Proving Symmetries by Model Transformation

C. Mears T. Niven

Faculty of IT
Monash University
Workshop on Constraint Modelling and Reformulation, 2010

Symmetries In CSP Instances

- Symmetries can be used to improve CSP solving.
- It is good to know when your CSP has symmetries.

Finding Symmetries in CSP Instances

- There are many ways to find symmetries in CSP instances:
- Try swapping variables around in the constraints.
- Turn the CSP into a graph (with varying detail) and find the graph's symmetries.
- Find all the solutions!
- The more accurate methods tend to be too slow for real-sized instances.

Symmetries in CSP Models Instead

- Instead of looking at big instances, examine the model itself.
- Symmetries in the model apply to all instances.
- Find once, use often.

Symmetry Detection Framework

(1) Find symmetries of small instances.
(2) Generalise those symmetries to the model.
(3) Gather the most promising symmetries.

Prove that the symmetries hold on the model.

Symmetry Detection Framework

> (1) Find symmetries of small instances. Generalise those symmetries to the model. Gather the most promising symmetries.

4 Prove that the symmetries hold on the model.

CSP Models

What is a model?

A CSP Model: MiniZinc

\% Latin Square
int: size;
set of int: range = 1..size;
\% Decision variables
array[range, range, range] of var 0..1: x;
\% Constraints
constraint forall (i, j in range)

$$
(\text { sum }(k \text { in range) }(x[i, j, k])=1) ;
$$

constraint forall (i, k in range)

$$
(\text { sum }(j \text { in range })(x[i, j, k])=1) ;
$$

constraint forall (j, k in range)

$$
(\text { sum }(i \text { in range) }(x[i, j, k])=1) ;
$$

A CSP Model: MiniZinc

\% N -queens
int : n;
set of int : rg = 1..n;
array[rg,rg] of var 0..1 : x;
constraint forall (i in rg) (sum (j in rg) (x[i,j]) = 1);
constraint forall (j in rg) (sum (i in rg) $(x[i, j])=1)$;
constraint forall (k in 3.. $2 * n-1$) (sum (i,j in rg where i+j=k) (x[i,j]) <= 1);
constraint forall (k in 2-n..n-2)
(sum (i,j in rg where i-j=k) (x[i,j]) <= 1);

Our Method

Given a potential symmetry σ :
(1) Apply σ to each constraint $c \in C$,
(2) Check if $\sigma(c)$ is in C.

If all $\sigma(c)$ are in C, then σ is a symmetry.

Applying a Symmetry

- Symmetries that manipulate indices.
- Examples:
- Dimensions swap: $x[i, j] \Leftrightarrow x[j, i]$.
- Indices inverted: $x[i] \Leftrightarrow x[N-i+1]$.
- Values inverted: $x[i] \Leftrightarrow N-x[i]+1$.
- Arbitrary index permutation: $x[i] \mapsto x[\varphi(i)]$.
- Find each $x\left[i_{1}, \cdots\right]$ occurrence and replace it.

Applying a Symmetry (examples)

aa(X, t([I, J,K]) < $=>$ aa(X, $t([J, I, K])))$.
constraint forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);
constraint forall (i, j in range)
(sum (k in range) (x[j,i,k]) = 1);

Applying a Symmetry (examples)

aa(X, t([I|R])) <=> aa(X, t([U-I+L|R])).
(where L and U are the lower and upper bounds of the index.)
constraint forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);
constraint forall (i, j in range)
(sum (k in range) $(x[n-i+1, j, k])=1)$;

Checking $\sigma(c) \in C$.

- For each $\sigma(c)$...
- \ldots is there a $c^{\prime} \in C$ such that $c^{\prime} \equiv \sigma(c)$?
- Probably not.

Normalisation

```
forall(i,j in range) (sum (k in range) (x[i,j,k]) = 1);
forall(i,k in range) (sum (j in range) (x[i,j,k]) = 1);
forall(j,k in range) (sum (i in range) (x[i,j,k]) = 1);
forall(i,j in range) (sum (k in range) (x[j,i,k]) = 1);
forall(i,k in range) (sum (j in range) (x[j,i,k]) = 1);
forall(j,k in range) (sum (i in range) (x[j,i,k]) = 1);
```


Normalisation (1)

```
forall (i, j in range)
    (sum (k in range) (x[i,j,k]) = 1);
```

forall (i, j in range)
(sum (k in range) (x[j,i,k]) = 1);

Normalisation (1)

```
forall (i, j in range)
    (sum (k in range) (x[i,j,k]) = 1);
```

forall (j, i in range)
(sum (k in range) (x[i,j,k]) = 1);

Normalisation (1)

Rule: put generators in alphabetical order.

```
gen('$cc'(decl(int,Var1,no,VarKind1,A1),
    gen('$cc' (decl(int,Var2,no,VarKind2,A2),Rest)))) <=>
    Var1 '$>' Var2 |
    gen('$cc'(decl(int,Var2, no,VarKind2,A2),
    gen('$cc'(decl(int,Var1,no,VarKind1,A1),Rest)))).
```


Normalisation (1)

```
forall (i, j in range)
    (sum (k in range) (x[i,j,k]) = 1);
```

forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);

Normalisation (2)

```
forall (i, j in range)
    (sum (k in range) (x[i,j,k]) = 1);
```

forall (i, j in range)
(sum (k in range) (x[n-i+1,j,k]) = 1);

Normalisation (2)

Rule: make array indices single variables.

