Proc. SymCon’03

Conditional Symmetry in the All-Interval Series
Problem

Tan P. Gent!, Tain McDonald', and Barbara M. Smith?

L School of Computer Science, University of St Andrews,
St Andrews,Fife, KY16 9SS, UK
{ipg,iain}@dcs.st-and.ac.uk
2 School of Computing and Engineering, University of Huddersfield
Huddersfield HD1 3DH, UK
b.m.smithChud.ac.uk

Abstract. We discuss the notion of a “conditional symmetry”, which we define
as a symmetry which is only valid subject to some condition which can be tested
during search. We use the all-interval series problem as our running example, and
describe a set of conditional symmetries that arise in it. We show two different
ways to use SBDS, unchanged, to break conditional symmetries. Unfortunately,
both techniques give very bad results on the all-interval series. Finally, we present
a reformulation of the all-interval series which eliminates all standard and con-
ditional symmetries. We show that this encoding allows dramatically improved
search, by a factor of 50 in runtime on the best existing technique.

1 Conditional Symmetries

When we consider symmetries in CSPs, we normally think of a bijective function which
is fully known before search starts. But not all symmetries are like this. We can have
conditional symmetries, i.e. symmetries which only come into play if some condition
is satisfied during search. For example, in [7] we are shown a method of breaking sym-
metries between identical objects in planning problems. Similarly in [3], methods of
dealing with symmetries that emerge as a result of planning decisions are presented.

Definition 1. Consider a set of constraints 6, and a bijective mapping g9 : A — A
where A is a (partial) assignment. If gp requires 8 to be true before it becomes a sym-
metry then gy is said to be a conditional symmetry.

For any given CSP which has conditional symmetries acting on it, there will be a set
O of pre-conditions, where each pre-condition § € @ will have an associated bijective
mapping gg. While there may be many pre-conditions, some of them could be mutually
exclusive. For instance 6; might insist that var, = val; and #; might insist that var, =
valz. In this case, at most one of the mappings gy, and go; can be a symmetry.

Since conditional symmetries only act in certain parts of the search space, we need
to pay careful attention to how we break these symmetries. We may need to perform

55

Proc. SymCon’03

some no-good recording as was done in [2]'. However, it is clear that a simple adap-
tation of SBDS will work. After the first term, the following constraint is the standard
SBDS constraint [4], while the first term asserts the condition holds at the relevant point
in the search space.

0 N AN go(A) N (var #wval) = gg(var # val) (1)

2 The All-Interval Series Problem

The all-interval series problem is to find a permutation of the n integers from O to
n — 1 such that the differences between adjacent numbers are also a permutation, of the
numbers from 1 to n — 1. It is problem Prob007 in CSPLib [6]. It is a simple example
of the graceful graphs problem [8] in which the graph is a line.

‘We can model this using n integer variables zg, 1, ..., Tn—1 Where z; represents the
number in position ¢ in the permutation. Following Choi and Lee [1], we use auxiliary
variables d; = |#; — &;41| for 0 < ¢ < n — 2 to represent the differences between
adjacent numbers. The variables dy, ..., d,,—» are required to be all different.

Since the variables x; are required to form a permutation of the numbers 0 ton — 1,
we can introduce dual variables y;, 0 < j < n — 1, linked to the z; variables by chan-
nelling constraints (implemented by IlcInverse in Solver). The variable y; represents
the number 7, and the value assigned to the variables specifies the position of this num-
ber in the permutation. This in itself is sufficient to ensure that the values assigned to
the z; variables are all different. (However, we still include the all different constraint
on the z variables.) Similarly we introduce dual p; variables for the differences, so that
p;j =t = d; = j. Choi and Lee also introduce an implied constraint on the y; variables:
since the difference n — 1 must occur, and can only arise by putting the numbers 0 and
n — 1 next to each other, we must have that |yg — y,—1| = 1. This is the only constraint
we have used from a potentially complete model based on the y; variables: Choi & Lee
used the complete model, in combination with a model using the x; and d; variables, but
we believe that the additional constraint propagation that they found is due (mainly or
solely) to this implied constraint. We do not enforce generalized arc consistency on the
allDifferent constraint on the d; variables; while doing so reduces the number of fails
slightly we did not note a reduction in running time compared to either an allDiffer-
ent constraint treated as binary # constraints, or channelling constraints between the d;
variables and the p; variables. Throughout this paper we use the lexicographic ordering
heuristic: we don’t see significantly improved performance using other heuristics.

There are 4 obvious symmetries in the problem: the identity, reversing the series,
negating each element by subtracting it from n — 1, and doing both. Puget and Régin,
in their note in CSPLib [9], identify just the negation symmetry and eliminate it by
adding the constraint o < x;. However, since there are only three symmetries other
than identity, we can easily use SBDS [4], and define the three functions necessary.

Table 1 shows the results of using our model in Ilog Solver 5.2. The experiments
were run on a Intel Celeron 1.7Ghz with 128MB RAM running Redhat Linux version

!'It should be noted that this paper ends with, “We are currently extending [the work done in
this paper to] ideas in ‘quasi-symmetric’ problems”

56

Proc. SymCon’03

No Symmetry Breaking SBDS
n |Solutions Fails Choice Points Cpu (sec)|Solutions Fails Choice Points Cpu (sec)
3 4 0 3 <0.01 1 1 1 <0.01
4 4 4 7 <0.01 1 3 3 <0.01
5 8 11 18 <0.01 2 4 5 0.01
6 24 30 53 0.01 6 12 17 <0.01
7 32 132 163 0.02 8 42 49 < 0.01
8 40 520 559 0.04 10 173 182 0.01
9 120 1906 2025 0.17 30 626 655 0.09
10 296 7853 8148 0.72 74 2675 2748 0.27
11 648 34200 34847 3.44 162 11665 11826 1.23
12 1328 159687 161014 15.34 332 55909 56240 6.96
13 3200 784823 788022 73.46 800 276499 277298 34.00
14 9912 4127283 4137194 41091 2478 1486241 1488718 184.15

Table 1. Solving the all interval series problem with and without SBDS.

