History-Dependent Automata

Ugo Montanari
Dipartimento di Informatica
Universita di Pisa

in collaboration with

Marzia Buscemi, GianLuigi Ferrari, Marco Pistore,
Roberto Raggi, Emilio Tuosto

Outline

® History Dependence

® Finite-State Verification of HD-Systems

@ History-Dependent Automata

® The Zoo of HD-Automata

® The HAL Environment

@ Coalgebras

® History-Dependent Automata with Symmetries
@ Bialgebras

® A Bialgebraic Theory of HD-Automata

® Permutation Algebras
® A new sufficient condition for lifting from Set to Alg(2)

® Conclusions & Future Work

History Dependence

® Ability of declaring new names (variables, locations, resources)
while computing and of referring to them later

® Examples:
— declarations in block structured languages
— mobile systems (e.g. Tecalculus): extrusion of new names
— causal systems (e.g. CCS with causality, Petri nets)
» every transition generates a new name (event)
» causally dependent transitions refer to it
— located systems: new localities are new names
— combination of the above
® Equivalence/congruence defined up to bisimilarity
® Ordinary definition with infinite supply of ordered fresh names

Finite-State Verification of HD-Systems

Useful for model checking causality properties
Several security properties expressed as semantic equivalence
Need of deallocation/reallocation of unused, old names

Similar to memory allocation/deallocation in block-structured
languages

Finiteness condition often fulfilled for protocols, coordinators
Fresh names cannot be chosen from a different set

Equivalent systems can have different free names (deadlocked,
unusable)

Difficult to agree on the choice of new names

Formal definition uses any fresh name => Iinfinite branching
transition system

Algorithms just assume that fresh, corresponding names are
the same

No coalgebraic representation of LTS, no minimal
representatives

History-Dependent Automata

@ States are equipped with local names

@ A transition is decorated by
— a label referring to names in the source state

— an injective function defining the names of the target state in
terms of

» (some of) the names of the source state
» fresh names generated in the transition
® Every bisimilar pair is equipped with a partial bijective
function defining name correspondence
@ Bisimilarity checks for compatibility of transition labels
and of correspondences In the target state.

® More complex definition for formal names in input
transitions

The Zoo of HD-Automata

@ HD-automata for
— early/late trcalculus
— CCS with localities, causality, P/T Petri nets
— open Trcalculus, asynchronous 1rcalculus
— causal dependency on graph rewriting

® Finite when there is a bounded number of threads
® HAL verification environment developed at IEI-CNR

@ HD-automata bisimilarity defined
— via span of open maps
— on the category of marked labeled graphs
— Internal on the category of named sets

® No minimal representatives

The HAL Environment

CCS with

m-calculus localities

(G 0

iRl
map

| S - -

| map , | map
ks

@-ID—au Lt]l‘.I'ILIL‘-:D

unfold.

ordinary automata

m-calculus

Petri nets

Al

logic locality logic

' '

i I
map | map |

=

|
y model and |
lequivalence
| |
 check |

o — ——

-

L9

' HD—I_ugi{: !

unfold.

logic for ordinary automata

e RS

JACK

HD Automata with Symmetries, |

Definition 32 (HD-automata) A HD-automaton with Symmetries (or sim-
ply HD-automaton) A is a tuple (S,sym, L,—), where:

S is the set of states;

sym : & — Sym associates to each state a finite-support symmetry;

L is the set of labels;

— C {{Q,,(,Q") | Q,Q € 8,1 € L, is a finite-kernel permutation} is
the transition relation, where:

-) and ()" are, respectively, the source and the target states;
- 1 1s the label of the transition, and

- ¢ is a permutation, that describes how the names of the target state @'
correspond, along this transition, to the names of the source state ().

Whenever (Q,1,(, Q') € —> then we write) %g 0.

HD Automata with Symmetries, |

Definition 34 (HD-bisimulation) Let A be a HD-automaton. A HD-sim-
ulation for A is a set of triples

R CH{{Q1,0,Q) | Q1,02 € Q, § i5 a finite-kernel permutation}

such that, whenever (1,8, Q) € R then:

o for each py € sym(Q:) and each Q) V¢, Q) there exist some ps € sym(Q»)

and some (09 li}{.ﬂ (), such that:
clp = n.'r”l}J where il il aﬂE_L Gégrﬂl;

it fl, e L
. (rl.lfs-;‘l ;E} ER, Whﬂ'rﬂ: ép: qilﬂf}’rﬂ(‘:l E‘f 1 & 0
k= e -1 N o o = 0

A HD-bisimulation for A is a set of triples R such that both R and R™'=
{{Q2,671, Q1) | {(Q1,8,Q2) € R} are HD-simulations for A.

