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Symmetries

Symmetries In CSP Instances

Symmetries can be used to improve CSP
solving.
It is good to know when your CSP has
symmetries.
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Finding Symmetries in CSP Instances

There are many ways to find symmetries in
CSP instances:

Try swapping variables around in the
constraints.
Turn the CSP into a graph (with varying detail)
and find the graph’s symmetries.
Find all the solutions!

The more accurate methods tend to be too
slow for real-sized instances.
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Symmetries in CSP Models Instead

Instead of looking at big instances, examine
the model itself.
Symmetries in the model apply to all
instances.
Find once, use often.
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Symmetries

Symmetry Detection Framework

1 Find symmetries of small instances.
2 Generalise those symmetries to the model.
3 Gather the most promising symmetries.

4 Prove that the symmetries hold on the
model.
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CSP Models

What is a model?
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A CSP Model: MiniZinc

% Latin Square
int: size;
set of int: range = 1..size;

% Decision variables
array[range, range, range] of var 0..1: x;

% Constraints
constraint forall (i, j in range)

(sum (k in range) (x[i,j,k]) = 1);
constraint forall (i, k in range)

(sum (j in range) (x[i,j,k]) = 1);
constraint forall (j, k in range)

(sum (i in range) (x[i,j,k]) = 1);
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A CSP Model: MiniZinc

% N-queens
int : n;
set of int : rg = 1..n;

array[rg,rg] of var 0..1 : x;

constraint forall (i in rg)
(sum (j in rg) (x[i,j]) = 1);

constraint forall (j in rg)
(sum (i in rg) (x[i,j]) = 1);

constraint forall (k in 3..2*n-1)
(sum (i,j in rg where i+j=k) (x[i,j]) <= 1);

constraint forall (k in 2-n..n-2)
(sum (i,j in rg where i-j=k) (x[i,j]) <= 1);
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Our Method

Given a potential symmetry σ:

1 Apply σ to each constraint c ∈ C,
2 Check if σ(c) is in C.

If all σ(c) are in C, then σ is a symmetry.
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Applying a Symmetry

Symmetries that manipulate indices.
Examples:

Dimensions swap: x[i, j] Z⇒ x[j, i].
Indices inverted: x[i] Z⇒ x[N − i + 1].
Values inverted: x[i] Z⇒ N − x[i] + 1.
Arbitrary index permutation: x[i] Z⇒ x[ϕ(i)].

Find each x[i1, · · · ] occurrence and replace
it.
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Applying a Symmetry (examples)

aa(X, t([I,J,K]) <=> aa(X, t([J,I,K]))).

constraint forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);

constraint forall (i, j in range)
(sum (k in range) (x[j,i,k]) = 1);
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Applying a Symmetry (examples)

aa(X, t([I|R])) <=> aa(X, t([U-I+L|R])).

(where L and U are the lower and upper bounds of the
index.)

constraint forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);

constraint forall (i, j in range)
(sum (k in range) (x[n-i+1,j,k]) = 1);
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Checking σ(c) ∈ C.

For each σ(c). . .
. . . is there a c ′ ∈ C such that c ′ ≡ σ(c)?

Probably not.
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Normalisation

forall(i,j in range) (sum (k in range) (x[i,j,k]) = 1);
forall(i,k in range) (sum (j in range) (x[i,j,k]) = 1);
forall(j,k in range) (sum (i in range) (x[i,j,k]) = 1);

forall(i,j in range) (sum (k in range) (x[j,i,k]) = 1);
forall(i,k in range) (sum (j in range) (x[j,i,k]) = 1);
forall(j,k in range) (sum (i in range) (x[j,i,k]) = 1);
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Normalisation (1)

forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);

forall (i, j in range)
(sum (k in range) (x[j,i,k]) = 1);
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Normalisation (1)

forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);

forall (j, i in range)
(sum (k in range) (x[i,j,k]) = 1);
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Normalisation (1)

Rule: put generators in alphabetical order.

gen(’$cc’(decl(int,Var1,no,VarKind1,A1),
gen(’$cc’(decl(int,Var2,no,VarKind2,A2),Rest)))) <=>

