ≡ Q Q −→ R R ≡ S

P −→ S

Fig. 4 Controlled Ambients – Reduction

to the behavioural properties of the processes we introduce, as in e.g. [18,
3].

Renaming. Since movements in Controlled Ambients require full knowl-
edge about the name of moving ambients (also in cocapabilites, which is
not the case in Safe Ambients), renaming turns out to be often useful in
order to comply with some protocols. One may write the renaming of am-
bient a to b as follows:

a be b.P
∆= b[out a.in↓ a.open a] | out↑ b.in b.open {a, b}.P .

We then have in↑ b.out↓ a | a[a be b.P] −→∗ b[P]. This important example
is also characteristic of Controlled Ambients, since in↑ b.out↓ a illustrates
a particular programming discipline: a’s parent ambient must accept the
replacement of a by b. This means that, at any time, the father ambient
knows its own contents, that is both the number of subambients and their
names.

Safe Ambients Cocapabilities. As mentioned above, Safe Ambients [18] in-
troduce another kind of cocapabilities, similar to ours, though weaker.

We concentrate here on the SAin cocapability (the case of SAout being
symmetrical). Its semantics is defined by

a[in b.P | Q] | b[SAin b.R | S] −→ b[R | S | a[P | Q]] .
By carrying on the idea behind renaming, we can approximate the specifics
of this cocapability in CA. In other words, a[in b.P | Q] | b[SAin b.R | S]
may be written

(νm, n)
(
a
[
out↑ m.in b.(P | n[out a.open {n, b}] | out↑ n) | Q
| m[out a.in b.open {m, b}.in↓ a]

]
| b[in↓ m.open m.in↑ n.open n.R | S] | in↑ m.out↓ m.out↓ a

)
.

Using Ambients to Control Resources 9

As specified, this expression reduces to b[R | S | a[P | Q]]. We use here two
auxiliary ambients m and n to simulate the SAin cocapability. At start,
ambient b does not know name a, so the role of m is to bring this knowledge
into b, in order for it to be able to execute the CA cocapability in↓ a (which
is carried in m). Ambient n is used as a synchronisation device, in order to
block the execution of R as long as a is not inside b. As was the case for
renaming, the father must accept the transaction with in↑ m.out↓ m.out↓ a.
This entails in particular that the father ambient must be aware of the
presence of a.

Firewall. We revisit the firewall example of [5], and consider a system f ,
protected by a firewall. Only agents knowing the password g are allowed in
f . This may be modeled as:

Agent P Q
∆= agent[in g.in↓ entered.open entered.P | Q]

System
∆=

(νf) f
[
rec X.

(
g[out f.in↓ agent.in f.open {g, f}]
| out↑ g.in↓ g.open g.(entered[in agent.open {entered, agent}]

| out↑ entered.X))]
| rec Y .in↑ g.out↓ agent.out↓ g.Y

This specification behaves as follows: System receives agent and then
recovers its original structure thanks to rec . The structure of g guaran-
tees that, at any time, g may only contain one agent. On the other hand,
System may contain any number of agents. This system implements two
authentifications: in the first place, the Agent must be named agent - it
will not enter f by accident. In the second place, it must know the pass-
word. Note that this is not the Firewall described in the original paper on
Mobile Ambients [5], which relied on the secrecy of three keys. This version
uses only one key and takes advantage of the synchronization mechanism
to execute correctly.

Cab. Fig. 5 presents a CA version of the cab protocol from Sec. 1. We do
not give definitions for the city or for the sites, which only need to contain
all movement authorizations, in addition to clients and cabs. ONE TRIP is
a macro. Using cocapabilities, synchronizations in CA are both easier than
in Mobile Ambients and atomic. Additionally, the system is not subject to
the interferences we have presented: only clients may enter the cab, not
just any “parasite” ambient which happens to contain capability in cab.
Similarly, sites only welcome clients, cabs and calls.

Note that in this version, all clients must be named client in order to
enter a cab. One could use renaming or the approximation of SAin to relax
this constraint (see above).

Additionally, Controlled Ambients permit the control of resources such
as available space in cabs. As opposed to the Mobile Ambients version, we

10 David Teller et al.

Message emitted by client

call from
∆
= call[out client.out from.

in cab.open {call, cab}.in from.in↓ client]
Instructions given by client

trip from to
∆
=

trip[out client.open {trip, cab}.out from.
in to.arrived[open {arrived, cab}.end[open {end, cab}.out to]]]

The client

client from to
∆
= client[call from | out↑ call.in cab.trip from to

| out↑ trip.out cab]
The cab

ONE TRIP.P
∆
= in↓ call.open call.in↑ trip.open trip.

open arrived.out↑ client.open end.P

cab
∆
= cab[rec X.in↓ call.open call.in↑ trip.open trip.open arrived.

out↑ client.open end.X]

Fig. 5 Cab protocol – CA-style (see Fig. 1)

can easily check that the cab may contain at most only one passenger and
possibly an auxiliary ambient call, trip, arrived or end. These properties
will be expressed formally using our type system in Sec. 3. Do note that we
could also have expressed the cab protocol in Safe Ambients, also avoiding
grave interferences. In this example, the main benefit of Controlled Ambi-
ents is related to the properties that the type system allows us to establish.

2.3 Benefits

We believe that the formalism of Controlled Ambients is more reasonable
than Mobile Ambients, Safe Ambients or Robust Ambients. More reasonable
insofar as the implementation of movements in ambient calculi suggests this
kind of three-way synchronization. To illustrate our claim, let us consider
the following transition in Mobile Ambients:

h[m[in n] | n[0]] −→ h[n[m[0]]] .

As shown in [10,22], a practical implementation of this rule requires
that h must be aware of the presence of n, no matter how n may have
entered h. More generally, the execution of this movement will involve a
synchronization between n (who is actually present), m (who looks for n)
and h (who knows about the presence of m and n). Similarly, the opening
of ambient m by ambient h requires some complex synchronization between
m and h in order to recover all processes and subambients of m within h
and update presence registers of h. A prototype implementation has been
developped [11] in order to experiment with CA-like synchronisation.

Using Ambients to Control Resources 11

A ::= CAam(s, e)[T] s ∈ N, e ∈ N ambient types

U ::= CApr(t)[T] t ∈ N process types
T ::= Ssh message types

| t, A t ∈ N

Fig. 6 Types

Controlled Ambients are also more realistic as modeling tools. When a
system receives informations, it must be by some action of his: the operating
system “listens” on a device, the configuration server waits for a request
by “listening” on some given TCP/IP port. . . Unfortunately, this listening
behaviour is not rendered at all by Mobile Ambients and only in half of the
cases by Safe Ambients. Similarly, a system is liable to request several kinds
of informations and to sort them according to their origin: the OS is able
to differentiate data read on a disk from data read on the network or on
the keyboard, while software may listen on several communication ports,
for example. We can easily model such phenomena in CA, and if necessary
take into account situations where some part of the system (such as the
network connexion itself) accepts data without listening explicitely for it,
using renaming and infinite loops of cocapabilities.

Additionally, the use of two cocapabilities, one triggering a continuation
in the source space while the other one triggers a continuation in the target
space, is very important for dynamic resource control. Using this mecha-
nism, it is easy to write systems in which individual components may react
to their resources being exhausted or replenished. Cocapabilities also serve
as a basis for the development of our method for static resource control, as
will be explained in the next section.

3 Typing Controlled Ambients

This section is devoted to the presentation of a type system for resource
control in Controlled Ambients. We first describe the system and its prop-
erties, and then show the kind of information it is liable to check on some
examples.

3.1 The Type System

Type Judgments. The grammar for types is given in Fig. 6, and includes
entries for the types of ambients, processes and messages (N stands for
N ∪ {∞}).

Typing environments, ranged over with Γ , are lists of associations of
the form x : A (for ambient names) or X : U (for process variables). We
write Γ (x) = A (resp. Γ (X) = U) to represent the fact that environment
Γ associates A (resp. U) to x (resp. X). Γ, x : A stands for the extension of

12 David Teller et al.

Γ with the association x : A, possibly hiding some previous binding for x
(and similarly for Γ, X : U).

