Optimising Quantified Expressions in Constraint Models

Ian P. Gent, Ian Miguel and Andrea Rendl
University of St Andrews, UK AIT Austrian Institute of Technology, Austria

September 2010
Workshop on Modelling and Reformulation

Context of this Work

■ Quantified expressions in solver-independent constraint modelling languages

Context of this Work

■ Quantified expressions in solver-independent constraint modelling languages

- Example:
forall $\mathrm{i}, \mathrm{j}: \operatorname{int}(1 . . n)$.
$(\mathrm{i} \neq \mathrm{j}) \Rightarrow(\mathrm{q}[\mathrm{i}]-\mathrm{i} \neq \mathrm{q}[\mathrm{j}]-\mathrm{j})$

Context of this Work

■ Quantified expressions in solver-independent constraint modelling languages

- Example:
forall $i, j: \operatorname{int}(1 . . n)$.

$$
(\mathrm{i} \neq \mathrm{j}) \Rightarrow(\mathrm{q}[\mathrm{i}]-\mathrm{i} \neq \mathrm{q}[\mathrm{j}]-\mathrm{j})
$$

■ powerful means to compactly represent a set of expressions

Context of this Work

■ Quantified expressions in solver-independent constraint modelling languages

- Example:
forall $\mathrm{i}, \mathrm{j}: \operatorname{int}(1 . . n)$.

$$
(\mathrm{i} \neq \mathrm{j}) \Rightarrow(\mathrm{q}[\mathrm{i}]-\mathrm{i} \neq \mathrm{q}[\mathrm{j}]-\mathrm{j})
$$

- powerful means to compactly represent a set of expressions
- same structure in all constraint modelling languages

Context of this Work

■ Quantified expressions in solver-independent constraint modelling languages

- Example: forall $i, j: \operatorname{int}(1 . . n)$.

$$
(\mathrm{i} \neq \mathrm{j}) \Rightarrow(\mathrm{q}[\mathrm{i}]-\mathrm{i} \neq \mathrm{q}[\mathrm{j}]-\mathrm{j})
$$

- powerful means to compactly represent a set of expressions
- same structure in all constraint modelling languages
- restriction: no decision variables in i_{1}, \ldots, i_{m} and $\operatorname{int(lb..ub)~}$

Goal and Contributions

- Our Observation:
quantified expressions can contain redundancies, often when formulated by novices

Goal and Contributions

■ Our Observation:
quantified expressions can contain redundancies, often when formulated by novices

- Our Goal:
automatically improve poorly formulated quantified expressions

Goal and Contributions

- Our Observation:
quantified expressions can contain redundancies, often when formulated by novices
- Our Goal:
automatically improve poorly formulated quantified expressions

■ Our Contributions:

- we consider 2 kinds of redundancies

Goal and Contributions

■ Our Observation:
quantified expressions can contain redundancies, often when formulated by novices

■ Our Goal:
automatically improve poorly formulated quantified expressions

■ Our Contributions:

- we consider 2 kinds of redundancies
- we propose means to detect and address those redundancies

1 Loop-invariant Expressions

2 Weak Guards

3 Summary

Loop-invariant Expressions

■ Idea: analyse equivalent representations of quantified expressions

Loop-invariant Expressions

■ Idea: analyse equivalent representations of quantified expressions

- Example: $\quad(x=0) \Rightarrow \forall_{i \in D} \cdot(x[i]=i)$

Loop-invariant Expressions

■ Idea: analyse equivalent representations of quantified expressions

- Example:

$$
\begin{gathered}
(\mathrm{x}=0) \Rightarrow \forall_{i \in D} \cdot(x[i]=i) \\
\equiv \\
\forall_{i \in D} \cdot(\mathrm{x}=0) \Rightarrow(x[i]=i)
\end{gathered}
$$

Loop-invariant Expressions

■ Idea: analyse equivalent representations of quantified expressions

- Example:

$$
\begin{gathered}
(x=0) \Rightarrow \underset{i \in D .}{ } \quad(x[i]=i) \\
\equiv \\
\forall_{i \in D} \cdot(x=0) \Rightarrow(x[i]=i)
\end{gathered}
$$

■ we call ' $(x=0)$ ' loop-invariant

Loop-invariant Expressions

■ Idea: analyse equivalent representations of quantified expressions

- Example:

$$
\begin{gathered}
(x=0) \Rightarrow \underset{i \in D .}{ } \quad(x[i]=i) \\
\equiv \\
\forall_{i \in D} \cdot(x=0) \Rightarrow(x[i]=i)
\end{gathered}
$$

- we call ' $(x=0)$ ' loop-invariant

■ Question: which representation is better?

