The Mobility Workbench User’s Guide
Polyadic version 3.122

Bjorn Victor
October 9, 1995

Contents
1 Introduction

2 Input syntax
2.1 Model checking

3 Commands of the MWB
3.1 help . . . o .
3.2 quit ...
3.3 agent
34 clear e
3.5 env ..o
3.6 dinput "filename" o
3.7 equagenty agents L L
3.8 eqd (namey,...,name,) agenty agents
3.9 weqagenty agentso Lo
3.10 weqd (namey,...,name,) agenty agents
3.11 check agent formula L.
3.12 sort agento e
3.13 deadlocks agento o
3.14 step agent Lo
3.15 size agento
3.16 time command
AT set . . . e
38 show

4 Example use

5 Availability

1 Introduction

The Mobility Workbench (MWB) is a tool for manipulating and analyzing mo-
bile concurrent systems described in the m-calculus [MPW92, Mil91], developed
by Bjorn Victor!, Faron Moller?, Lars-Henrik Eriksson® and Mads Dam*. It is
written in Standard ML, and currently runs under the New Jersey SML com-
piler.

In the current version, the two basic functionalities are equivalence checking
and model checking.

The tool implements algorithms [Vic94] to decide the open bisimulation
equivalences of Sangiorgi [San93], for agents in the polyadic m-calculus with
the original positive match operator. This i1s decidable for w-calculus agents
with finite control, corresponding to CCS finite-state agents, which do not ad-
mit parallel composition within recursively defined agents.

The algorithm is based on the alternative “efficient” characterizations of the
equivalences described in [San93, Vic94], and generates the state space “on the
fly”. Algorithms for both the strong and weak equivalences are implemented.

The tool also contains an experimental implementation of Mads Dam’s model
checker [Dam93].

There are also commands e.g. for finding deadlocks and interactively simu-
lating an agent.

We refer to [MPW92, Mil91, San93, Vic94, Dam93] for the formal framework
of the tool; the m-calculus, the definition of the equivalences, the modal logic,
etc.

The MWB is undergoing constant and dynamic changes. This guide describes
the current version as of October 1995. Some parts of the guide will be rewritten,
and a section on sortings will be added.

2 Input syntax

Input lines can be split using the continuation character “\” at the end of an
input line, or (perhaps preferrably) by wrapping things in parentheses. Anything
between “(*” and “*)” is a comment and is treated as whitespace. Note that
comments cannot (at present) be nested.

The syntax of agents is given by the following grammar:

P = olapr ‘ pfe.P | [a=0b]P ‘ P\ P ‘ Pi+ Py ‘
Id<ulist> | (“ulist)P | (\nlist) P | [nist]P | (P)

where nlist is a (non-empty) comma-separated list of names; « is an action: 7
(silent) or a name (input) or a co-name (output); pfr is an abbreviated prefix
(see below); and Id is a name starting with an upper-case letter. Names must
start with a lowercase letter but can after that include the characters _, $, 7,
letters and digits. The parallel operator | binds stronger than summation +.
Both bind weaker than prefix . and match [..].

' Department of Computer Systems, Uppsala University, Box 325, S-751 05 Uppsala, Swe-
den; email: Bjorn.Victor@DoCS.UU.SE. Work supported by the ESPRIT BRA project 6454
“CONFER”

2SICS, Box 1263, S-164 28 Kista, Sweden; email: fm@sics.se. Work supported by the
ESPRIT BRA projects 7166 “CONCUR2” and 6454 “CONFER”.

3Logikkonsult NP AB, Swedenborgsgatan 2, S-118 48 Stockholm, Sweden; email:
lhe@lk.se. Work supported by the ESPRIT BRA projects 6454 “CONFER” and 8130
“LOMAPS”.

48ICS, Box 1263, S-164 28 Kista, Sweden; email: mfd@sics.se. Work supported by the
ESPRIT BRA project 8130 “LOMAPS”.

F o= TT Truth
FF Falsity
a=="b Equality between names
a#tb Inequalty between names
&, Conjunction
Fy|Fs Disjunction
not F Negation
<a>F Possibility modality
[a]F Necessity modality
Sigma a.l Sigma-expression
Bsigma a.F Bound sigma
Pi a.F Universal quantification
exists a.F Existential quantification
Id(nlist) Use of fixpoint identifier
(cld(nlist).F)(nlist) Fixpoint expression
old . F Alternative to the above without args
(F)

where o is either mu (least fixpoint operator) or nu (greatest fixpoint operator).