The typing judgment for ambient names is of the form

Γ ` n : CAam(s, e)[T] ,

and expresses the fact that under assumptions Γ , n is the name of an ambi-
ent of capacity s, weight e, and within which messages carrying information
of type T may be exchanged. The capacity s represents the amount of space
(or of resources) available for subambients within n, while e is the number
of resources this ambient is occupying in its surrounding ambient. Note that
while an ambient may have an infinite capacity (s =∞), it cannot manip-
ulate infinitely many resources (e < ∞). Moreover, if we decide to impose
e ≥ s in ambient types, we may develop an analysis close to what is done
in [7], where the weight of an ambient takes into account the weight of all
its subambients, at any depth. The type T for messages captures the kind of
names being exchanged within n, similarly to Cardelli and Gordon’s topics
of conversation [6], augmented with an information t which represents a
higher bound on the effect of exchanging messages within n (we shall come
back to this below).

The typing judgment for processes is written

Γ ` P : CApr(t)[T] ,

meaning that according to Γ , P is a process that may use up to t resources,
and take part in conversations (that is, emit and receive messages) having
type T .

Typing Rules. The rules defining the typing judgments are given on Fig. 7.
We now comment on them. While typing (subjective) movements has no
effect from the point of view of resources (rules T-in and T-out), the
rules T-coin and T-coout, for the co-capabilities (where δ ranges over a
direction tag, which can be ↑ or ↓), express the meaning of t in CApr(t)[T],
according to the weight e of the moving ambient. Note that the number t
of resources allocated to the process must remain positive after decreasing
(rule T-coout). This is made possible by the subtyping property of the
system (Lemma 1), together with rules T-nil, T-amb, . . . , which allow one
to allocate any number of resources to an inert process (inert from the point
of view of the current ambient). This mechanism can be used for example
to derive a typing for a process of the form out↑ n.0. Note also that the side
condition a ≤ s in rule T-amb expresses conformity with the capacity of
the ambient.

When opening an ambient, we release the resources it had acquired (e),
but at the same time we have to provide at least as many resources as its
original capacity (s). The open capability plays no role from the point of
view of resource control, as illustrated by rule T-coopen (note, still, that
message types in the opening ambient and in the type of R are unified using

Using Ambients to Control Resources 13

T-name
Γ (n) = A

Γ ` n : A
T-var

Γ (X) = CApr(t)[T]

Γ ` X : CApr(t′)[T]
t′ ≥ t

T-rec
Γ, X : CApr(t)[T] ` P : CApr(t)[T]

Γ ` rec X.P : CApr(t′)[T]
t′ ≥ t

T-in
Γ ` P : CApr(t)[T]

Γ ` in m.P : CApr(t)[T]
T-out

Γ ` P : CApr(t)[T]

Γ ` out m.P : CApr(t)[T]

T-coin
Γ ` P : CApr(t)[T] Γ ` m : CAam(s, e)[T ′]

Γ ` inδ m.P : CApr(t + e)[T]

T-coout
Γ ` P : CApr(t)[T] Γ ` m : CAam(s, e)[T ′]

Γ ` outδ m.P : CApr(t− e)[T]
t ≥ e

T-open
Γ ` m : CAam(s, e)[T] Γ ` P : CApr(t)[T]

Γ ` open m.P : CApr(t− e + s)[T]
t− e + s ≥ 0

T-coopen
Γ ` m : CAam(s, e)[T] Γ ` R : CApr(t)[T]

Γ ` open {m, h}.R : CApr(t)[T]

T-nil Γ ` 0 : U T-amb

Γ ` m : CAam(s, e)[T]
Γ ` P : CApr(a)[T]

Γ ` m[P] : CApr(t)[T ′]


a ≤ s
e ≤ t

T-res
Γ, n : A ` P : U

Γ ` (νn : A)P : U
T-par

Γ ` P : CApr(t)[T] Γ ` Q : CApr(t′)[T]

Γ ` P |Q : CApr(t + t′)[T]

T-snd
Γ ` m : A

Γ ` 〈m〉 : CApr(t′)[t, A]
t′ ≥ t T-rcv

Γ, x : A ` P : CApr(t)[t, A]

Γ ` (x : A)P : CApr(t′)[t, A]

Fig. 7 Typing rules

this rule). We shall present in Sec. 4 a richer system where a more precise
typing of opening (and co-opening) permits a better control.

We now explain the typing rules for communication. Since reception of
a message can trigger a process which will necessitate a certain amount of
resources, we attach to the type of an ambient the maximum amount of
resources needed by a receiving process running within it: this is informa-
tion t in an ambient’s topic of conversation. Put differently, messages are
decorated with an integer representing at least as many resources as needed
by the processes they are liable to trigger: we are thus somehow measuring
an effect in this case. Note that our approach is based on the idea that one
emission typically corresponds to several receptions. The dual point of view
could have been adopted, by putting in correspondence one reception and
several concurrent emissions. Our experience in writing examples suggests
that the first choice is more useful.

14 David Teller et al.

Finally, rule T-rec expresses the fact that a recursively defined process
should run “in constant space”: as required by the premise, each time a
recursive call is triggered (by X), the number t of allocated resources is the
same as the number of resources allocated to the whole recursive process P .

3.2 Static Resource Control

3.2.1 Main properties We start by some technical properties of typing
derivations.

Lemma 1 (Subtyping) Let P be a process and Γ an environment such
that Γ ` P : CApr(t)[T] for some t. Then for any t′ ≥ t, Γ ` P :
CApr(t′)[T].

Proof By induction on the derivation of Γ ` P : CApr(t)[T].

· Cases CA-nil, CA-amb, CA-rec, CA-var-proc, CA-send
and CA-receive:

In all these cases, the parameter t is free with a lower bound. As a
consequence, we can increase it as much as we want.

· Cases CA-res, CA-par, CA-in, CA-out, CA-coin, CA-coout,
CA-open and CA-coopen:

All these cases only require a simple induction step.
ut

Corollary 1 (Minimal typing) If a process P is typeable in Γ with a
conversation topic type T , then there is a minimal t ∈ N such that Γ ` P :
CApr(t)[T].

Note that the minimal parameter t can be different for each possible
value T (see for example rule T-snd).

Additionally, we have the following properties. The proofs of these lem-
mas are standard, and not given.

Lemma 2 (Strengthening, names) If Γ, n : A ` P : U and n /∈ fn(P),
then Γ ` P : U .

Lemma 3 (Strengthening, processes) If Γ,X : U ′ ` P : U and X /∈
fv(P), then Γ ` P : U .

Lemma 4 (Weakening, names) If Γ ` P : U and n /∈ fn(P), then
Γ, n : A ` P : U .

3.2.2 Resource usage Let us now examine resource control. In order to be
able to state the properties we are interested in, we extend the notion of
weight, which has been used for ambients, to processes, by introducing the
notion of resource usage, together with a natural terminology:

Using Ambients to Control Resources 15

Definition 1 (Resource policy and resource usage) We call resource
policy a typing context. Given a resource policy Γ , we define the resource
usage of a process P according to Γ , written Res Γ (P), as follows:

– if Γ (a) = CAam(s, e)[T], then Res Γ (a[P]) = e;
– Res Γ (P1 |P2) = Res Γ (P1) + Res Γ (P2);
– Res Γ ((νn : A)P) = Res Γ,n:A(P);
– in all other cases, Res Γ (P) = 0.

Note in particular that according to this definition, prefixed terms (capa-
bilities, reception, recursion) do not contribute to a process’ current resource
usage (accordingly, their resource usage is equal to 0).

We now define formally what it means for a process to respect a given
resource policy.

Definition 2 (Resource policy compliance) Given a resource policy Γ ,
we define the judgment Γ |= P (pronounced “P complies with Γ”), as
follows:

– Γ |= n[P] iff Γ |= P and Res Γ (P) ≤ s, where capacity s is given by
Γ (n) = CAam(s, e)[T];

– Γ |= P1|P2 iff Γ |= P1 and Γ |= P2;
– Γ |= (νn : A)P iff Γ, n : A |= P ;
– in all other cases, Γ |= P .

Intuitively, the judgment Γ |= P means that any ambient occurring in
P contains no more subambients (in relation to the corresponding weights)
than what its capacity allows. The typing rules we have introduced ensure
that a typeable term complies with a resource policy:

Proposition 1 (Typeable terms comply with resource policies) For
any process P , resource policy Γ and process type U , if Γ ` P : U , then
Γ |= P .

In order to prove this property, we need the following Lemma:

Lemma 5 If Γ ` P : CApr(t)[T], then ResΓ (P) ≤ t.

