Constraint solving on modular integers

Arnaud Gotlieb*, Michel Leconte**, Bruno Marre***

* INRIA Research center of Bretagne - Rennes Atlantique
** ILOG Lab, IBM France
*** CEA List

Software Verification with CP

- Automatic verification of programs (e.g., a C function or a Java method) requires the generation of test input that reach given locations

```
f( int i, int j) Values of (i,j) to reach ...?
            int tmp = i+j ;
            if( tmp > i*j)
        requires to solve
        i+j> i*j
```

- Constraint-Based Testing tools include techniques that address this problem with:
- CP over Finite Domains techniques
- Abstract domains computations (Intervals, Polyhedra, Congruences, ...)

Wrap-around integer computations

- Most architectures implement wrap-around arithmetic (modular integers) :

```
char (-128..127, 1 byte), unsigned char (0..255, 1 byte),
short(-32768..32767, 2 byte), unsigned short (0..65535, 2 byte),
long (-2147483648..2147483647, 4 byte), unsigned long (0.. 4294967295,4 byte),
```

- Problem in the previously mentionned tools:

Expressions are interpreted using ideal integer arithmetic rather than wrap-around integer arithmetic

- Example:

the C expression should be interpreted as rather than just

$$
\begin{array}{ll}
\text { short } a, b, c ; c=a+b \\
c=a+b \bmod \left(2^{16}\right) & \text { in }-32768 . .32767 \\
c=a+b & \text { in inf .. sup }
\end{array}
$$

Programs that suppose wrap-around integer computations

- Good programming practices suggest taking care of integer overflows:

```
unsigned long len = 231;
int f( unsigned long buf ) {
if (buf + len < buf)
V Value of buf to reach ... ?
```

- Typical analysis tools would incorrectly declare ... as being unreacheable!

NB: Simplifying buf + len < buf in len < 0 is forbidden in wrap-around integer arithmetic!

Bound-consistency for integer computations

Let a, b be unsigned over 4 bits
a in 0..15, b in 0.. 15
b = 2 * ;

// Ideal Arithmetic
// a in 0..7 b in 0..14
// Wrap-around arithmetic
// a in 0.15 b in $0 . .14$

Bound-consistency for integer computations

Let a, b be unsigned over 4 bits
a in 8..9, b in 0..15
$b=2$ * $a ;$

// Ideal Arithmetic
// fail
// Wrap-around arithmetic
// a in 8..9 b in 0..2

Can we implement wrap-around interval ideal arithmetic with modulo?

- Yes, but results wouldn't be optimal
$A=8, B$ in 2..4, C \# $=A * B \bmod (16)$ (in SICStus clpfd) gives C in $0 . .15$ although $\mathrm{C}=9, \mathrm{C}=10$, . $\mathrm{C}=15$ have no support
- 8 * $2 . .4=\left\{8 * 2=0_{16}, 8 * 3=8_{16}, 8 * 4=0_{16}\right\}$

$$
\subset 0 . .8
$$

smallest interval that contains all the double products!

Our approach: to build an Interval Constraint Solver using Clockwise Intervals

Def 1: Clockwise Interval (CI)

Let $b=2^{\omega}, x$ and y be two integers modulo b,
$a C I[x, y]_{b}$ denotes the set $\{x, x+1 \bmod b, . ., y-1 \bmod b, y\}$

Ex: $[6,1]_{8}$ denotes the unordered set of integers modulo 8: $\{6,7,0,1\}$

By convention: $[0, b-1]_{b}$ is the canonical representation of Z_{b}

Cardinality

Def 2: Cardinality

Let $[x, y]_{b}$ be a CI, then $\operatorname{card}\left([x, y]_{b}\right)$ is an integer such that:

$$
\begin{aligned}
\operatorname{card}\left([x, y]_{b}\right) & =b & & \text { if }[x, y]_{b}=[0, b-1]_{b} \\
& =(y-x+1) \bmod b & & \text { otherwise }
\end{aligned}
$$

Prop 1: $A C I[x, y]_{b}$ contains exactly card $\left([x, y]_{b}\right)$ elements

Hull

- The hull of a set of modular integers S is the smallest CI w.r.t. cardinality, that contains all the elements of S.