Var1 ‘$>‘ Var2 |
gen(’$cc’(decl(int,Var2,no,VarKind2,A2),

gen(’$cc’(decl(int,Var1,no,VarKind1,A1),Rest)))).
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Normalisation (1)

forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);

forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);
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Normalisation (2)

forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);

forall (i, j in range)
(sum (k in range) (x[n-i+1,j,k]) = 1);
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Normalisation (2)

Rule: make array indices single variables.
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Normalisation (2)

forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);

a = n-i+1 ; i = n-a+1

forall (i, j in range)
(sum (k in range) (x[n-i+1,j,k]) = 1);
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Normalisation (2)

forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);

forall (n-a+1, j in range)
(sum (k in range) (x[n-(n-a+1)+1,j,k]) = 1);
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Normalisation (2)

forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);

forall (n-a+1, j in range)
(sum (k in range) (x[a,j,k]) = 1);
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Normalisation (2)

forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);

forall (n-a+1, j in range)
(sum (k in range) (x[a,j,k]) = 1);
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Normalisation (2)

Rule: (U − x + L) ∈ L..U Z⇒ x ∈ L..U.

decl(int, U-X+L, gen_var(L..U), VK, Ann) <=>
decl(int, X, gen_var(L..U), VK, Ann).
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Normalisation (2)

forall (i, j in range)
(sum (k in range) (x[i,j,k]) = 1);

forall (a, j in range)
(sum (k in range) (x[a,j,k]) = 1);
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Normalisation (3)

Other rules:

X-Y <=> X+(-Y).
-(X+Y) <=> -(X) + -(Y).
-(-(X)) <=> X.
X+(-(X)) <=> term(X) | i(0).
i(0)+X <=> X.
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Normalisation (3)

Other rules:

permutation(P,permutation(inverse(P),X)) <=> X.
permutation(inverse(P),permutation(P,X)) <=> X.

alldifferent(permutation(P,X)) <=>
alldifferent(X).

card(permutation(P,X)) <=>
card(X).

permutation(P,X) != permutation(P,Y) <=> X != Y.
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Results

Problems:
Latin square
Steiner Triples
Balanced Incomplete Block Design
Social Golfers
N-queens

Succeeds on most of the symmetries.
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Where It Fails

forall (k in 3..2*n-1)
(sum (i,j in rg where i+j=k) (x[i,j]) <= 1);

forall (k in 2-n..n-2)
(sum (i,j in rg where i-j=k) (x[i,j]) <= 1);
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Where It Fails

forall (k in 3..2*n-1)
(sum (i,j in rg where i+j=k) (x[i,j]) <= 1);

forall (k in 2-n..n-2)
(sum (i,j in rg where i-j=k) (x[i,j]) <= 1);

forall (k in 3..2*n-1)
(sum (i,j in rg where i+j=k) (x[n-i+1,j]) <= 1);

forall (k in 2-n..n-2)
(sum (i,j in rg where i-j=k) (x[n-i+1,j]) <= 1);
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Where It Fails

forall (k in 3..2*n-1)
(sum (i,j in rg where i+j=k) (x[i,j]) <= 1);

forall (k in 2-n..n-2)
(sum (i,j in rg where i-j=k) (x[i,j]) <= 1);

forall (k in 3..2*n-1)
(sum (n-a+1,j in rg where n-a+1+j=k) (x[a,j]) <= 1);

forall (k in 2-n..n-2)
(sum (n-a+1,j in rg where n-a+1-j=k) (x[a,j]) <= 1);
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Where It Fails

forall (k in 3..2*n-1)
(sum (i,j in rg where i+j=k) (x[i,j]) <= 1);

forall (k in 2-n..n-2)
(sum (i,j in rg where i-j=k) (x[i,j]) <= 1);

forall (k in 3..2*n-1)
(sum (a,j in rg where n-a+1+j=k) (x[a,j]) <= 1);

forall (k in 2-n..n-2)
(sum (a,j in rg where n-a+1-j=k) (x[a,j]) <= 1);
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Future Work

Normalise pairs of constraints mutually.
(mostly done!)

More flexibility/robustness.
Apply more symmetries.
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Thanks!

Questions?
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