Proof By induction on the derivation of Γ ` P : CApr(t)[T].

· Case CA-amb We have Γ ` n[P] : CApr(t)[T] with e ≤ t, where e is the
weight of n in Γ . Then, ResΓ (n[P]) = e ≤ t.

· Case CA-par Γ ` P |Q : CApr(tP + tQ)[T] must have been derived
from Γ ` P : CApr(tP)[T] and Γ ` Q : CApr(tQ)[T]. By induction
hypothesis, ResΓ (P) ≤ tP and ResΓ (Q) ≤ tQ. Then, ResΓ (P |Q) =
ResΓ (P) + ResΓ (Q) ≤ tP + tQ.

· Case CA-res Γ ` (νn : A)P : CApr(t)[T] must have been derived from
Γ, n : A ` P : CApr(t)[T]. Then, by induction hypothesis, we have:
ResΓ ((νn : A)P) = ResΓ,n:A(P) ≤ t.

· Other cases For all other cases, ResΓ (P) = 0 ≤ t.

16 David Teller et al.

ut

Proof (of Prop. 1) By induction on the structure of P .
· Case P |Q Since P |Q is typeable in Γ , so are P and Q. By induction

hypothesis, Γ |= P and Γ |= Q. Then, Γ |= P |Q.
· Case (νn : A)P Since (νn : A)P is typeable in Γ , P must be tyepable in

Γ, n : A. By induction hypothesis, Γ, n : A |= P . Then, Γ |= (νn : A)P .
· Case n[P] This is the main case; we have to check two properties.

– First, P should respect Γ . Since n[P] is typeable in Γ , P is also
typeable. We conclude Γ |= P by induction hypothesis.

– Secondly, the resources of n should be locally controlled according to
Γ , that is ResΓ (P) ≤ s where s is the capacity of n in Γ . Since n[P]
is typeable in Γ , we have from rule CA-amb: Γ (n) = CAam(s, e)[T]
and Γ ` P : CApr(t)[T], with the condition t ≤ s. By Lemma 5, we
can conclude: ResΓ (P) ≤ t ≤ s.

· Other cases In all other cases, we have nothing to check.
ut

The following theorem states that typability is preserved by the opera-
tional semantics of Controlled Ambients:

Theorem 1 (Subject Reduction) For any processes P,Q, resource policy
Γ and type U , if Γ ` P : U and P −→ Q, then Γ ` Q : U .

Proof The proof of this result is given in Appendix 6.

As a direct consequence of Proposition 1 and Theorem 1, we obtain our
main result:

Theorem 2 (Resource control) Consider a resource policy Γ and a pro-
cess P such that Γ ` P : U for some U . Then for any Q such that
P −→∗ Q, it holds that Γ |= Q.

3.3 Examples

We now revisit some examples of Sec. 2.2, and explain how they can be
typed. In each case, we exhibit a resource policy (i.e., a typing context Γ)
that captures a property we wish to guarantee, and describe the weight and
capacity associated to every ambient in order to do so.

Renaming. As already established, one possible expression of renaming is:

a be b.P
∆= b[out a.in↓ a.open a] | out↑ b.in b.open {a, b}.P

Let us assume that there exists a typing environment Γ and a conver-
sation type T such that 

Γ (a) = CAam(s, e)[T]
Γ (b) = CAam(s, e)[T]

Γ ` P : CApr(s)[T]
s ≥ e

Using Ambients to Control Resources 17

Typing b[out a.in↓ a.open a.0]

Γ ` 0 : CApr(0)[T] by T-nil
we have e ≤ s by hypothesis

⇒ Γ ` open a.0 : CApr(s− e)[T] by T-open

⇒ Γ ` in↓ a.open a.0 : CApr(s)[T] by T-coin

⇒ Γ ` out a.in↓ a.open a.0 : CApr(s)[T] by T-out

⇒ Γ ` b[out a.in↓ a.open a.0] : CApr(e)[T] by T-amb

Typing out↑ b.in b.open {a, b}.P
Γ ` P : CApr(s)[T] by hypothesis

⇒ Γ ` open {a, b}.P : CApr(s)[T] by T-coopen
⇒ Γ ` in b.open {a, b}.P : CApr(s)[T] by T-in

we have e ≤ s by hypothesis
⇒ Γ ` out↑ b.in b.open {a, b}.P : CApr(s− e)[T] by T-coout

Typing a be b.P

Γ ` b[out a.in↓ a.open a.0] : CApr(e)[T] see above
Γ ` out↑ b.in b.open {a, b}.P : CApr(s− e)[T] see above

⇒ Γ ` a be b.P : CApr(s)[T] by T-par

Fig. 8 Typing a be b.P with resource-policy Γ

(T is the conversation type of the ambient that gets renamed).
We may then build the derivation seen on Figure 8. It proves that,

according to the typing environment Γ , a be b.P may be typed. As a trivial
corollary, a[a be b.P] may also be typed.

We can actually slightly relax the conditions on types. One can show
that the least set of conditions to type a[a be b.P] is Γ (a) = CAam(sa, ea)[T]

Γ (b) = CAam(sb, eb)[T]
Γ ` P : CApr(tp)[T]

tp ≤ sa eb ≤ sa

sa ≤ sb ea ≤ sb

Firewall. Similarly, the firewall in Controlled Ambients, as defined in sub-
section 2.2, can be typed in a context Γ such that:

Γ (agent) = CAam(aP + aQ, 1)[T], Γ (entered) = CAam(0, 0)[T],
Γ (f) = CAam(∞, 0)[T], and Γ (g) = CAam(1, 0)[T] .

In particular, the typing of the recursive process rec X. . . . in System
entails a constraint of the form CApr(t)[T] = CApr(t + 1)[T]. This is
possible if and only if t =∞, and as a consequence the capacity of f should
also be ∞, so that the firewall is supposed to have infinite size. This is
no surprise, since it may actually receive any number of external ambients.
However, these ambients are contained in the firewall. Hence, one may still
integrate this firewall as a component in a system with limited resources.

18 David Teller et al.

Cab. Let us consider an environment Γ such that:
Γ (client) = CAam(0, 1)[T]
Γ (call) = CAam(1, 0)[T]
Γ (trip) = CAam(0, 0)[T]
Γ (arrived) = CAam(0, 0)[T]


Γ (end) = CAam(0, 0)[T]
Γ (cab) = CAam(1, 0)[T]
Γ (sitei) = CAam(∞, 0)[T]
Γ (city) = CAam(0, 0)[T]

Note in particular that this resource policy specifies that among the
ambients that may enter the cab, only those named client are actually
“controlled”: this corresponds to the property we focus on when analyzing
the cab. With these assumptions, the complete cab system is typeable. This
means that resources are statically controlled in cabs: at any step of its
execution, the cab may contain at most one client.

Moreover, we may adopt a different resource policy, defined as follows:
Γ (client) = CAam(0, 0)[T]
Γ (call) = CAam(0, 1)[T]
Γ (trip) = CAam(1, 1)[T]
Γ (arrived) = CAam(1, 1)[T]


Γ (end) = CAam(0, 1)[T]
Γ (cab) = CAam(1, 0)[T]
Γ (sitei) = CAam(∞, 0)[T]
Γ (city) = CAam(0, 0)[T]

The system is also typeable with this choice for Γ , which allows us to control
the number of “auxiliary” ambients: at any time, at most one of those may
be present in cab.

4 More Accurate Analyses of Opening

In this section, we present several refinements of type system of Section 3,
that we call systems R, Z and RZ. While the basic system we have presented
so far allows one to type many interesting processes, some relatively simple
examples show its limitations. For instance, let us define

P1
∆= a[open {a, b}.rec X.(X | b[0])] | open a ,

and suppose that the weight of b is not 0. The construction rec X.(X | b[0])
then requires infinite resources. Although the execution would not use any
resource inside a, our type system cannot capture this property: the typing
will require a to have an infinite capacity.

Similarly, let us define

P2
∆= h[rec X.(m[in↓ n.out↑ n.open {m,h}] | out↓ n.in↑ n.open m.X)

| n[rec Y .in m.out m.Y]] ,

and suppose that the weight of n is not 0. By following the evolution of this
term, one may easily notice that a finite capacity for h should be sufficient.
However, when deriving a typing for P2, we conclude that the capacity of h
must be infinite.

