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FD-MCP?

FD-MCP

FD-MCP:

is a CP system for Finite-Domain (FD) problems

is a subsystem of MCP, a Haskell CP framework

provides an EDSL for writing FD problems
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Why an EDSL for CP Modelling?

EDSL

An EDSL (Embedded Domain Specific Language) is

more than an API: includes abstraction and syntactic sugar

still embedded in host language, and able to interact with it

Advantages

The result allows advantages of both:

Concise notation

Declarative syntax (not a sequence of function calls)

Full language feature set

Directly usable results
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Haskell and MCP

Haskell

Haskell:

Lazy, purely functional programming language

Support for first-class and higher-order functions

Uses monads to order stateful operations

Supports user-defined operators and overloading through type
classes

MCP

Framework for CP in Haskell

Does not fix variable domain, solver backend, search strategy,
. . .
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Structure
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Expressions: example

Example (x > 5 ∧ x < 10 ∧ x2 = 49)

model = exists $ \x -> do -- request a variable x

x @> 5 -- state that x>5

x @< 10 -- state that x<10

x*x @= 49 -- state that x*x=49

return x -- return x
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Expressions

Expressions

Everything is written as expressions

Constraints are equivalent to boolean expressions

New variables are introduced by passing a function that takes
an expression representing the new variable as argument, to
exists
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Parameters: example

Example (x > 5 ∧ x < 10 ∧ x2 = p)

model p = exists $ \x -> do -- request a variable x

x @> 5 -- state that x>5

x @< 10 -- state that x<10

x*x @= p -- state that x*x=p

return x -- return x
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Parameters

Problem classes are written as functions that take an
expression as parameter

Known values can be passed at runtime, to obtain a problem
instance

Model functions can be compiled as-is to C++ code



Introduction The FD-MCP Language Translation process Evaluation Future work

Higher-order constructs: examples

Example (a + b + c + d = 10 ∧ a2 + b2 + c2 + d2 = 30)

model = exists $ \arr -> do

size arr @= 4

csum arr @= 10

csum (cmap (\x -> x*x) arr) @= 30

return arr
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Higher-order constructs

Higher-order constructs

Use equivalents of typical higher-order functions as primitives:

cmap f [a1, a2, a3, . . .]: [f (a1), f (a2), f (a3), . . .]
cfold f i [a1, a2, a3, . . .]: . . . f (f (f (i , a1), a2), a3) . . .

To build typical CP higher-order constructs on top of

forall c: fold (∧) true c
csum c: cfold (+) 0 c
count v c : cfold (p i → p + (i = v)) c
. . .
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Monadic bind

Monadic bind

Boolean expressions can be used as solver actions that enforce
their truth

Solver actions can be combined using monadic bind

Haskell provides syntactic sugar for this

These are equivalent:

model = exists $ \x -> do

x @> 5

x @< 10

model = exists (\x ->

(x @> 5) @&& (x @< 10))
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Building of expression tree

Building of expression tree

The EDSL: Haskell functions and operators

Syntactic sugar for boolean, integer and array expressions

Models are monadic actions that introduce variables and post
boolean expressions

Evaluate at runtime to an expression tree
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Building of expression tree

x+y+z @< z-y

Less (Plus x (Plus y z)) (Minus z y)
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Expression tree simplifications

Simplifications

Simple pattern matching on the tree

Applies some mathematical identities

Attempts to minimize variable references and tree nodes
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Expression tree simplifications: examples

X + 0 → X

X - X → 0

X + X → 2*X

(a + (b + X)) → (a+b) + X

size [a] → 1

. . .
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Conversion to Constraint Network Graph

For optimization purposes:

We need information about a constraint’s variables.

We need information those variables’ constraints.

. . .

Syntax tree does not make this explicit

So we:

We merge identical leaf nodes together, resulting in a graph

. . . or even whole identical subtrees (CSE)

We turn higher-order constructs without flattening into
subgraphs
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Conversion to Constraint Network Graph

x+y+x @< z-y
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Graph-based optimizations

Graph-based optimizations

Certain subgraphs can be recognized and replaced:

A fold that sums values can become a sum

A fold that sums equalities against a constant can become a
count

A fold that sums expressions can become a sum of a map
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Mapping to solver-specific constraints

So far:

What we have

A graph representation of the problem (class)

Possibly still parametrized

Compact, not flattened

Independent of the solver’s supported constraints

Next: mapping to solver-specific constraints
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Mapping to solver-specific constraints

Annotation algorithm

Try to write nodes in function of other nodes, absorbing edges

Start with options that may produce simple results

Work recursively, but eager (no backtracking)

Store resulting information in annotations on nodes

When all nodes are annotated, the remaining edges are translated
to constraints
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Mapping to solver-specific constraints
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Mapping to solver-specific constraints
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Mapping to solver-specific constraints
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Mapping to solver-specific constraints
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Mapping to solver-specific constraints
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Mapping to solver-specific constraints

“Linear” is not only possible annotation:

Supported annotations

Sizes of array variables

Constant values (integers, arrays, booleans)

Conditionals

. . .
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Evaluation
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Evaluation
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Evaluation
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Evaluation
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Future work

Future work

Extend system to labelling and search

Code generation for search

Further optimizations

More benchmarks
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The end

Any questions?
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