Coalgebras

® Interactive systems as labeled transition systems

® Coalgebraic semantics of labeled transition
systems
— coalgebras dual to algebras
— Initial algebras vs. final coalgebras
— the uniqgue morphism identifies bisimilar states

— the image via the unigue morphism yields the
minimal representative

10

Algebras vs. Coalgebras

Category Set
Functor F
Function Function g
X h > Y
A A
f — g
F(h
F(X) () » F(Y)

h
A » B
Algebra A Algebra B
Category Alg(F)

Category Set
Functor F
Function Function g
X h > Y
f — g
v F(h v
F(X) () » F(Y)
h
A » B

Coalgebra A ~ Coalgebra B
Category Coalg(F) n

lterative Algorithm

h h, . =fF(h,)
X hy » 1 X n___y F(I)" X H » F(1)!
f
v F(h
F(X) (n) »F(l)n-#l

In the finite case the algorithm terminates
when the kernel of h, coincides with the kernel of h,

12

Category of Named Sets

Objects

A:(ns=(Q:Set,|-|:Q — w,<:Q x Q — Bool, G : [[. Pr({v1-vg} =2 {v1.0,4}))

with the constraint:

Vq: Qa.G aq permutation group and <4 total ordering

{q:Qata € {v1.vyy,)

Arrows

H:(nf=(s:ns,d:ns;h:Qs — Qu,2: [[,.q. -Pr({ha}a T {q}s))

with

Vq:Qsy Vo :Xuq. Gay(huq)io = Xpqand 0;Gs,q C XHg

Arrow composition

_so:nf xnf — nf partial
H;K is defined only if dig = sk
SH;K = SH

dm,k = dk

hax : Qsy — Qax = haihi
Yk (¢ Qsy) = Sk (hiq); Xrq

Identity

id:ns — nf
SidA =diga = A
hiaaq = q
Yiaaq = Gaq

13

Algebras & Coalgebras

® Compositional systems represented as algebras

® Compose both states and whole transition systems:
— In CCS p|q vs. the synchronization tree
synch(p|q) = synch(p)|synch(q)

® Commuting pentagonal diagram by Turi & Plotkin on
algebras/coalgebras => bialgebras

@ Sufficient conditions by Corradini, Heckel, Montanari on
algebraic specifications

® Simpler conditions by Buscemi, Montanari

® Bisimilarity is a congruence, existence of the minimal
representatives

14

Bialgebras

Coalgebras for Py, : Set — Set with
S = Peountabte(L % S)
are LTS's with countable degree.
Structured coalgebras: lift Py, to P} on Alg(%, E)
SOS rules in algebraic format define X-operations on

PL“A-H — Pﬂﬂlﬂﬁtﬂ-bEE(L X |"'1|J

E.g.
P3P Q35Q
[com] 2
P|Q — P'|@f
o S]ng — ... U

{{(r, P'|Q") | {(zy, P') € S1,(xy, Q") € S} U
{(r, P'|Q") | (zy, P') € 51,(zy, Q') € S2}

15

A Bialgebraic Theory of HD-Automata

Case study for the 1-calculus
Permutation algebras of states
Labeled transition system essentially the same

SOS rules in De Simone format propagating permutations through
transitions

Generation of new names obtained by shifting permutations
forwards

Conditions by Corradini, Heckel, Montanari satisfied

Orbits [p] = {p’|p’=p(p), p @ name permutation} of processes are
HD-states

Symmetries {p} = {p|p(p)= p} associated to states => fewer
transitions

HD-automata defined as coalgebras in the category of named sets
or as bialgebras on the category of permutation algebras coincide

16

Permutation Algebras

A permutation algebra A consists of:
e a set |A| of states (the support)

e for every permutation p : N — N, an operation
A
p” Al = |A
The operations should satisfy the axioms of permutations:

id4(X)=X and p*(p (X)) = (pop)A(X)

17

(Buscemui,

Lifting a Coalgebra from Set to Alg(2) vontanari)