Using Ambients to Control Resources 19

In both cases, the typing system is not refined enough to express a
resource control property. More specifically, the opening primitive is associ-
ated to a resource control that is too strict. For the discussion that follows,
we shall use the following notations for the rule R-open:

h[open m.P | Q | m[open {m,h}.R | S]] −→ h[P | Q | R | S]
In order to try and refine the typing of opening, one may want to make the
control on P , Q, R or S more precise. For technical reasons, we have chosen
to concentrate on R and S.

System R In System R, we introduce a third parameter in ambient types,
named r. In CAam(s, e, r)[T], r ∈ N is an upper bound for the number of
resources allocated to R in the opening ambient. Typing rules for open and
open become:

Γ ` m : CAam(s, e, r)[T] Γ ` P : CApr(t)[T]
Γ ` open m.P : CApr(t− e + s + r)[T]

CA− open
t− e + s + r ≥ 0

Γ ` m : CAam(s, e, r)[T] Γ ` R : CApr(t)[T]
Γ ` open {m,h}.R : CApr(t′)[T]

CA− coopen
t ≤ r

Using these alternative rules, term P1 may be satisfactorily typed (i.e.
with a finite capacity for a), taking r = ∞. Additionally, all results of
Section 3.2 still remain valid. However, System R does not help with term
P2.

System Z System Z, on the other hand, improves the control on S. This
is particularly important, for processes such as

M1. · · · .Mn.open {m,h}.R :
although M1. · · · .Mn might acquire as many as, say, s resources, it might
also release some or all of them before the actual opening. By taking these
releases into account, we may get a better approximation of resource con-
sumption. To do so, we can introduce a parameter z which is compelled to
satisfy z ≤ s. In System Z, ambient types become CAam(s, e, z)[T] with
z ∈ N and z ≤ s, and the typing rules are:

Γ ` m : CAam(s, e, z)[T] Γ ` P : CApr(t)[T]
Γ ` open m.P : CApr(t− e + z)[T]

CA− open
t− e + z ≥ 0

Γ ` m : CAam(s, e, z)[T] Γ ` R : CApr(t)[T]
Γ ` open {m,h}.R : CApr(t + s− z)[T]

CA− coopen

Results from Section 3.2 also remain valid on System Z. System Z per-
mits a good analysis of term P2, but cannot handle term P1 any better than
the basic system.

20 David Teller et al.

System RZ System R and System Z may be naturally merged into System
RZ, which yields a more accurate analysis of resources, with ambient types
of the form CAam(s, e, r, z)[T], r ∈ N, z ∈ N and z ≤ s and the following
rules:

Γ ` m : CAam(s, e, r, z)[T] Γ ` P : CApr(t)[T]
Γ ` open m.P : CApr(t− e + z + r)[T]

CA− open
t− e + z + r ≥ 0

Γ ` m : CAam(s, e, r, z)[T] Γ ` R : CApr(t)[T]
Γ ` open {m,h}.R : CApr(t′)[T]

CA− coopen
t ≤ r, t′ ≥ s− z

As expected, System RZ correctly handles both terms P1 and P2, and
results from Section 3.2 also remain valid. Hence, System RZ is a more
refined although more complicated type system.

5 A Generalized Type System

The type system introduced in Section 3 uses the synchronisation mecha-
nism of Controlled Ambients to guarantee, through some simple arithmetic
manipulations, the control of resources. By abstracting away from the inte-
gers used to represent resource occupation/awareness, and keeping the same
general mechanism for type checking, we obtain a general and versatile type
system, that can be used to express and control several kinds of properties.

This is the subject of this section, where we introduce a Generalized
Control for Ambients (GCA). GCA, which features almost identical typ-
ing rules as the system of Section 3, permits the control of more complex
properties. After defining this system, we illustrate some of its possible uses.

5.1 An Abstract Notion of Controlled Entity

The GCA type system is defined by isolating the essential properties we
need when manipulating ambients capacities and weights in the system of
Section 3. Instead of counting integers, we parametrize the type system over
a set of resource-usage levels, corresponding to the following definition:

Definition 3 (Resource-usage levels) A set of resource-usage levels is
given by a tuple (R,⊥,⊕,	,�), where ⊥ ∈ R, ⊕ and 	 are binary opera-
tions on R and � is a relation on R, satisfying the following properties:

– (R,⊕) is a commutative monoid admitting ⊥ as neutral element;
– � is a partial order on R, and for any a ∈ R, ⊥ � a;
– for any a, b, c ∈ R, if a � b, then a⊕ c � b⊕ c and a	 c � b	 c;
– for any a, b ∈ R, a � (a	 b)⊕ b and a � (a⊕ b)	 b.

Given a set of resource-usage levels, we define the grammar of types
according to the rules of Figure 9. As will be exemplified below, as soon as

Using Ambients to Control Resources 21

A ::= GCAam(s, e)[T] s, e ∈ R ambients
U ::= GCApr(t)[T] t ∈ R processes
T ::= Ssh messages
| t, A t ∈ R

Fig. 9 Extended types

T-var
Γ (X) = GCApr(t)[T]

Γ ` X : GCApr(t′)[T]
t′ � t

T-rec
Γ, X : GCApr(t)[T] ` P : GCApr(t)[T]

Γ ` rec X.P : GCApr(t′)[T]
t′ � t

T-coin
Γ ` P : GCApr(t)[T] Γ ` m : GCAam(s, e)[T ′]

Γ ` inδ m.P : GCApr(f)[T]
f � t⊕ e

T-coout
Γ ` P : GCApr(t)[T] Γ ` m : GCAam(s, e)[T ′]

Γ ` outδ m.P : GCApr(f)[T]
f � t	 e

T-open
Γ ` m : GCAam(s, e)[T] Γ ` P : GCApr(t)[T]

Γ ` open m.P : GCApr(f)[T]
f � (t⊕ s)	 e

T-coopen
Γ ` m : GCAam(s, e)[T] Γ ` R : GCApr(t)[T]

Γ ` open {m, h}.R : GCApr(f)[T]
f � t

T-amb
Γ ` m : GCAam(s, e)[T] Γ ` P : GCApr(t)[T]

Γ ` m[P] : GCApr(f)[T ′]
f � e, t � s

T-par
Γ ` P : GCApr(t)[T] Γ ` Q : GCApr(t′)[T]

Γ ` P |Q : GCApr(f)[T]
f � t⊕ t′

T-snd
Γ ` m : A

Γ ` 〈m〉 : GCApr(t′)[t, A]
t′ � t T-rcv

Γ, x : A ` P : GCApr(t)[t, A]

Γ ` (x : A)P : GCApr(t′)[t, A]

Fig. 10 Typing rules for generalized control

we have a set of accountable entities, we can think of deriving an instanci-
ation of GCA. Indeed, by instanciating GCA with (N, 0,+,−,≤), with the
appropriate definition of −, we obtain a type system very close to that of
Section 3.

The typing rules for the generalized type system are given on Fig. 10
(we give only the most relevant rules). They are very similar to the rules
of Fig. 7, the calculations being performed using operators ⊕ and 	 (see in
particular rules T-coout, T-open and T-coopen).

As may be seen in rules T-coopen or T-par, the handling of inequality
is slightly different. This is due to the fact that the simple induction step
used to prove Lemma 1 in Section 3 has to be adapted when the set of
resource-usage levels is more complicated than N. For example, in rule T-

22 David Teller et al.

par, increasing t and/or t′ is not always sufficient to reach all possible values
greater than t⊕ t′.

The extended type system enjoys basically the same properties as the
type system of Section 3:

Definition 4 (Resource policy and resource usage) Given a set of
resource-usage levels, we call resource policy a typing context in the corre-
sponding instanciation of GCA. Given a resource policy Γ , we define the
resource usage of a process P according to Γ , written Res Γ (P), as follows:

– if Γ (a) = GCAam(, e)[T], then Res Γ (a[P]) = e;
– Res Γ (P1 |P2) = Res Γ (P1)⊕ Res Γ (P2);
– Res Γ ((νn : A)P) = Res Γ,n:A(P).
– in all other cases, Res Γ (P) = ⊥;

Definition 5 (Resource policy compliance) Given a resource policy Γ ,
we define the judgment Γ |= P (pronounced “P complies with Γ”), as
follows:

– Γ |= n[P] iff Γ |= P and Res Γ (P) � s, where capacity s is given by
Γ (n) = GCAam(s,)[T];

– Γ |= P1|P2 iff Γ |= P1 and Γ |= P2;
– Γ |= (νn : A)P iff Γ, n : A |= P ;
– in all other cases, Γ |= P .