Def 3: (Hull) Let $S=\left\{x_{1}, \ldots, x_{p}\right\}$ be a subset of Z_{b}, the hull of S is a CI, noted $\square S, \quad \square S=\operatorname{Inf}_{\text {card }}\left(\left\{\left[x_{i}, x_{j}\right]_{b}\right\} \mid\left\{x_{1}, \ldots, x_{p}\right\} \subseteq\left[x_{i}, x_{j}\right]_{b}\right)$

Prop 2: Let $S=\left\{x_{1}, \ldots, x_{p}\right\}$ be an ordered subset of Z_{b}, and let x_{-1} denotes x_{p-1}, then

$$
\square S=\left[x_{i}, x_{i-1}\right] \text { where } i \text { such that } \operatorname{card}\left(\left[x_{i}, x_{i-1}\right]\right) \text { is minimized }
$$

Corollary: $\square S$ can be computed in linear time w.r.t. the size of S

Clockwise interval arithmetic

```
[i,j]b @ [k,l]b}=\square{(i@ @)\operatorname{mod}b,(i@k+1)\operatorname{mod}b,\ldots.(j @ I) mod b}
for any @ in {\oplus, \Theta, \otimes,...}
```

(Addition)

$$
\begin{aligned}
{[i, j]_{b} \oplus[k, l]_{b} } & =[0, b-1]_{b} & & \text { if } \operatorname{card}\left([i, j]_{b}\right)=b \text { or } \operatorname{card}\left([k, 1]_{b}\right)=b \\
& =[(i+k) \bmod b,(j+1) \bmod b]_{b} & & \text { or card }\left([i, j]_{b}\right)+\operatorname{card}\left([k, l]_{b} \geq b\right.
\end{aligned}
$$

(Substraction)
$[i, j]_{b} \Theta[k, l]_{b}=[0, b-1]_{b}$
$=[(i-I) \bmod b,(j-k) \bmod b]_{b}$ otherwise

Where the things become more complicated!

- Multiplication by a constant : $k \otimes[i, j]_{b}$
- Unlike in classical Interval Arithmetic, results cannot be computed using only the bounds
$5 \otimes[2,7]_{8}=\square\{10 \bmod 8, \ldots, 35 \bmod 8\}=[1,7]_{8}$
- but, 1) in $Z_{2}{ }^{w}$, divisors of 0 are well-known

2) Thanks to prop2, $\square\left\{x_{1}, . ., x_{p}\right\}$ can be computed efficiently when $\left\{x_{1}, \ldots, x_{p}\right\}$ is ordered

- Prop3: Let $k \neq 2^{n}, q 1=k^{\star} i \operatorname{div} b, q 2=k^{*} j \operatorname{div} b$, then
$\operatorname{Max}\left(k \otimes[i, j]_{b}\right)=b-d \quad$ where $d=\operatorname{Min}_{q 1<q \leq q 2}\left(q^{\star} b \bmod k\right)$ and
$\operatorname{Min}\left(k \otimes[i, j]_{b}\right)=d^{\prime} \quad$ where $d^{\prime}=\operatorname{Min}_{q 1 k q \leq q 2}\left(-q^{*} b \bmod k\right)$

For k * $[i, j]_{b}$
computing the upper bound can be done modulo k instead of modulo b !

Prop3: Let $k \neq 2^{n}, q 1=k^{*} i \operatorname{div} b, q 2=k^{*} j \operatorname{div} b$, then
$\operatorname{Max}\left(k \otimes[i, j]_{b}\right)=b-d \quad$ where $d=\operatorname{Min}_{q 1<q \leq q 2}\left(q^{*} b \bmod k\right)$
$k=5, i=2, j=7, b=8$
and
$\operatorname{Min}\left(k \otimes[i, j]_{b}\right)=d^{\prime} \quad$ where $d^{\prime}=\operatorname{Min}_{q 1<q \leq q 2}\left(-q^{*} b \bmod k\right)$ $5{ }^{*}[2,7]_{8}=[1,7]_{8}$

Relations over Clockwise Intervals

- Inclusion, union and intersection of CIs are defined with their settheoretic counterparts

$$
[i, j]_{b} \subseteq[k, l]_{b} \Leftrightarrow\{i, i+1, \ldots, j\} \subseteq\{k, k+1, \ldots, l\}
$$