Figure 1: Syntax of formulae

The following translations and shorthands are used:

Input Translation

- v restriction

\ A abstraction

0 0 null process
o a output action
t T wnternal action
a(nlist) . a. (\nlist) mput prefiz
Ya<nlist>. ’a.[nlist] oulput prefiz

2.1 Model checking

The syntax of formulae is given by the grammar in Figure 1.

A brief description of the semantics is given in Figure 2. For full details,
please refer to [Dam93].

Note that modalities bind the action. That is, given a formula such as
<x>P, x is bound in P to the name of the action of some transition the agent
can perform. Example: a.A+b.B | <e>P iff A | P{a/x} or B E P{b/z}.
Another example: a.A+b.B |= [#]P iff A= P{a/z} and B | P{b/z}.

Modal logics often use another semantics where the actual name of the action
1s inside the diamond or box, rather than a bound variable. To achieve the same
effect with our semantics, write:

Other semantics Our semantics
[a]P o] (e | P)
<a>P <z>(a = & P)

Note also that, because of implementation issues, fixpoint formulae must
be closed. E.g. nu D.<x>(x=b&D) is invalid, but the equivalent formula (nu
D(b) .<x>(x=b&D(b))) (b) is OK. This will be remedies in the near future.

AETT

A EFF

AEa=1b
A = a#tb
AE P&Q
A PIQ
AlEnot P
AE<a>P

AE<ze>P
AE[«]P
AE[=zP

[a]A = Sigma z.P
("y)[y]A | Bsigma z.P

Always true.

Always false.

True iff @ and b are the same names.

True iff @ and b are different names.

True iff A |E P and A = Q.

True iff AE Por AEQ.

True iff not A | P.

True iff the agent can commit to some input action
A > a. A and A" = P{a/x}.

True iff the agent can commit to some output ac-
tion A ' a.A" and A’ | P{a/z}.

True iff for every input commitment A > a.A’ the
agent can perform, A’ = P{a/z}.

True iff for every output commitment A >’ a.A’
the agent can perform, A" |= P{a/x}.

True iff A | P{a/z}.

True iff A{a/y} E P{a/z}, where a is a new

name.5

AE(eD(xy,...,25).P)ay,. .., a,)

Fixpoint formula. True iff the appropriate fixpoint
of P is true. o should be nu for the greatest fix-
point or mu for the least fixpoint. The fixpoint
is a predicate with formal arguments z1,..., 2,
and actual arguments aq,...,a,. Within P, D is
bound to the fixpoint expression itself.

Figure 2: Brief semantics of formulae.

3 Commands of the MWB

3.1 help

gives a general help text. ? (questionmark) is a synonym for this command.

3.1.1 help command

gives a help text for command.

3.2 quit

terminates the program. End-of-file (typically Control-D) is a synonym for this
command.

3.3 agent

defines an agent identifier. Two equivalent examples:
agent P(x,y) = ("z)’x<y,z>.y(x,y).P<y,x>
agent P = (\x,y)("z)’x.[y,zly. (\x,y)P<y,x>

An agent definition must be closed, i.e., its free names must be a subset of
the argument list. Only guarded recursion is handled.

3.4 clear

removes agent identifier definitions. clear P removes the definition of the agent
identifier P, while clear without an argument removes all definitions.

3.5 env

prints all agent definitions in the environment. env P shows the definition of
the agent identifier P.

3.6 input "filename"

reads commands from the file named filename. The double quotes are part of
the syntax but not of the filename.

3.7 eq agent; agenly

checks whether agent; and agent, are strong open bisimulation equivalent.
If the two agents are equivalent, a bisimulation relation is available® for
inspection by the user.

3.8 eqd (namey,...,name,) agent; agents

checks whether agent; and agent, are strong open bisimulation equivalent given
the distinction formed by making name , ..., name, distinct from all free names
in agent; and agents. {namey, ..., name, } should be a subset of the free names
of agent; and agents. (Names not free in agent; or agent, are meaningless and
are simply removed).

6if MWB is running interactively, i.e. not reading commands from a file.

3.9 weq agent; ageniy

checks whether agent; and agents are weak open bisimulation equivalent.

3.10 weqd (namey,...,name,) agent; agents

checks whether agent; and agent; are weak open bisimulation equivalent given
the distinction formed by making name,,. .., name, distinct from all free names
in agent; and agents. {namey, ..., name, } should be a subset of the free names
of agent; and agents.