Al —" || SEt

o=

Pr(|A|) TS Pr(|B|)

(v Alg(3)

Pa(A) mPA(B)

B: 2-algebra of interest

A: 2-algebra freely generated by B
h: surjective homomorphism

g: LTS of interest

f: LTS freely generated by g
E: a complete axiomatization of B

1f all the axioms 1n E bisimulate
then the diagram commutes 1n Set

if the diagram commutes in Set
with h surjective

then g 1s a homomorphism
and the diagram commutes 1n Alg(2)

18

Conclusions & Future Work

® A coalgebraic semantics for HD-automata

® A first-order, coalgebraic denotational semantics for
flat Tecalculus

® Existence of minimal realizations

® Uniform minimization algorithms (list partitioning by
Kanellakis & Smolka)

® Implementation of the minimization algorithm

® Non-flat T-calculus (parallel composition, restriction,
etc., but not prefix)

® Extensions to tecalculus with prefix, fusion calculus

® Extension to term/process passing calculi, symbolic
execution

19

Bibliography on HD-Automata and Coalgebras

Montanari, U. and Pistore, M., Checking Bisimilarity for Finitary pi-calculus, in: Insup Lee, Scott A. Smolka, Eds.,
CONCUR'95: Concurrency Theory, Springer LNCS 962, pp. 42-56.

Montanari, U., Pistore, M., and Yankelevich, D., Efficient Minimization up to Location Equivalence, in: Hanne Riis Nielson,
Ed., Programming Languages and Systems - ESOP'96, Springer LNCS 1058, pp. 265-279.

Montanari, U. and Pistore, M., Minimal Transition Systems for History-Preserving Bisimulation, in: Ruediger Reischuk,
Michel Morvan, Eds., STACS 97, Springer LNCS 1200, 1997, pp. 413-425.

Ferrari, G., Ferro, G., Gnesi, S., Montanari, U., Pistore, M. and Ristori, G., An Automata Based Verification Environment for
Mobile Processes, in: Ed Brinksma, Ed., TACAS 1997, Springer LNCS 1217, pp. 275-289.

Honsell, F., Lenisa, M., Montanari, U. and Pistore, M., Final Semantics for the Pi-Calculus, in: D. Gries and W-P. de Roever,
Eds., PROCOMET'98, Chapman & Hall 1998, pp. 226-243.

Ferrari, G., Gnesi, S., Montanari, U., Pistore, M. and Ristori, G., Verifying Mobile Processes in the HAL Environment, in:
Alan J. Hu and Moshe Y. Vardi, Eds., CAV'98, Springer LNCS 1427, pp.511-515.

Montanari, U. and Pistore, M., An Introduction to History Dependent Automata, in: Andrew Gordon, Andrew Pitts and
Carolyn Talcott, Eds, Second Workshop on Higher-Order Operational Techniques in Semantics (HOOTS II), ENTCS, Vol.
10, 1998.

Montanari, U. and Pistore, M., Finite State Verification for the Asynchronous Pi-Calculus, in: W. Rance Cleaveland, Ed.,
TACAS'99, Springer LNCS 1579, pp.255-269, 1999.

Corradini, A., Heckel, R. and Montanari, U., Compositional SOS and Beyond: A Coalgebraic view of Open Systems, TCS, to
appear.

Montanari, U. and Pistore, M., Pi-Calculus, Structured Coalgebras and Minimal HD-Automata, in: Mogens Nielsen and
Branislav Roman, Eds., Proc. MFCS 2000, Springer LNCS 1983.

Ferrari, G., Montanari, U. and Pistore, M., Minimizing Transition Systems for Name Passing Calculi: A Co-algebraic
Formulation, paper submitted for publication.

Baldan, P., Corradini, A. and Montanari, U., Bisimulation Equivalences for Graph Grammars, in Wilfried Brauer, Juhani
Karhumaeki, Arto Salomaa and Hartmut Ehrig, Festschrift in Honor of Grzegorz Rozeberg, Springer LNCS, 2002.

Ferrari, G., Montanari, U. and Pistore, M., Minimizing Transition Systems for Name Passing Calculi: A Co-algebraic
Formulation, Procs. ESOP 2002.

Buscemi, M.G. and Montanari, U., A First Order Coalgebraic Model of Pi-Calculus Early Observational Equivalence, paper
sumbitted for publication.