Loop-invariant Expressions

■ Many different cases....
$1 \mathbf{A} \wedge \forall_{I} E_{I} \equiv \forall_{I} \mathbf{A} \wedge E_{I}$

Loop-invariant Expressions

■ Many different cases....
$1 \mathrm{~A} \wedge \forall_{1} E_{I} \equiv \forall_{1} \mathrm{~A} \wedge E_{I}$
$2 \mathrm{~A} \vee \exists_{l} E_{I} \equiv \exists_{l} \mathrm{~A} \vee E_{I}$
$3 \mathrm{~mA}+\sum_{1} E_{l} \equiv \sum_{l} \mathrm{~A}+E_{l} \quad$ where $m=|I|$
$\left.4 \mathbf{A} \vee\left(\forall_{1} E_{l}\right)\right) \equiv \forall_{1} \mathbf{A} \vee E_{l}$
5 etc

Loop-invariant Expressions

■ Many different cases....
$1 \mathbf{A} \wedge \forall_{1} E_{I} \equiv \forall_{1} \mathbf{A} \wedge E_{I}$
$2 \mathrm{~A} \vee \exists_{I} E_{I} \equiv \exists_{l} \mathrm{~A} \vee E_{I}$
$3 \mathrm{~mA}+\sum_{1} E_{I} \equiv \sum_{1} \mathrm{~A}+E_{I} \quad$ where $m=|I|$
$\left.4 \mathrm{~A} \vee\left(\forall_{1} E_{l}\right)\right) \equiv \forall_{1} \mathbf{A} \vee E_{l}$
5 etc

- Intuitively, we expect the outside-representation to be better...

Loop-invariant Expressions

■ Many different cases....
$1 \mathrm{~A} \wedge \forall_{1} E_{I} \equiv \forall_{1} \mathrm{~A} \wedge E_{I}$
$2 \mathrm{~A} \vee \exists_{1} E_{I} \equiv \exists_{1} \mathrm{~A} \vee E_{I}$
$3 \mathrm{~mA}+\sum_{l} E_{l} \equiv \sum_{l} \mathrm{~A}+E_{l} \quad$ where $m=|I|$
$\left.4 \mathrm{~A} \vee\left(\forall_{1} E_{l}\right)\right) \equiv \forall_{1} \mathbf{A} \vee E_{l}$
5 etc
■ Intuitively, we expect the outside-representation to be better... is this true for all cases?

Comparing Representations

■ We compare representations at solver level (flat representation)

Comparing Representations

■ We compare representations at solver level (flat representation)
■ We assume the solver provides:

- (reifyable) n-ary conjunction (\forall)
- (reifyable) n-ary disjunction (\exists)
- n-ary sum (\sum)

Comparing Representations

■ We compare representations at solver level (flat representation)
■ We assume the solver provides:

- (reifyable) n-ary conjunction (\forall)
- (reifyable) n-ary disjunction (\exists)
- n-ary sum (\sum)
- Let's look at one case (see paper for other cases):
$A \Rightarrow\left(\forall_{l} E_{l}\right) \equiv \forall_{1} A \Rightarrow E_{l}$

Comparing Representations

	Inside-Representation	Outside-Representation
Original	$\left(\forall I A \Rightarrow E_{l}\right)$	$A \Rightarrow\left(\forall_{l} E_{l}\right)$

Comparing Representations

	Inside-Representation	Outside-Representation
Original	$\left(\forall, A \Rightarrow E_{l}\right)$	$A \Rightarrow\left(\forall, E_{l}\right)$
Unrolled	$\left(A \Rightarrow E_{1}\right) \wedge$	$A \Rightarrow\left(E_{1} \wedge \cdots \wedge E_{k}\right)$
	\ldots	
	$\left(A \Rightarrow E_{k}\right)$	