3.11 check agent formula

Responds yes if the agent is a model for the formula, otherwise no.

3.12 sort agent

Displays the object sort and most general sorting of agent, or gives an error
message if the agent doesn’t respect any sorting.

3.13 deadlocks agent

finds and describes deadlocks in the agent given as argument. It displays the
agent in which the deadlock is found.

The deadlocks are displayed as they are found, which makes the command
useful even if the state space 1s infinite.

3.14 step agent

interactively simulates the agent, by presenting the possible commitments of
the agent and letting the user select one, and repeating this until there are no
possible commitments. Typing q terminates the simulation.

3.15 size agent

gives a low measure of the graph size of the agent. This is not always minimal,
but the agent space being explored by the equivalence checking commands is
possibly larger.

3.16 time command

performs the command” and prints timing information for its execution.

3.17 set

sets various parameters of the MWB. set 7 shows what can be set.

3.17.1 set debug n

sets the debugging level of the program. n should be a non-negative integer;
the only value we expect to be valuable to users other than the developers is 0
(meaning debugging is turned off). The use of this command for higher values
of n is discouraged, and as such is left undocumented here.

7in non-interactive mode

3.17.2 set threshold n

sets the rehashing threshold of the internal hashtables to n%. n should be
between 1 and 100; its inital value is 30.

3.17.3 set remember on/off

sets whether commitments are recorded in hashtables whenever they are com-
puted, so as to save computational work. For large agents, this may require
large amounts of memory. Using set remember off lowers the memory re-
quirements, but may instead increase the runtime.

3.17.4 set rewrite on/off

sets the automatic rewrite flag on or off. With rewriting on, (vz)P = 0 if
Va : P = a.P',n(a) = x. Since the commitments of P are computed to see
if the rewrite is applicable, we do not recommend using set rewrite on in
combination with set remember off. With set remember on however, there
is no extra cost for computing these commitments.

3.18 show

shows various parameters of the MWB. show ? shows what can be shown.

3.18.1 show debug

shows the debug level.

3.18.2 show threshold
shows the rehash threshold.

3.18.3 show remember

shows the remember setting.

3.18.4 show version

shows the version of the MWB.

3.18.5 show all

shows all of the above.

3.18.6 show tables

shows the sizes etc of the internal hash tables used for recording commitments.

4 Example use

In Figure 3 we have a sample session which demonstrates some simple usage.

In the sample session, we first define an agent Buf1 implementing a one-place
buffer, then another, Buf2, implementing a two-place buffer by composing two
instances of Bufi, and finally three agents, Buf20, Buf21 and Buf22, together
implementing a two-place buffer without parallel composition.

The Mobility Workbench
(Polyadic version 3.122)

MWB> agent Bufil(i,o) i(x).’0<x>.Buf1(i,o)

MWB> agent Buf2(i,o) ("m) (Buf1(i,m) | Bufi(m,o0))

MWB> agent Buf20(i,o) = i(x).Buf21(i,o,x)

MWB> agent Buf21(i,o,x) = i(y).Buf22(i,o,x,y) + ’o<x>.Buf20(i,o0)
MWB> agent Buf22(i,o,x,y) = ’o<x>.Buf21(i,o,y)

MWB> weq Buf2(i,o) Buf20(i,o)

The two agents are related.

Relation size = 18. Do you want to see it? (y or mn) y

R= < ("v2) (i.(\x)’v2.[x]Bufi<i,v2> | v2.(\x)’i.[x]Bufl<v2,i>),
i. (\x)Buf21<i,i,x> > {}

MWB> step Buf2(i,o)
0: [>i.(\v2)("v3) (’v3.[v2]Bufi<i,v3> | v3.(\x) ’o.[x]Bufi<v3,o0>)
Step> 0
Abstraction (\v2)
0: I>t.("v3)(i.(\x)’v3.[x]Bufi<i,v3> | ’o0.[v2]Bufl<v3,o>)
Step> 0
0: |[i=ol>t.("v3) (°v3.[v2]Bufi<i,v3> | v3.(\x)’o.[x]Bufi<v3,o>)
1: [>i.(\v3) ("v4) (’v4.[v3]Bufl1<i,v4> | ’o.[v2]Bufi<v4,o>)
2: |>0.[v2]("v3) (i.(\x) ’v3.[x]Bufi<i,v3> | v3.(\x)’o.[x]Bufi<v3,0>)
Step> 1
Abstraction (\v3)
0: [>0.[v2]1("v4) Cv4.[v3]Bufi<i,v4> | v4.(\x)’o.[x]Bufi<v4,o>)
Step> quit

MWB> agent Buf22 = (\i,o,x,y) CCo.[x]Buf21(i,o,y) + [i=0lt.0)

MWB> weq Buf2 Buf20
The two agents are NOT related.