Proposition 2 (Typeable terms comply with resource policies) For
any process P , resource policy Γ and process type U , if Γ ` P : U , then
Γ |= P .

Theorem 3 (Subject Reduction) For any processes P,Q, resource policy
Γ and type U , if Γ ` P : U and P −→ Q, then Γ ` Q : U .

We do not present the proofs, as they follow faithfully the proofs for the
system of Section 3.

5.2 Examples

We now show some possible uses of GCA, corresponding to different choices
for the set of resource-usage levels.

5.2.1 Cost Control. We return to our cab example, and show how we can
use system GCA to limit the number of trips a cab can make. For this, we
introduce the following set of resource-usage levels:

– R = N
– ∀x, y x⊕ y = x + y
– ∀x x	 y = x
– ∀x, y x � y ⇐⇒ x ≤ y

Using Ambients to Control Resources 23

Now consider the following definitions:

cab
∆= cab[ONE TRIP.ONE TRIP. · · · .ONE TRIP︸ ︷︷ ︸

k times

.0]

where ONE TRIP is the sequence of (co)capabilities corresponding to one
trip of the cab (see above).

Using R2 and the new definition of cab, we may specify the following
resource-control policy (the most important points are typeset in bold):

Γ (client) = CAam(0,1)[T]
Γ (call) = CAam(1, 0)[T]
Γ (trip) = CAam(0, 0)[T]
Γ (arrived) = CAam(0, 0)[T]


Γ (end) = CAam(0, 0)[T]
Γ (cab) = CAam(k, 0)[T]
Γ (sitei) = CAam(∞, 0)[T]
Γ (city) = CAam(0, 0)[T]

Among other things, this policy specifies that a cab will not answer more
than k requests. And since it can be proved that the system is resource-
controlled according to Γ , we have successfully used R2 to control a new
form of resource – actually, a form of non-releasable resource.

Using this instanciation of GCA, this very simple example could be
developed along the lines of schedule policy checking. In such a scenario, a
limited amount of tasks (the client ambients of the cab protocol) can run at
a given site, the type system being used to guarantee this bound. Moreover,
all tasks need not be present from the very beginning as is the case above,
but we could think of having the tasks entering the host site and being
scheduled until the limit number of runnable tasks is reached.

It should be remarked that GCA is used here to assess a property that
is somehow more ‘dynamic’ than the resource usage policies we have been
studying above.

5.2.2 Combining policies. One could think of several other instanciations
of GCA, using e.g. booleans for R to check binary properties of ambient-
based descriptions of systems. We shall not present here these other possible
extensions, but instead stress another important feature of this generalised
type system, namely that different type systems can be associated compo-
nentwise to combine different kinds of analyses. This is expressed using the
following property:

Proposition 3 (Combining resource-usage levels) Let us consider two
sets of resource-usage levels: (R1,⊥1,⊕1,	1,�1) and (R2,⊥2,⊕2,	2,�2).
Then the set defined by:

– R = R1 ×R2;
– ⊥ = (⊥1,⊥2);
– (a1, a2)⊕(b1, b2) = (a1⊕1b1, a2⊕2b2), (a1, a2)	(b1, b2) = (a1	1b1, a2	2

b2);
– (a1, a2) � (b1, b2) iff a1 �1 b1 and a2 � b2

is a set of resource-usage levels.

24 David Teller et al.

Using this property, it is easy to combine any number of policies and
check them simultaneously. For instance, we could check that the cab never
carries more than one passenger (see 3.3), never contains more than one
auxiliary ambient (see also 3.3), and that it cannot move more than ten
times (see 5.2.1).

6 Conclusion

The language of Controlled Ambients has been introduced to analyze re-
source control in a distributed and mobile setting through an accurate pro-
gramming of movements and synchronisations. We have enhanced our for-
malism with a type system for the static control of resources, and exten-
sions of the basic type system have also been presented under the form of
GCA. Further, examples show that indications on the maximal amount of
resources needed by a process match rather closely the actual amount of
resources which may be reached in the worst case, which suggests that the
solution we propose could serve as the basis for a study of resource control
properties on a larger scale.

Among extensions of the present work, we are currently enriching the
language and type system to include communication of capabilities, as in the
original Mobile Ambients calculus [5]. We are also studying type inference
for our system, which would enhance (untyped) Controlled Ambients with
a procedure for the automatic guess of resource needs. It seems that by
requiring the recursion variables to be explicitely typed, type inference is
decidable, and a rather natural algorithm can compute a minimal type
for a given process, if it exists. In particular, the “message” component
of terms leads to a classical unification problem. The question becomes
more problematic if no information is given for recursion variables: one can
compute a set of inequalities (similar to those given for the example of
renaming in Sec. 3), but solving it in the general case would require more
work, as would also the porting of such an inference procedure to GCA.

As reported in [25], our approach can be adapted to other formalisms
for mobile and distributed computation that provide a primitive notion
of location, such as Seals [28], Boxed Ambients [2,3], Nomadic π [27] and
Kells [24]. In π-calculus-like languages, a natural notion of resource is given
by channels, which represents a slightly different point of view w.r.t. the
present work. Introducing resource control in calculi like the π-calculus or
the distributed π-calculus [21] represents a challenging direction for future
work.

We could also consider combining our type system for resource control
with other typing disciplines, adapted from the Single Threadness types
of [18], or the Mandatory Access Control of [2]. It seems that, using the
generalized type system, Controlled Ambients could also be used to ap-
proximate some of the analyses done in [9,14], where, in a context where
security levels are associated with processes, types are used to check that

Using Ambients to Control Resources 25

no agent can access an information having a security level higher than its
own. We are also trying to enhance GCA and to instanciate it to a form of
movement typing, approximating the analysis of [4].

We have not addressed the issue of behavioural equivalences for CA.
A possible outcome of such a study could be to validate a more elaborate
treatment of resources involving operations like garbage collection, which
would allow one to make available uselessly occupied resources. An example
is the perfect firewall equation of [12]: when c /∈ fn(P), process (νc) c[P]
may manipulate some resources while being actually equivalent to 0.

Other Related Works. Another attempt at resource-control in ambients is
developed in [23]. As opposed to CA, the Capacity-bounded computational
ambients use a dynamic type system and slots, somewhat reminiscent of
some of our cocapabilities, to stand for resources. The type system then
counts the number of available slots (at any depth) in a process.

Yet another form of accounting on mobile ambients is introduced in [7].
In a calculus with a slightly different form of recursion than in CA (and
without cocapabilities), the authors introduce a type system to count the
number of active outputs and ambients (at any depth) in a process. This
analysis, however, is not aimed at modelling resources: it tries and isolate a
finite-control fragment of mobile ambients on which model checking w.r.t.
the Ambient Logic is decidable through state-space exploration.

Other projects aim at controlling resources in possibly mobile systems
without resorting to mobile process algebras. [17] presents a modified ML
language with sized types in which bounds may be given to stack consump-
tion. Like in our framework, resources are releasable entities; however, this
approach seems more specialized than ours, and moreover concentrates on
a sequential model. Similarly, [8] introduces a variant of the Typed Assem-
bly Language “augmenting TAL’s very low-level safety certification with
running-time guarantees”, while Quantum [20] may be used to describe
distributed systems from the point of view of their resource consumption.
In contrast to our work, both these approaches consider non-releasable
resources. Another programming language, Plan [15], has been designed
specifically for active networks, and also handles some form of resource
bounds. Although Plan accounts for both releasable (space, bandwidth)
and non-releasable (time) resources, it handles neither recursion nor con-
currency on one node. A related line of research is followed in [16,1], where
means to guarantee bounds on the time or space consumption required for
the execution of (sequential) functions are proposed.

These works all focus on resource control; however, none of these ap-
proaches can be directly compared to ours. It might be interesting to study
if and how our methods could be integrated to these works, in order to
combine several forms of resource control.

Acknowledgements We would like to thank Davide Sangiorgi for suggesting the
original idea behind CA and providing insightful suggestions along this work.

26 David Teller et al.

References

1. R. Amadio. Max-plus quasi-interpretations. In Proc. of TLCA’03, volume
2701 of LNCS, pages 31–45. Springer Verlag, 2003.