- However, union and more surprisingy intersection are not closed over CIs, e.g.,

$$
[5,2]_{8} \cap[1,6]_{8}=\{1,2,5,6\}
$$

Hence, we define the meet and join operations using the hull operator
$[5,2]_{8}$ meet $[1,6]_{8}=\square\{1,2,5,6\}=[1,6]_{8}$

- $X=Y$ leads to prune both $C I(X)$ and $C I(Y)$ using $C I(X)$ meet $C I(Y)$

Three implementations of constraint solving over modular integers (in progress)

- MAXC (INRIA):
- Developed for EUCLIDE, a plateform for verifying critical C programs
- In SICStus Prolog (700loc) + C (300loc)
- Direct implem. Of Clockwise Intervals over 1, 2, 3, 4, 8, 16, 32 bits only
- unsigned only, no conversions, few arithmetic and relations
- JSOLVER (ILOG)
- Static analysis of rule-based programs (ILOG Rules)
- Domain and Bound-consistencies on ideal integer arithmetic and
- use of a cast function to map the results on wrap-around
- COLIBRI (CEA):
- Constraints library used by CEA test generation tools (GATeL for LUSTRE models, PathCrawler for C code, Osmose for binary code)
- Integer/Real/Floating points interval arithmetics (union of disjoint intervals), Congruences, Difference constraints
- signed and unsigned cases

COLIBRI (CEA): 2 extra ideas

- For each op in $\left\{+,-,^{*}\right.$, div, rem $\}$, COLIBRI provides a modular version op ${ }_{2}{ }^{n}$, modular constraint propagators are handled by non modular operations:

$$
A \circ p_{2}{ }^{n} B=C \Leftrightarrow A \circ p B=C+K^{*} 2^{n}
$$

The range of K varies according to signed/unsigned, n and op.
Example: $A+{ }_{2}{ }^{n} B=C$

- Signed : $[A, B, C]::\left[-2^{n-1 . .2 n-1}-1\right], K::[-1 . .1]$
- Unsigned : $[A, B, C]::\left[0.2^{n}-1\right], K::[0 . .1]$
- For each $o p_{2}{ }^{n}$, an extra argument $U O$:: [-1..1] allows to read / provoke an underflow ($\mathrm{UO}=-1$), overflow $(\mathrm{UO}=1)$ or a nominal behavior $(\mathrm{UO}=0)$

An extra constraint maintains the invariant $\operatorname{sign}(U O)=\operatorname{sign}(K)$ When $U O=K=0, A \circ p_{2}{ }^{n} B=A$ op B

Example: $n=3, A, B, C$ unsigned, $A::[2 . .4], B::[5 . .7], C::[0 . .7]$, UO :: [0..1] $A+{ }_{2}^{3} B={ }_{\text {vo }} C \rightarrow A+B=C+K^{\star} 8$ with $K::[0 . .1]$ and $\operatorname{sign}(K)=\operatorname{sign}(U O)$ $\rightarrow C::[0 . .3,7]$

ILOG JSolver: A CP library in Java for Rule Program Analysis

For any arithmetic operator, compute intervals of Z and then project them on computer intervals using a cast function

- Let $[a, b]$ be an interval of Z and u, v represent a, b in $a(m, M)$ computer integer
$-a=u+k_{u}(M-m+1), m \leq u \leq M$
$-b=v+k_{v}(M-m+1), m \leq v \leq M$
- $\operatorname{cast}_{m, M}([a, b])=\left\{\begin{array}{l}{[u, v] \text { if } k_{u}=k_{v}} \\ {[m, M] \text { otherwise }}\end{array}\right.$

Further work

- Finding optimal bounds for non-linear constraints is hard
\rightarrow practical solution: relaxing optimality using over-approximations,

$$
\text { e.g., } X \text { in } a . . b, Y \text { in } c . . d \text { then } Z=X^{*} Y \text { in } \min \left(a^{\star} Y, X^{\star} c\right) . . \max \left(b^{*} Y, X^{\star} d\right)
$$

- Finishing our three implementations and performing a serious experimental evaluation is indispensable \rightarrow next step
- Deal with constraints where distinct basis are considered,

```
    e.g.,
```

```
    short X ;
```

 short X ;
 long y ;
 long y ;
 x = (short) y ;
    ```
    x = (short) y ;
```