MWB> weqd (i) Buf2(i,o) Buf20(i,o)

The two agents are related.

Relation size = 8. Do you want to see it? (y or n) y

R =< ("v2) (i.(\x)’v2.[x]Bufi<i,v2> | v2.(\x) ’o.[x]Bufi<v2,0>),
i. (\x)Buf21<i,o,x> > {itto}

Figure 3: A simple sample session with the MWB.

We proceed with this example by comparing the two implementations for
weak equality. The MWB responds by saying that they are equivalent and that
it found a bisimulation relation with 18 tuples, and asks us if we want to inspect
it. We respond positively and the MWB prints out the relation as a list of pairs
of agents with associated distinction sets.

We then simulate the behaviour of the agent Buf2(i,0). The MWB presents
the possible commitments, including their least necessary conditions (if not
trivial), and prompts the user to select one of them. When the user selects a
commitment whose derivative is an abstraction or concretion, the bound names
are instantiated automatically. After having a single choice on the first two
steps, we then get a choice of three commitments; the first which is possible
only if the names i and o are the same.

Next, we change the definition of Buf22 to introduce a possible deadlock
and again check for weak equivalence between Buf2 and Buf20, this time as
abstractions, without instantiating their arguments. We find that they are not
equivalent, and proceed by trying to equate Buf2(i,o) and Buf20(i,o) under
the proviso that i is different from all other free names of the two agents (namely
o). Under this distinction, there are no deadlocks, and the MWB reports that
they are once again equivalent.

5 Availability

The MWB is available by anonymous FTP from the host ftp.docs.uu.sein the
directory pub/mwb. The file README contains further directions and information.
An up-to-date version of this guide i1s always part of the distribution.

Binary executables are provided for some architectures and operating sys-
tems. Source code is also provided which can be compiled with the SML-NJ
compiler. SML-NJ is currently available from the host £tp.research.att.com,
directory dist/ml and the host princeton.edu, directory pub/ml.

There is also information on the MWB available on the World Wide Web,
in the URL http://www.docs.uu.se/ victor/mwb.html.

Any bug reports, queries, feedback etc should be sent to:

email: mwb-bugs@DoCS.UU.SE
fax: +46 18 550225
mail: Bjorn Victor
Dept. of Computer Systems
Uppsala University
Box 325
S-751 05 Uppsala
SWEDEN

References

[Dam93] M. Dam. Model checking mobile processes. In E. Best, editor, CON-
CUR’93, {1 Intl. Conference on Concurrency Theory, volume 715
of Lecture Notes in Computer Science, pages 22-36. Springer-Verlag,
1993. Full version in Research Report R94:01, Swedish Institute of
Computer Science, Kista, Sweden.

[Mil91] R. Milner. The polyadic m-calculus: a tutorial. Technical Report
ECS-LFCS-91-180, Laboratory for Foundations of Computer Science,

[MPW92]

[San93]

[Vic94]

Department of Computer Science, University of Edinburgh, UK, Oc-
tober 1991. Also in Logic and Algebra of Specification, ed. F. L.
Bauer, W. Brauer and H. Schwichtenberg, Springer-Verlag, 1993.

R. Milner, J. Parrow and D. Walker. A calculus of mobile processes,
Parts I and I1. Journal of Information and Computation, 100:1-77,
September 1992.

D. Sangiorgi. A theory of bisimulation for the w-calculus. Technical
Report ECS-LFCS-93-270, Laboratory for Foundations of Computer
Science, Department of Computer Science, University of Edinburgh,
UK, June 1993. A revised version will appear in Acta Informatica. An
extended abstract appeared in E. Best, editor, CONCUR’93, {1* Intl.
Conference on Concurrency Theory, volume 715 of Lecture Notes in
Computer Science, pages 127-142. Springer-Verlag, 1993.

B. Victor. A Verification Tool for the Polyadic w-Calculus. Licen-
tiate thesis, Department of Computer Systems, Uppsala University,
Sweden, May 1994. Available as report DoCS 94/50.

10