Comparing Representations

	Inside-Representation	Outside-Representation
Original	$\left(\forall / A \Rightarrow E_{l}\right)$	$A \Rightarrow\left(\forall_{l} E_{l}\right)$
Unrolled	$\left(A \Rightarrow E_{1}\right) \wedge$	$A \Rightarrow\left(E_{1} \wedge \cdots \wedge E_{k}\right)$
	\ldots	
	$\left(A \Rightarrow E_{k}\right)$	
Flat	$a \Rightarrow e_{1}$	$a u x \Leftrightarrow\left(e_{1} \wedge \cdots \wedge e_{k}\right)$
(unnested)	\cdots	$a \Rightarrow a u x$
	$a \Rightarrow e_{k}$	

Comparing Representations

	Inside-Representation	Outside-Representation
Original	$\left(\forall / A \Rightarrow E_{l}\right)$	$A \Rightarrow\left(V_{I} E_{l}\right)$
Unrolled	$\left(A \Rightarrow E_{1}\right) \wedge$	$A \Rightarrow\left(E_{1} \wedge \cdots \wedge E_{k}\right)$
	\ldots	
	$\left(A \Rightarrow E_{k}\right)$	
Flat	$a \Rightarrow e_{1}$	$a u x \Leftrightarrow\left(e_{1} \wedge \cdots \wedge e_{k}\right)$
(unnested)	\ldots	$a \Rightarrow \operatorname{aux}$
	$a \Rightarrow e_{k}$	
	0 auxiliary variables	1 auxiliary variable
	k constraints	2 constraints

Comparing Representations

■ Inside-Representation: more constraints (increasing with k), no additional variables

Comparing Representations

■ Inside-Representation: more constraints (increasing with k), no additional variables
■ Outside-Representation: only two constraints but 1 additional variable

Comparing Representations

■ Inside-Representation: more constraints (increasing with k), no additional variables

■ Outside-Representation: only two constraints but 1 additional variable

■ Let's compare the representations in an example!

Example: Peaceful Army of Queens

Place two equally-sized armies of queens on a chess board such that they do not attack another, maximising the army size

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):
forall fields (i, j) on the chess board.

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):
forall fields (i, j) on the chess board.
white queen at field $(i, j) \quad \Rightarrow$

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):
forall fields(i,j) on the chess board.
white queen at field $(i, j) \quad \Rightarrow$ forall k.
no black queen at field(i,k) (same column)

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):
forall fields(i,j) on the chess board.
white queen at field $(i, j) \quad \Rightarrow$ forall k.
no black queen at field(i,k) (same column)
\wedge no black queen at field (k, j) (same row)

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):
forall fields(i, j) on the chess board.
white queen at field $(i, j) \quad \Rightarrow$
forall k.
no black queen at field(i,k) (same column)
\wedge no black queen at field (k, j) (same row)
\wedge no black queen at field $(i+k, j+k)$ (NW-diagonal)
\wedge no black queen at field($i-k, j+k)$ (SW-diagonal)
\wedge no black queen at field(i+k,j-k) (NE-diagonal)
\wedge no black queen at field(i-k,j-k) (SE-diagonal)

Peaceful Army of Queens: Inside Representation

Alternatively, moving loop-invariant expression inside:
forall fields(i,j) on the chess board.

Peaceful Army of Queens: Inside Representation

Alternatively, moving loop-invariant expression inside:
forall fields (i, j) on the chess board.
forall k.
white queen at field $(i, j) \quad \Rightarrow$
no black queen at field(i, k) (column)

Peaceful Army of Queens: Inside Representation

Alternatively, moving loop-invariant expression inside:
forall fields (i, j) on the chess board.
forall k.
white queen at field $(i, j) \quad \Rightarrow$ no black queen at field(i, k) (column)
\wedge forall k.
white queen at field $(i, j) \quad \Rightarrow$
\wedge no black queen at field (k, j) (row)

Peaceful Army of Queens: Inside Representation

Alternatively, moving loop-invariant expression inside:
forall fields (i, j) on the chess board.
forall k.
white queen at field $(i, j) \quad \Rightarrow$ no black queen at field(i, k) (column)
\wedge forall k.
white queen at field $(i, j) \quad \Rightarrow$
\wedge no black queen at field (k, j) (row)
\wedge forall k.
white queen at field $(i, j) \quad \Rightarrow$
\wedge no black queen at field $(i+k, j+k)$ (NW-diagonal)

Comparing Inside- and Outside-Representation

What did we do?
1 We modelled two different PAQ models (in Essence')

Comparing Inside- and Outside-Representation

What did we do?
1 We modelled two different PAQ models (in Essence')
2 We translated both models to solvers Gecode and Minion (using Tailor), generating:

Comparing Inside- and Outside-Representation

What did we do?