2. M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Proc. TACS
2001, LNCS 2215, pages 38–63. Springer Verlag, 2001.

3. M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication Interference
in Mobile Boxed Ambients. In Proc. of FST-TCS’02, LNCS. Springer Verlag,
2002.

4. L. Cardelli, G. Ghelli, and A. Gordon. Types for the Ambient Calculus.
Information and Computation, 177(2):160–194, 2002.

5. L. Cardelli and A. D. Gordon. Mobile ambients. In Proc. of FOSSACS’98,
volume 1378, pages 140–155. Springer Verlag, 1998.

6. L. Cardelli and A. D. Gordon. Types for mobile ambients. In Symposium on
Principles of Programming Languages (POPL’99), pages 79–92. ACM Press,
1999.

7. W. Charatonik, A. D. Gordon, and J.-M. Talbot. Finite-control mobile am-
bients. In Proc. of ESOP’02, volume 2305 of LNCS, pages 295–313, 2002.

8. K. Crary and S. Weirich. Resource bound certification. In Symposium on Prin-
ciples of Programming Languages (POPL’00), pages 184–198. ACM Press,
2000.

9. M. Dezani-Ciancaglini and I. Salvo. Security types for mobile safe ambients.
In Proc. of ASIAN’00, LNCS 1961, pages 215–236. Springer Verlag, 2000.

10. C. Fournet, J.-J. Lévy, and A. Schmitt. A distributed implementation of
mobile ambients. In Proc. of IFIP TCS’00, pages 348–364. Springer Verlag,
1872.

11. T. Gazagnaire and D. Pous. Implémentation des Controlled Ambients en
JoCaml. Students project – Magistère d’Informatique ENS Lyon, 2002.

12. A. D. Gordon and L. Cardelli. Equational properties of mobile ambients. In
Proc. of FOSSACS’99, volume 1578 of LNCS, pages 212–226. Springer Verlag,
1999.

13. X. Guan, Y. Yang, and J. You. Making ambients more robust. In Proc. of the
International Conference on Software: Theory and Practice, pages 377–384,
2000.

14. M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
In Proceedings of HLCL ’98, number 16.3 in ENTCS, pages 3–17. Elsevier,
1998.

15. M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. PLAN: A
Packet Language for Active Networks. In Proc. ICFP’99, pages 86–93. ACM
Press, 1999.

16. M. Hofmann. The strength of non-size increasing computation. In Proc. 29th
ACM Symp. on Principles of Programming Languages (POPL’02), pages 260–
269. ACM Press, 2002.

17. J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded
space: Towards embedded ML programming. In Proc. of ICFP’99, pages
70–81. ACM Press, 1999.

18. F. Levi and D. Sangiorgi. Controlling interference in ambients. In Symposium
on Principles of Programming Languages, pages 352–364. ACM Press, 2000.

19. M. Merro and M. Hennessy. Bisimulation congruences in safe ambients. In
Proc. of POPL’02, pages 71–80. ACM Press, 2002.

Using Ambients to Control Resources 27

20. L. Moreau. A distributed garbage collector with diffusion tree reorganisation
and mobile objects. In Proc. of ICFP’98, pages 204–215. ACM Press, 1998.

21. J. Riely and M. Hennessy. A typed language for distributed mobile processes.
In Proc. of POPL’98, pages 378–390. ACM Press, 1998.

22. D. Sangiorgi and A. Valente. A distributed abstract machine for Safe Ambi-
ents. In Proc. of ICALP’01, 2001.

23. V. Sassone, F. Barbanera, M. Bugliesi, and M. Dezani. A calculus of bounded
capacities. In Proc. of ASIAN’03, LNCS. Springer Verlag, 2003. to appear.

24. J.-B. Stefani. A calculus of Higher-Order Distributed Components. Technical
Report 4692, INRIA, 2003.

25. D. Teller. Formalisms for mobile resource control. In Proc. of FGC’03, vol-
ume 85 of ENTCS. Elsevier, 2003.

26. D. Teller, P. Zimmer, and D. Hirschkoff. Using Ambients to Control Resources.
In Proc. of CONCUR’02, LNCS. Springer Verlag, 2002.

27. A. Unyapoth. Nomadic Pi Calculi: Expressing and Verifying Infrastructure
for Mobile Computation. PhD thesis, Computer Laboratory, University of
Cambridge, june 2001.

28. J. Vitek and G. Castagna. Seal: A Framework for Secure Mobile Computa-
tions. In Internet Programming Languages, volume 1686 of LNCS. Springer
Verlag, 1999.

28 David Teller et al.

Appendix – Proof of Subject Reduction (Theorem 1)

Strengthening and Weakening The proofs of the following lemmas are easy,
and are not given.

Lemma 3 If Γ, n : A ` P : U and n /∈ fn(P), then Γ ` P : U .

Lemma 4 If Γ,X : U ′ ` P : U and X /∈ fv(P), then Γ ` P : U .

Lemma 5 If Γ ` P : U and n /∈ fn(P), then Γ, n : A ` P : U .

Structural Congruence

Lemma 6 If P ≡ Q and Γ ` P : U , then Γ ` Q : U .
If Q ≡ P and Γ ` P : U , then Γ ` Q : U .

Proof: By mutual induction, on the derivation of P ≡ Q and Q ≡ P .
Case S-parnil.

– If Γ ` P : CApr(t)[T], we can type Γ ` 0 : CApr(0)[T] and then
Γ ` P | 0 : CApr(t)[T] by CA-par.

– If Γ ` P | 0 : CApr(t)[T], this must have been derived by CA-par from
Γ ` P : CApr(t1)[T] and Γ ` 0 : CApr(t2)[T] with t1 + t2 = t. Since
t1 ≤ t, we have Γ ` P : CApr(t)[T] using Lemma 1.

Case S-respar.

– Suppose that Γ ` (νn : A)(P |Q) : CApr(t)[T]. This must have been
derived by CA-res from Γ, n : A ` P |Q : CApr(t)[T], which in turn
must have been derived by CA-par from Γ, n : A ` P : CApr(t1)[T] and
Γ, n : A ` Q : CApr(t2)[T] with t1+t2 = t. From the first affirmation, we
get Γ ` (νn : A)P : CApr(t1)[T] by CA-res. From the second one, and
since n /∈ fn(Q), we can use Lemma 2 and obtain Γ ` Q : CApr(t2)[T].
Finally, using CA-par, we get Γ ` (ν : A)P | Q : CApr(t)[T].

– Starting from Γ ` (ν : A)P | Q : CApr(t)[T], the reasoning is similar,
except that we use Lemma 4 instead of Lemma 2.

Case S-amb (for example). Γ ` m[P] : CApr(t)[T ′] must have been
derived by CA-amb from Γ ` m : CAam(s, e)[T] and Γ ` P : CApr(a)[T]
with a ≤ s and e ≤ t. By induction hypothesis, since P ≡ Q, we have
Γ ` Q : CApr(a)[T]. Then, using CA-amb, we can derive Γ ` m[Q] :
CApr(t′)[T].

The other cases are similar or trivial. �

Using Ambients to Control Resources 29

Substitution

Lemma 7 If Γ,X : U ` P : U ′ and Γ ` Q : U , then Γ ` P{X ← Q} : U ′.

Proof: Let U = CApr(t)[T]. In the derivation tree of Γ,X : U ` P : U ′,
all occurrences of X must have been typed using CA-var-proc. These
occurrences have the form Γ,X : U ` X : CApr(t′)[T] with t′ ≥ t. By
Lemma 1, we also have Γ ` Q : CApr(t′)[T]. We can then replace the
node X by a derivation subtree for Q. Thus, we get a derivation tree for
Γ,X : U ` P{X ← Q} : U ′. Finally, using Lemma 3, we can remove X from
the environment since it is no more used, and obtain: Γ ` P{X ← Q} : U ′.
�

Lemma 8 If Γ, y : A ` P : U and Γ ` x : A, then Γ ` P{y ← x} : U .