Normalisation (2)

```
forall (i, j in range)
    (sum (k in range) (x[i,j,k]) = 1);
        a=n-i+1 ; i = n-a+1
```

forall (i, j in range)
(sum $(k$ in range) $(x[n-i+1, j, k])=1)$;

Normalisation (2)

```
forall (i, j in range)
    (sum (k in range) (x[i,j,k]) = 1);
```

forall ($\mathrm{n}-\mathrm{a}+1, \mathrm{j}$ in range)
(sum (k in range) (x[n-(n-a+1)+1,j,k]) = 1);

Normalisation (2)

```
forall (i, j in range)
    (sum (k in range) (x[i,j,k]) = 1);
```

forall ($\mathrm{n}-\mathrm{a}+1, \mathrm{j}$ in range)
(sum (k in range) (x[a,j,k]) = 1);

Normalisation (2)

```
forall (i, j in range)
    (sum (k in range) (x[i,j,k]) = 1);
```

forall ($\mathrm{n}-\mathrm{a}+1, \mathrm{j}$ in range)
(sum (k in range) (x[a,j,k]) = 1);

Normalisation (2)

Rule: $(U-x+L) \in L . . U \quad \Leftrightarrow \quad x \in L . . U$.

$$
\begin{gathered}
\text { decl(int, U-X+L, gen_var(L..U), VK, Ann) <=> } \\
\text { decl(int, X, gen_var(L..U), VK, Ann). }
\end{gathered}
$$

Normalisation (2)

```
forall (i, j in range)
    (sum (k in range) (x[i,j,k]) = 1);
```

forall (a, j in range)
(sum (k in range) (x[a,j,k]) = 1);

Normalisation (3)

Other rules:

```
X-Y <=> X+(-Y).
-(X+Y) <=> -(X) + - (Y).
-(-(X)) <=> X.
X+(-(X)) <=> term(X) | i(O).
i(0)+X <=> X.
```


Normalisation (3)

Other rules:

```
permutation(P,permutation(inverse(P),X)) <=> X.
permutation(inverse(P),permutation(P,X)) <=> X.
alldifferent(permutation(P,X)) <=>
    alldifferent(X).
card(permutation(P,X)) <=>
    card(X).
permutation(P,X) != permutation(P,Y) <=> X != Y.
```


Results

- Problems:
- Latin square
- Steiner Triples
- Balanced Incomplete Block Design
- Social Golfers
- N -queens
- Succeeds on most of the symmetries.

Where It Fails

```
forall (k in 3..2*n-1)
    (sum (i,j in rg where i+j=k) (x[i,j]) <= 1);
forall (k in 2-n..n-2)
    (sum (i,j in rg where i-j=k) (x[i,j]) <= 1);
```


Where It Fails

```
forall (k in 3..2*n-1)
    (sum (i,j in rg where i+j=k) (x[i,j]) <= 1);
forall (k in 2-n..n-2)
    (sum (i,j in rg where i-j=k) (x[i,j]) <= 1);
```

forall (k in 3..2*n-1)
(sum (i,j in rg where i+j=k) (x[n-i+1,j]) <= 1);
forall (k in 2-n..n-2)
(sum (i,j in rg where i-j=k) (x[n-i+1,j]) <= 1);

Where It Fails

```
forall (k in 3..2*n-1)
    (sum (i,j in rg where i+j=k) (x[i,j]) <= 1);
forall (k in 2-n..n-2)
    (sum (i,j in rg where i-j=k) (x[i,j]) <= 1);
```

forall (k in 3..2*n-1)
(sum (n-a+1,j in rg where $n-a+1+j=k)(x[a, j])$ <= 1);
forall (k in 2-n..n-2)
(sum ($n-a+1, j$ in $r g$ where $n-a+1-j=k)(x[a, j])<=1)$;

Where It Fails

```
forall (k in 3..2*n-1)
    (sum (i,j in rg where i+j=k) (x[i,j]) <= 1);
forall (k in 2-n..n-2)
    (sum (i,j in rg where i-j=k) (x[i,j]) <= 1);
```

forall (k in 3..2*n-1)
(sum (a,j in rg where $n-a+1+j=k)(x[a, j])$ <= 1);
forall (k in 2-n..n-2)
(sum (a,j in rg where $n-a+1-j=k)(x[a, j])<=1)$;

Future Work

- Normalise pairs of constraints mutually. - (mostly done!)
- More flexibility/robustness.
- Apply more symmetries.

Thanks!

Questions?