1 We modelled two different PAQ models (in Essence')
2 We translated both models to solvers Gecode and Minion (using Tailor), generating:

- outside-representation
- inside-representation
for both models

Comparing Inside- and Outside-Representation

What did we do?

1 We modelled two different PAQ models (in Essence')
2 We translated both models to solvers Gecode and Minion (using Tailor), generating:

- outside-representation
- inside-representation
for both models
3 We solved both representations using the same solving setup

Comparing Number of Constraints

Inside-Representation has far more constraints than Outside-Representation
nstraint Reduction with Inside Represt

Comparing Number of Auxiliary Variables

Inside-Representation has 30\% less auxiliary variables than Outside-Representation

Variable Reduction with Inside Repre

Comparing Number Solving Performance

■ Inside-Rep. better in Minion (speedup of max. 300\%)
■ Inside-Rep. slightly better in Gecode (speedup of max. 30\%)

Conclusion on Loop-Invariant Expressions

- Against our expectations: it can be beneficial to move loop-invariant expressions into quantifications

Conclusion on Loop-Invariant Expressions

- Against our expectations: it can be beneficial to move loop-invariant expressions into quantifications
- Difficult to make a general statement
- depends on solver (provided propagators, architecture, etc)
- depends on problem structure

Conclusion on Loop-Invariant Expressions

- Against our expectations: it can be beneficial to move loop-invariant expressions into quantifications
- Difficult to make a general statement
- depends on solver (provided propagators, architecture, etc)
- depends on problem structure
- Tailor can automatically reformulate quantifications to inside/outside-representation
- user can choose preferable representation (for each case) in translation settings

1 Loop-invariant Expressions

2 Weak Guards

3 Summary

Weak Guards

- A guard B for an expression E has to hold to enforce E
- $B \Rightarrow E$

Weak Guards

- A guard B for an expression E has to hold to enforce E
- $B \Rightarrow E$

■ Often used in modelling, mostly to restrict quantifying variables

Weak Guards

- A guard B for an expression E has to hold to enforce E
- $B \Rightarrow E$
- Often used in modelling, mostly to restrict quantifying variables

■ Example:
forall i, j in (1..n).

$$
(i \neq j) \Rightarrow \text { queen }[\mathrm{i}]+\mathrm{i} \neq \text { queen }[\mathrm{j}]+\mathrm{j}
$$

Weak Guards

■ If guards are weak they yield duplicate constraints

Weak Guards

- If guards are weak they yield duplicate constraints
- forall i, j in (1..n).

$$
(i \neq j) \Rightarrow \text { queen }[i]+\mathrm{i} \neq \text { queen }[\mathrm{j}]+\mathrm{j}
$$

Weak Guards

- If guards are weak they yield duplicate constraints
- forall i, j in (1..n).

$$
(i \neq j) \Rightarrow \text { queen }[i]+\mathrm{i} \neq \text { queen }[\mathrm{j}]+\mathrm{j}
$$

- is unrolled to:

$$
\begin{array}{ll}
\text { queen }[1]+1!=\text { queen }[2]+2, & \text { queen }[1]+1!=\text { queen }[3]+3, \\
\text { queen }[2]+2!=\text { queen }[1]+1, & \text { queen }[2]+2!=\text { queen }[3]+3, \\
\text { queen }[3]+3!=\text { queen }[2]+2, & \text { queen }[3]+3!=\text { queen }[1]+1,
\end{array}
$$ etc

Weak Guards

- If guards are weak they yield duplicate constraints
- forall i, j in (1..n).

$$
(i \neq j) \Rightarrow \text { queen }[i]+\mathrm{i} \neq \text { queen }[\mathrm{j}]+\mathrm{j}
$$

- is unrolled to:

$$
\begin{array}{ll}
\text { queen }[1]+1!=\text { queen }[2]+2, & \text { queen }[1]+1!=\text { queen }[3]+3, \\
\text { queen }[2]+2!=\text { queen }[1]+1, & \text { queen }[2]+2!=\text { queen }[3]+3, \\
\text { queen }[3]+3!=\text { queen }[2]+2, & \text { queen }[3]+3!=\text { queen }[1]+1,
\end{array}
$$ etc

Weak Guards

- If guards are weak they yield duplicate constraints
- forall i, j in (1..n).

$$
(i \neq j) \Rightarrow \text { queen }[i]+\mathrm{i} \neq \text { queen }[\mathrm{j}]+\mathrm{j}
$$

- is unrolled to:

$$
\begin{array}{ll}
\text { queen }[1]+1!=\text { queen }[2]+2, & \text { queen }[1]+1!=\text { queen }[3]+3, \\
\text { queen }[2]+2!=\text { queen }[1]+1, & \text { queen }[2]+2!=\text { queen }[3]+3, \\
\text { queen }[3]+3!=\text { queen }[2]+2, & \text { queen }[3]+3!=\text { queen }[1]+1,
\end{array}
$$ etc

Addressing Weak Guards

■ Option1: remove duplicate constraints after quantification is unrolled

Addressing Weak Guards

- Option1: remove duplicate constraints after quantification is unrolled
- problem: only possible when quantification can be unrolled, i.e. all parameters are known

Addressing Weak Guards

- Option1: remove duplicate constraints after quantification is unrolled
- problem: only possible when quantification can be unrolled, i.e. all parameters are known

■ Option2: strengthen the guard!

Strengthening Guards

■ Our Idea: use unification to strengthen guards

Strengthening Guards

■ Our Idea: use unification to strengthen guards
■ Unification Example:

- What is the unifier for ' $x+i$ ' and ' $x+3$ ' ?

Strengthening Guards

■ Our Idea: use unification to strengthen guards
■ Unification Example:

- What is the unifier for ' $x+i$ ' and ' $x+3$ ' ?
- $u=\{3 / i\} \quad(i$ substituted with 3$)$

■ We want to demonstrate the algorithm on an example...

Strengthening the Guard in Golomb Ruler

A Golomb Ruler has n ticks such that the distance between each tick is different, minimising the length of the ruler.

Strengthening the Guard in Golomb Ruler

A Golomb Ruler has n ticks such that the distance between each tick is different, minimising the length of the ruler.

Sample Golomb Ruler with 4 ticks and length 6:

Strengthening the Guard in Golomb Ruler

'The distances between all ticks are different'-Constraint:

Strengthening the Guard in Golomb Ruler

'The distances between all ticks are different'-Constraint:
forall $i 1, i 2, i 3, i 4:$ TICKS.

$$
((i 1>i 2) \wedge(i 3>i 4) \wedge(i 2 \neq i 4)) \Rightarrow
$$

(ruler[i1]-ruler[i2] \neq ruler[i3]-ruler[i4])

Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD $\left(\forall_{l}: D . B_{I} \Rightarrow E_{l}\right)$

Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD $\left(\forall_{l}: D \cdot B_{l} \Rightarrow E_{l}\right)$

- (1) If E_{I} 's root node corresponds to a binary commutative operator then continue, otherwise stop.

Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD $\left(\forall_{l}: D . B_{I} \Rightarrow E_{l}\right)$

- (1) If E_{I} 's root node corresponds to a binary commutative operator then continue, otherwise stop.
forall $i 1, i 2, i 3, i 4:$ TICKS. $((i 1>i 2) \wedge(i 3>i 4) \wedge(i 2 \neq i 4)) \Rightarrow$ (ruler[ii]-ruler[i2] \neq ruler[i3]-ruler[i4])

Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD $\left(\forall_{l}: D . B_{I} \Rightarrow E_{l}\right)$

- (2) Compute the set of unifiers U for the two children of E_{l}, e_{1} and e_{2}.

UNIFY (ruler[i1]-ruler[i2], ruler[i3]-ruler[i4]):

$$
\begin{array}{ll}
u_{1}=\left\{i_{1} / i_{3} \wedge i_{2} / i_{4}\right\} & u_{2}=\left\{i_{3} / i_{1} \wedge i_{4} / i_{2}\right\} \\
u_{3}=\left\{i_{3} / i_{1} \wedge i_{2} / i_{4}\right\} & u_{4}=\left\{i_{1} / i_{3} \wedge i_{4} / i_{2}\right\}
\end{array}
$$

Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD $\left(\forall_{l}: D \cdot B_{l} \Rightarrow E_{l}\right)$

- (3) Search U for unifiers from which we can deduce equivalence of the quantifying variables.

UNIFY (ruler[i1]-ruler[i2], ruler[i3]-ruler[i4]):

$$
\begin{array}{ll}
u_{1}=\left\{i_{1} / i_{3} \wedge i_{2} / i_{4}\right\} & u_{2}=\left\{i_{3} / i_{1} \wedge i_{4} / i_{2}\right\} \\
u_{3}=\left\{i_{3} / i_{1} \wedge i_{2} / i_{4}\right\} & u_{4}=\left\{i_{1} / i_{3} \wedge i_{4} / i_{2}\right\}
\end{array}
$$

we deduce that $\left(i_{1}=i_{3}\right) \wedge\left(i_{2}=i_{4}\right)$

Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD $\left(\forall_{l}: D . B_{l} \Rightarrow E_{l}\right)$

- (4) Add lex-ordering constraint C on all quantifying variables whose equivalence renders e_{1} and e_{2} equivalent

C: $\quad i_{1}, i_{2} \leq_{l e x} i_{3}, i_{4}$
hence $\left(i_{1} \leq i_{3}\right) \wedge\left(i_{1}<i_{3} \vee i_{2} \leq i_{4}\right)$

Strengthening the Guard in Golomb Ruler

Yielding the constraint with strengthend guard:
forall $i 1, i 2, i 3, i 4:$ TICKS.

$$
\begin{aligned}
& ((i 1>i 2) \wedge(i 3>i 4) \wedge(i 2 \neq i 4) \wedge \\
& \left.\quad\left(i_{1} \leq i_{3}\right) \wedge\left(i_{1}<i_{3} \vee i_{2} \leq i_{4}\right)\right) \\
& \quad \Rightarrow
\end{aligned}
$$

(ruler[ii]-ruler[i2] \neq ruler[i3]-ruler[i4])

Strengthening the Guard in Golomb Ruler

Yielding the constraint with strengthend guard:
forall $i 1, i 2, i 3, i 4:$ TICKS.

$$
\begin{aligned}
& ((i 1>i 2) \wedge(i 3>i 4) \wedge(i 2 \neq i 4) \wedge \\
& \left.\left(i_{1} \leq i_{3}\right) \wedge\left(i_{1}<i_{3} \vee i_{2} \leq i_{4}\right)\right) \\
& \quad \Rightarrow \\
& \quad(\text { ruler }[i 1] \text {-ruler }[i 2] \neq \text { ruler[i3]-ruler[i4] })
\end{aligned}
$$

However: we have not implemented the algorithm yet!

Effects of Duplicate constraints

- How bad is the effect of duplicate constraints due to weak guards?

■ in other words: is it worth putting energy into strengthening guards?

Effects of Duplicate constraints

- How bad is the effect of duplicate constraints due to weak guards?
- in other words: is it worth putting energy into strengthening guards?
- We analyse the effects on two naive models in solver Minion and Gecode:
- Naive n-Queens
- Naive Golomb Ruler

The Number of Duplicate Constraints

For both solvers: constant for n -Queens, linear within Golomb Ruler

Effect on Solving Performance

strong effect in Gecode, mild effect in Minion

Conclusions for Weak Guards

■ Duplicate constraints can impair the solving performance

Conclusions for Weak Guards

■ Duplicate constraints can impair the solving performance
■ We have an idea on how to strengthen guards to address this redundancy

Conclusions for Weak Guards

■ Duplicate constraints can impair the solving performance
■ We have an idea on how to strengthen guards to address this redundancy

■ We still need to implement/test/refine the algorithm..

Summary

- There is scope for optimisations in quantifications

Summary

- There is scope for optimisations in quantifications
- We can already provide some enhancement

Summary

- There is scope for optimisations in quantifications
- We can already provide some enhancement
- But there is still a lot to investigate!

Thank You．