Proof: In the derivation tree of Γ, y : A ` P : U , all occurrences of y must
have been typed using CA-name. If we replace them with Γ ` x : A, we get
a derivation tree for Γ, y : A ` P{y ← x} : U . Finally, using Lemma 2, we
can remove y from the environment since it is no more used in P{y ← x}.
�

Proof of Theorem 1 (Subject Reduction). For any processes P,Q, resource
policy Γ and type U , if Γ ` P : U and P −→ Q, then Γ ` Q : U .
Proof: By induction on the derivation of P −→ Q.
Case R-in. If A −→ B by one step of R-in, we have

{
A = m[in n.P | Q] | n[in↓ m.R | S] | out↓ m.T
B = n[R | S | m[P | Q]] | T

Let Γ be an environment such that

{
Γ (m) = CAam(sm, em)[Tm]
Γ (n) = CAam(sn, en)[Tn]


Γ ` P : CApr(tP)[TP]
Γ ` Q : CApr(tQ)[TQ]
Γ ` R : CApr(tR)[TR]
Γ ` S : CApr(tS)[TS]
Γ ` T : CApr(tT)[TT]

This environment is generic and represents the general case. Let us follow
the only derivation which may type A in Γ :

30 David Teller et al.

Typing in n.P
Γ ` P : CApr(tP)[TP] by hypothesis
Γ ` n : CAam(sn, en)[Tn] by hypothesis
⇒ Γ ` in n.P : CApr(tP)[TP] CA-in

Typing in n.P | Q
Γ ` in n.P : CApr(tP)[TP] see above
Γ ` Q : CApr(tQ)[TQ] by hypothesis
⇒ Γ ` in n.P |Q : CApr(tP + tQ)[TP] CA-par

where TP = TQ

Typing m[in n.P |Q]
Γ ` in m.P |Q : CApr(tP + tQ)[TP] see above
Γ ` m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ ` m[in n.P | Q] : CApr(t1)[T1] CA-amb

where tP + tQ ≤ sm

em ≤ t1
TP = Tm

Typing in↓ m.R
Γ ` m : CAam(sm, em)[Tm] by hypothesis
Γ ` R : CApr(tR)[TR] by hypothesis
⇒ Γ ` in↓ m.R : CApr(tR + em)[TR] CA-coin

Typing in↓ m.R|S
Γ ` in↓ m.R : CApr(tR + em)[TR] see above
Γ ` S : CApr(tS)[TS] by hypothesis
⇒ Γ ` in↓ m.R|S : CApr(tS + tR + em)[TR] CA-par

where TS = TR

Typing n[in↓ m.R|S]
Γ ` in↓ m.R|S : CApr(tS + tR + em)[TR] see above
Γ ` n : CAam(sn, en)[Tn] by hypothesis
⇒ Γ ` n[in↓ m.R|S] : CApr(t2)[T2] CA-amb

where tS + tR + em ≤ sn

en ≤ t2
TR = Tn

Using Ambients to Control Resources 31

Typing out↓ m.T
Γ ` T : CApr(tT)[TT] by hypothesis
Γ ` m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ ` out↓ m.T : CApr(tT − em)[TT] CA-coout

where tT ≥ em

Typing n[. . .]|out↓ m.T
Γ ` out↓ m.T : CApr(tT − em)[TT] see above
Γ ` n[· · ·] : CApr(t2)[T2] see above
⇒ Γ ` n[· · ·]|out↓ m.T : CApr(tT + t2 − em)[TT] CA-par

where TT = T2

Typing A
Γ ` n[· · ·]|out↓ m.T : CApr(tT + t2 − em)[TT] see above
Γ ` m[· · ·] : CApr(t1)[T1] see above
⇒ Γ ` A : CApr(tT + t1 + t2 − em)[TT] CA-par

where TT = T1

From this set of preconditions, we deduce that the following derivation
is also valid:

Typing P |Q
Γ ` P : CApr(tP)[TP] by hypothesis
Γ ` Q : CApr(tQ)[TQ] by hypothesis

since TP = TQ

⇒ Γ ` P |Q : CApr(tP + tQ)[TP] CA-par
Typing m[P |Q]

Γ ` P |Q : CApr(tP + tQ)[TP] see above
Γ ` m : CAam(sm, em)[Tm] by hypothesis

since TP = Tm

tP + tQ ≤ sm

⇒ Γ ` m[P |Q] : CApr(em)[TR] CA-amb
Typing R|S

Γ ` R : CApr(tR)[TR] by hypothesis
Γ ` S : CApr(tS)[TS] by hypothesis

since TR = TS

⇒ Γ ` R|S : CApr(tR + tS)[TR] CA-par
Typing R | S | m[· · ·]

Γ ` m[P |Q] : CApr(em)[TR] see above
Γ ` R|S : CApr(tR + tS)[TR] see above
⇒ Γ ` R|S|m[· · ·] : CApr(tR + tS + em)[TR] CA-par

32 David Teller et al.

Typing n[R | S | m[· · ·]]
Γ ` R|S|m[· · ·] : CApr(tR + tS + em)[TR] see above
Γ ` n : CAam(sn, en)[Tn] by hypothesis

since en ≤ t2 ≤ t1 + t2 − em

TR = Tn

tR + tS + em ≤ sn

⇒ Γ ` n[· · ·] : CApr(t1 + t2 − em)[TT] CA-amb
Typing B

Γ ` n[· · ·] : CApr(t1 + t2 − em)[TT] see above
Γ ` T : CApr(tT)[TT] by hypothesis
⇒ Γ ` B : CApr(tT + t1 + t2 − em)[TT] CA-par

Case R-out. If A −→ B by one step of R-out, we have

{
A = n[m[out n.P | Q] | out↑ m.R | S] | in↑ m.T
B = m[P | Q] | n[R | S] | T

Let Γ be an environment such that

{
Γ (m) = CAam(sm, em)[Tm]
Γ (n) = CAam(sn, en)[Tn]


Γ ` P : CApr(tP)[TP]
Γ ` Q : CApr(tQ)[TQ]
Γ ` R : CApr(tR)[TR]
Γ ` S : CApr(tS)[TS]
Γ ` T : CApr(tT)[TT]

This environment is generic and represents the general case. Let us follow
the only derivation which may type A in Γ :

Typing out n.P
Γ ` P : CApr(tP)[TP] by hypothesis
⇒ Γ ` out n.P : CApr(tP)[TP] CA-out

Typing out n.P | Q
Γ ` out n.P : CApr(tP)[TP] see above
Γ ` Q : CApr(tQ)[TQ] by hypothesis
⇒ Γ ` out m.P |Q : CApr(tP + tQ)[TP] CA-par

where TP = TQ

Typing m[out n.P | Q]
Γ ` out m.P |Q : CApr(tP + tQ)[TP] see above
Γ ` m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ ` m[out n.P | Q] : CApr(t1)[T1] CA-amb

where tP + tQ ≤ sm

em ≤ t1, TP = Tm

Using Ambients to Control Resources 33

Typing out↑ m.R
Γ ` R : CApr(tR)[TR] by hypothesis
Γ ` m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ ` out↑ m.R : CApr(tR − em)[TR] CA-coout

where em ≤ tR
Typing out↑ m.R|S

Γ ` out↑ m.R : CApr(tR − em)[TR] see above
Γ ` S : CApr(tS)[TS] by hypothesis
⇒ Γ ` out↑ m.R|S : CApr(tS + tR − em)[TR] CA-par

where TS = TR

Typing m[· · ·] | out↑ m.R | S
Γ ` out↑ m.R|S : CApr(tS + tR − em)[TR] see above
Γ ` m[out n.P | Q] : CApr(t1)[T1] see above
⇒ Γ ` m[· · ·]|out↑ m.R|S : CApr(t1 + tS + tR − em)[TR] CA-par

where T1 = TR

Typing n[m[· · ·] | out↑ m.R | S]
Γ ` m[· · ·]|out↑ m.R|S : CApr(t1 + tS + tR − em)[TR] see above
Γ ` n : CAam(sn, en)[Tn] by hypothesis
⇒ Γ ` n[· · ·] : CApr(t2)[T2] CA-amb

where en ≤ t2
TR = Tn

t1 + tS + tR − em ≤ sn

Typing in↑ m.T
Γ ` T : CApr(tT)[TT] by hypothesis
Γ ` m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ ` in↑ m.T : CApr(tT + em)[TT] CA-coin

Typing A
Γ ` n[· · ·] : CApr(t2)[T2] see above
Γ ` in↑ m.T : CApr(tT + em)[TT] see above
⇒ Γ ` A : CApr(t2 + tT + em)[TT] CA-par

where T2 = TT

From this set of preconditions, we deduce that the following derivation
is also valid:

34 David Teller et al.

Typing P |Q
Γ ` P : CApr(tP)[TP] by hypothesis
Γ ` Q : CApr(tQ)[TQ] by hypothesis

since TP = TQ

⇒ Γ ` P |Q : CApr(tP + tQ)[TP] CA-par
Typing m[P |Q]

Γ ` P |Q : CApr(tP + tQ)[TP] see above
Γ ` m : CAam(sm, em)[Tm] by hypothesis

since TP = Tm

tP + tQ ≤ sm

⇒ Γ ` m[P |Q] CApr(em)[TT] CA-amb
Typing R|S

Γ ` R : CApr(tR)[TR] by hypothesis
Γ ` S : CApr(tS)[TS] by hypothesis

since TR = TS

⇒ Γ ` R|S : CApr(tR + tS)[TR] CA-par
Typing n[R|S]

Γ ` R|S : CApr(tR + tS)[TR] see above
Γ ` n : CAam(sn, en)[Tn] by hypothesis

since en ≤ t2
TR = Tn

tR + tS ≤ t1 − em + tR + tS ≤ sn

⇒ Γ ` n[R|S] CApr(t2)[TT] CA-amb
Typing n[R | S] | T

Γ ` n[R|S] CApr(t2)[TT] see above
Γ ` T : CApr(tT)[TT] by hypothesis
⇒ Γ ` n[R|S]|T : CApr(t2 + tT)[TT] CA-par

Typing B
Γ ` n[R|S]|T : CApr(t2 + tT)[TT] see above
Γ ` m[P |Q] CApr(em)[TT] see above
⇒ Γ ` B : CApr(t2 + tT + em)[TT] CA-par

Case R-open. If A −→ B by one step of R-open, we have{
A = h[open m.P | Q | m[open {m,h}.R | S]]
B = h[P | Q | R | S]

Let Γ be an environment such that

{
Γ (m) = CAam(sm, em)[Tm]
Γ (h) = CAam(sh, eh)[Th]


Γ ` P : CApr(tP)[TP]
Γ ` Q : CApr(tQ)[TQ]
Γ ` R : CApr(tR)[TR]
Γ ` S : CApr(tS)[TS]

This environment is generic and represents the general case. Let us follow
the only derivation which may type A in Γ :

Using Ambients to Control Resources 35

Typing open {m,h}.R
Γ ` R : CApr(tR)[TR] by hypothesis
Γ ` m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ ` open {m,h}.R : CApr(tR)[TR] CA-coopen

where Tm = TR

Typing open {m,h}.R | S
Γ ` open {m,h}.R : CApr(tR)[TR] see above
Γ ` S : CApr(tS)[TS] by hypothesis
⇒ Γ ` open {m,h}.R|S : CApr(tR + tS)[TR] CA-par

where TR = TS

Typing m[open {m,h}.R | S]
Γ ` open {m,h}.R|S : CApr(tR + tS)[TR] see above
Γ ` m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ ` m[· · ·] : CApr(t1)[T1] CA-amb

where tR + tS ≤ sm

em ≤ t1

Typing open m.P
Γ ` P : CApr(tP)[TP] by hypothesis
Γ ` m : CAam(sm, em)[Tm] by hypothesis
⇒ Γ ` open m.P : CApr(tP − em + sm)[TP] CA-open

where Tm = TP

tP − em + sm ≥ 0
Typing open m.P | Q

Γ ` open m.P : CApr(tP − em + sm)[TP] see above
Γ ` Q : CApr(tQ)[TQ] by hypothesis
⇒ Γ ` open m.P | Q : CApr(tP + tQ − em + sm)[TP] CA-par

where TP = TQ

Typing open m.P |Q|m[· · ·]
Γ ` open m.P | Q : CApr(tP + tQ − em + sm)[TP] see above
Γ ` m[· · ·] : CApr(t1)[T1] see above
⇒ Γ ` open m.P |Q|m[· · ·] : CApr(t0)[TP] CA-par

where TP = T1

t0 = tP + tQ − em + sm + t1

Typing A
Γ ` open m.P |Q|m[· · ·] : CApr(t0)[TP] see above

where t0 = tP + tQ − em + sm + t1
Γ ` h : CAam(sh, eh)[Th] by hypothesis
⇒ Γ ` A : CApr(t2)[T2] CA-amb

where eh ≤ t2
TP = Th

tP + tQ − em + sm + t1 ≤ sh

36 David Teller et al.

From these conditions, we deduce: TP = TQ = Th = TR = TS . Then, we
can easily type the following process with multiple applications of CA-par:

Γ ` P | Q | R | S : CApr(tP + tQ + tR + tS)[Th]

. Using the previous conditions, we find:

tP + tQ + tR + tS ≤ tP + tQ + sm ≤ tP + tQ + sm + t1 − em ≤ sh

Finally, we can apply CA-amb and obtain the typing:

Γ ` B : CApr(t2)[T2]

Case R-msg. If A −→ B by one step of R-msg, we have{
A = 〈n〉 | (x : N)P
B = P{x← n}

Let Γ be an environment such that{
Γ (n) = An

Γ, x : N ` P : CApr(tP)[TP]

This environment is generic and represents the general case. Let us follow
the only derivation which may type A in Γ :

Typing (x : N)P
Γ, x : N ` P : CApr(tP)[TP] by hypothesis
⇒ Γ ` (x : N)P : CApr(t2)[tP , N] CA-receive

where TP = tP
Typing 〈n〉

⇒ Γ ` 〈n〉 : CApr(t1)[t, An] CA-send
where t1 ≥ t

Typing A
Γ ` (x : N)P : CApr(t2)[tP , N] see above
Γ ` 〈n〉 : CApr(t1)[t, An] see above
⇒ Γ ` A : CApr(t1 + t2)[tP , An] CA-par

where N = An

t = tP

With the above conditions and by hypothesis, we have:

Γ, x : An ` P : CApr(tP)[tP , An]

and Γ ` n : An. Using Lemma 8, we get:

Γ ` P{x← n} : CApr(tP)[tP , An]

Then, since tP = t ≤ t1 ≤ t1 + t2, we can apply Lemma 1 and obtain:

Γ ` B : CApr(t1 + t2)[tP , An]

Using Ambients to Control Resources 37

Case R-rec. If A −→ B by one step of R-rec, we have{
A = rec X.P
B = P{X ← rec X.P}

The typing Γ ` A : CApr(t′)[T] must have been derived from

Γ,X : CApr(t)[T] ` P : CApr(t)[T]

with t′ ≥ t. Using the same rule, we can also conclude that Γ ` rec X.P :
CApr(t)[T]. By Lemma 7, we have:

Γ ` P{X ← rec X.P} : CApr(t)[T]

And finally, we get Γ ` B : CApr(t′)[T] by Lemma 1.
Case R-res. If A −→ B by one step of R-res, we have A = (νn : N)P
and B = (νn : N)Q, where P −→ Q. Let us note ∆ = Γ, n : N . Since A
may be typed in Γ , we easily find out that P may be typed in ∆ with type
U .

By induction hypothesis, we have ∆ ` Q : U . Hence, by CA-res, we
conclude Γ ` B : U .
Case R-par. If A −→ B by one step of R-par, we have A = P |Q and
B = P |R, where Q −→ R. Since A may be typed in Γ , so do P and Q.
Necessiraly, we have the following typings:

Γ ` A : CApr(tP + tQ)[T]
Γ ` P : CApr(tP)[T]
Γ ` Q : CApr(tQ)[T]

By induction hypothesis, we have Γ ` R : CApr(tQ)[T]. Finally, by CA-
par, we can conclude Γ ` B : CApr(tP + tQ)[T].
Case R-amb. If A −→ B by one step of R-amb, we have A = m[P]
and B = m[Q] where P −→ Q. Since A may be typed in Γ with type
CApr(t)[T], so does P with type CApr(tP)[Tm], and m using the type
CAam(sm, em)[Tm]. Additionnally, we have tP ≤ sm and em ≤ t.

By induction hypothesis, since P −→ Q, we also have that Γ ` Q :
CApr(tP)[Tm]. Since tP ≤ sm and em ≤ t, we may once again use CA-
amb. We then conclude that Γ ` B : CApr(t)[T].
Case R-≡. This case is trivial, by induction hypothesis and using Lemma 6
twice.

�

