
1

Constraint solving on modular integers

Arnaud Gotlieb*, Michel Leconte**, Bruno Marre***

* INRIA Research center of Bretagne – Rennes Atlantique
** ILOG Lab, IBM France
*** CEA List

ModRef’10 Workshop, 6/09/10

2

Software Verification with CP
• Automatic verification of programs (e.g., a C function or a Java method)

requires the generation of test input that reach given locations

f(int i, int j)
{

int tmp = i+j ;
…
if(tmp > i*j)

…

• Constraint-Based Testing tools include techniques that
address this problem with:

- CP over Finite Domains techniques
- Abstract domains computations (Intervals, Polyhedra, Congruences, …)

Values of (i, j) to reach … ?

requires to solve
i + j > i * j

3

Wrap-around integer computations
• Most architectures implement wrap-around arithmetic (modular integers) :

char (-128..127, 1 byte), unsigned char (0..255, 1 byte),
short(-32768..32767, 2 byte), unsigned short (0..65535, 2 byte),
long (-2147483648..2147483647, 4 byte), unsigned long (0.. 4294967295,4 byte),
…

• Problem in the previously mentionned tools:

Expressions are interpreted using ideal integer arithmetic rather than
wrap-around integer arithmetic

• Example:

the C expression short a,b,c; c=a+b
should be interpreted as c=a+b mod(216) in -32768..32767
rather than just c=a+b in inf .. sup

4

Programs that suppose wrap-around
integer computations

• Good programming practices suggest taking care of integer overflows:

unsigned long len = 231;

int f(unsigned long buf) {

if (buf + len < buf)
…

Value of buf to reach … ?

• Typical analysis tools would incorrectly declare … as being unreacheable !

NB: Simplifying buf + len < buf in len < 0
is forbidden in wrap-around integer arithmetic!

5

Bound-consistency for integer computations

Let a,b be unsigned over 4 bits
a in 0..15, b in 0..15
b = 2 * a;

// Ideal Arithmetic
// a in 0..7 b in 0..14

// Wrap-around arithmetic
// a in 0..15 b in 0..14

6

Bound-consistency for integer computations

Let a,b be unsigned over 4 bits
a in 8..9, b in 0..15
b = 2 * a;

// Ideal Arithmetic
// fail

// Wrap-around arithmetic
// a in 8..9 b in 0..2

7

Can we implement wrap-around interval
ideal arithmetic with modulo ?

• Yes, but results wouldn’t be optimal

A = 8, B in 2..4, C #= A*B mod(16) (in SICStus clpfd)

gives C in 0..15 although C=9,C=10, ..C=15 have no support
!

• 8 * 2..4 = {8*2=016, 8*3=816 , 8*4=016}

⊂ 0..8

smallest interval that contains all the double products!

8

Our approach: to build an Interval Constraint
Solver using Clockwise Intervals

Def 1: Clockwise Interval (CI)

Let b=2ω, x and y be two integers modulo b,

a CI [x,y]b denotes the set {x, x+1 mod b, .., y-1 mod b, y}

Ex: [6,1]8 denotes the unordered set of integers modulo 8: {6,7,0,1}

1
6

5
4 3

2
07

[6,1]8

By convention: [0, b-1]b is the canonical representation of Zb

9

Cardinality

Def 2: Cardinality
Let [x,y]b be a CI, then card([x,y]b) is an integer

such that:

card([x,y]b) = b if [x,y]b = [0, b-1]b
= (y –x + 1) mod b otherwise

Prop 1: A CI [x,y]b contains exactly card([x,y]b) elements

10

Hull
• The hull of a set of modular integers S is the smallest CI w.r.t.

cardinality, that contains all the elements of S.

Def 3: (Hull) Let S = {x1, .., xp} be a subset of Zb, the hull of S is a
CI, noted □S, □S = Infcard({[xi,xj]b} | {x1,..,xp}⊆[xi,xj]b)

Prop 2: Let S = {x1, .., xp} be an ordered subset of Zb, and let x-1
denotes xp-1, then

□S = [xi,xi-1] where i such that card([xi,xi-1]) is minimized

Corollary: □S can be computed in linear time w.r.t. the size of S

11

Clockwise interval arithmetic

(Addition)
[i,j]b⊕[k,l]b = [0, b-1]b if card([i,j]b)=b or card([k,l]b)=b

or card([i,j]b)+card([k,l]b ≥ b
= [(i+k) mod b, (j+l) mod b]b otherwise

(Substraction)
[i,j]bΘ [k,l]b = [0, b-1]b if card([i,j]b)=b or card([k,l]b)=b

or card([i,j]b)+card([k,l]b ≥ b
= [(i-l) mod b, (j-k) mod b]b otherwise

[i,j]b @ [k,l]b = □{(i @ k) mod b, (i @ k+1) mod b, … (j @ l) mod b}

for any @ in {⊕, Θ, ⊗, …}

12

Where the things become more
complicated !

• Multiplication by a constant : k ⊗ [i,j]b

• Unlike in classical Interval Arithmetic,
results cannot be computed using only the bounds

5 ⊗ [2,7]8 = □{10 mod 8, …, 35 mod 8} = [1, 7]8

• but, 1) in Z2
w, divisors of 0 are well-known

2) Thanks to prop2, □{x1, .., xp} can be computed efficiently
when {x1, .., xp} is ordered

13

• Prop3: Let k ≠ 2n, q1 = k*i div b, q2 = k*j div b, then

Max(k⊗[i,j]b) = b-d where d = Min q1< q ≤q2 (q*b mod k)

and

Min(k⊗[i,j]b) = d’ where d’ = Min q1< q ≤q2 (- q*b mod k)

14

k*p

0 (mod b)

k*(p+1)

d = Min q1<q≤q2 (q*b – k*p)

k * i k * j

… …

Max(k * [i,j]b)

q*b = q*2w = 0 mod b

Then, d = Min q1<q≤q2 (q*b mod k)
and
Max(k⊗[i,j]b) = b-d

For k * [i, j]b

computing the upper bound can be
done modulo k instead of modulo b !

15

10
= 2 (8)

k=5, i=2, j=7, b=8
5 * [2,7]8 = [1,7]8

15
= 7 (8)

20
= 4 (8)

25
= 1 (8)

30
= 6 (8)

35
= 3 (8)

d = Min q1<q≤q2 (q*b mod k), d’=Min q1<q≤q2 (- q*b mod k),

q = 2, 16 mod 5 = 1, -16 mod 5 = 4

q = 3, 24 mod 5 = 4, -24 mod 5 = 1

q = 4, 32 mod 5 = 2, -32 mod 5 = 3

16 24 32

Prop3: Let k ≠ 2n, q1 = k*i div b, q2 = k*j div b, then

Max(k⊗[i,j]b) = b-d where d = Min q1< q ≤q2 (q*b mod k)
and Min(k⊗[i,j]b) = d’ where d’ = Min q1< q ≤q2 (- q*b mod k)

16

Relations over Clockwise Intervals

• Inclusion, union and intersection of CIs are defined with their set-
theoretic counterparts

[i,j]b ⊆ [k,l]b ⇔ {i,i+1,…,j} ⊆ {k, k+1, ..,l}

• However, union and more surprisingy intersection are not closed
over CIs, e.g.,

[5, 2]8 ∩ [1, 6]8 = {1, 2, 5, 6}

Hence, we define the meet and join operations using the hull
operator

[5, 2]8 meet [1, 6]8 = □{1, 2, 5, 6} = [1,6]8

• X = Y leads to prune both CI(X) and CI(Y) using CI(X) meet CI(Y)

17

Three implementations of constraint
solving over modular integers (in progress)

• MAXC (INRIA):
- Developed for EUCLIDE, a plateform for verifying critical C programs
- In SICStus Prolog (700loc) + C (300loc)
- Direct implem. Of Clockwise Intervals over 1, 2, 3, 4, 8, 16, 32 bits only
- unsigned only, no conversions, few arithmetic and relations

• JSOLVER (ILOG)
- Static analysis of rule-based programs (ILOG Rules)
- Domain and Bound-consistencies on ideal integer arithmetic and
- use of a cast function to map the results on wrap-around

• COLIBRI (CEA):
- Constraints library used by CEA test generation tools (GATeL for LUSTRE
models, PathCrawler for C code, Osmose for binary code)
- Integer/Real/Floating points interval arithmetics (union of disjoint intervals),
Congruences, Difference constraints
- signed and unsigned cases

18

• For each op in {+,-,*,div,rem}, COLIBRI provides a modular version op2
n,

modular constraint propagators are handled by non modular operations:
A op2

n B = C A op B = C + K * 2n

The range of K varies according to signed/unsigned, n and op.
Example: A +2

n B = C
– Signed : [A,B,C] :: [-2n-1..2n-1-1], K :: [-1..1]
– Unsigned : [A,B,C] :: [0..2n-1], K :: [0..1]

• For each op2
n, an extra argument UO :: [-1..1] allows to read / provoke an

underflow (UO = -1), overflow (UO = 1) or a nominal behavior (UO = 0)

An extra constraint maintains the invariant sign(UO) = sign(K)
When UO = K = 0, A op2

n B = A op B

Example: n = 3, A,B,C unsigned, A :: [2..4], B :: [5..7], C :: [0..7], UO :: [0..1]
A +2

3 B =UO C A + B = C + K*8 with K :: [0..1] and sign(K) = sign(UO)
C :: [0..3, 7]

COLIBRI (CEA): 2 extra ideas

19

ILOG JSolver: A CP library in Java for
Rule Program Analysis

For any arithmetic operator, compute intervals of Z and then project
them on computer intervals using a cast function

• Let [a, b] be an interval of Z and u,v represent a, b in a (m, M)
computer integer

– a = u + ku(M-m+1), m ≤ u ≤ M
– b = v + kv(M-m+1), m ≤ v ≤ M

[u, v] if ku = kv
• castm,M([a, b]) =

[m, M] otherwise

20

Further work

• Finding optimal bounds for non-linear constraints is hard

practical solution: relaxing optimality using over-approximations,
e.g., X in a..b, Y in c..d then Z = X*Y in min(a*Y, X*c)..max(b*Y,X*d)

• Finishing our three implementations and performing a serious experimental
evaluation is indispensable next step

• Deal with constraints where distinct basis are considered,
e.g., short x ;

long y ;
x = (short) y ;