9.0. We give results with and without symmetry breaking using SBDS. As we now
expect where there are a small number of symmetries, we get a significant win by using
SBDS, the three symmetries achieving a run time improvement of more than a factor
of two for n > 10. Taking into account cpu speed, these running times are worse than
Puget and Régin’s: at n = 14 they report a run time of 199.6s on a Pentium 800MHz.
Our run times are significantly better than Simonis and Beldiceanu’s [10], who report
311s for the n = 12 problem on a 233MHz machine, compared to our 15.34s and 6.96s
without and with SBDS.

As well as SBDS, we investigated the use of constraints to break the symmetry.
All symmetry can be broken in a number of ways, but the following method was the
most effective we tested, and also closely related to the formulation presented later in
the paper. We simply insist that the sequence 0,n — 1,1 occurs, in that order, in the
solution. If not already in this form, any all-interval series can be converted to one with
this property by negation, reversal, or both.> Since we have the dual variables y;, this
constraint can be simply added by stating y,,_1 —yo = 1, y1 —yn—1 = 1. Table 2 shows
results using this model. (Results for SBDS are repeated from Table 1 for comparison.)
‘We see that as intended we return the same number of solutions as with SBDS, but run
times are twice as fast or more. While exact comparisons are impossible this method
seems close in run time with Puget and Régin’s. We will show later that we can make
dramatic improvements on these runtimes.

3 Conditional Symmetry in All-Interval Series

We have identified a conditional symmetry in the all-interval series problem. We can
cycle a solution to the all interval series problem about a pivot to generate another

2 In fact in general insisting that 1 and n — 1 are adjacent breaks the negation symmetry (some-
times called complement symmetry) in any graceful graph.

57

Proc. SymCon’03

Symmetry Breaking Constraints SBDS
n |Solutions Fails Choice Points Cpu (sec)|Solutions Fails Choice Points Cpu (sec)
3 2 0 1 <0.01 1 1 1 <0.01
4 1 1 1 <0.01 1 3 3 <0.01
5 2 3 4 <0.01 2 4 5 0.01
6 6 6 11 <0.01 6 12 17 <0.01
7 8 27 34 <0.01 8 42 49 <0.01
8 10 107 116 0.01 10 173 182 0.01
9 30 363 392 0.04 30 626 655 0.09
10 74 1382 1455 0.16 74 2675 2748 0.27
11 162 5544 5705 0.71 162 11665 11826 1.23
12 332 24308 24639 2.71 332 55909 56240 6.96
13 800 112822 113621 13.24 800 276499 277298 34.00
14 2478 556648 559125 68.19 2478 1486241 1488718 184.15

Table 2. Breaking symmetry in the all-interval series problem with constraints and with SBDS.

solution. The location of this pivot is dependent on the assignments made and so these
symmetries are conditional. Here is a solution for n = 11. Differences are written
underneath the numbers:

0101 9283714635
1098 7654321

The difference between the first number (0) and last number (5) is 5. This means we
can split the sequence between the 8 and 3, losing the difference 5. We can join the rest
of the sequence on to the start, because the 5 — 0 will now replace 8 — 3. This yields the
solution:

3746501019 2 8
4 321510 987¢6

In this case the pivot is between the values 8 and 3. For this specific conditional sym-
metry of pivoting between x5 and z we have:

6 = {|zo — 10| = |25 — 6|}
99 = {xo — x5, 1 > Te, Tz — T7, T3 > Tg, T4 > Ty, Ts — T10, Te > To,

Ty > Ty, T > T, T — T3, T10 > T4}

The difference between first and last terms must always duplicate a difference in
the sequence, so this operation can be applied to any solution. We show below that for
n > 4 this always gives a new solution, i.e. not equivalent to any of the 4 symmetries
acting on the original. This can be combined with the standard symmetries to give 4
conditional symmetries.

58

Proc. SymCon’03

4 Breaking Conditional Symmetry Using SBDS

We now show that we can break conditional symmetries in the all interval series prob-
lem using SBDS. We have not written a new implementation of (1), but instead reuse our
existing implementation of SBDS in Ilog Solver [4]. The basic task of an SBDS func-
tion in this implementation is to describe how the symmetry it represents acts on a given
assignment. That is, the function is passed var = val and returns g(var = val). Upon
backtracking, the SBDS search algorithm rules out the negation of the assignments re-
turned by these functions. At a state A in search where the assignment var = val
has been proved inconsistent and g(A) stored in a cache, SBDS posts the constraint
g9(A) = g(var # val), the other conditions A A var # val being true from context.

For a conditional symmetry g we wish to post 8 A gg(A) = gg(var # val). We
do this by implementing an SBDS function that returns the pre-condition 8 as well as
the symmetric equivalent of var = val. That is, it returns

0 A gg(var = val)

SBDS uses this to post gg(A) — (=8 V gg(var # val)), and by simple rearrangement
this is equivalent to the intended 8 A gg(A) = go(var # val).

For the all-interval series problem of size n, there are n — 1 conditional symmetries
corresponding to the original pivoting operation, and 4n — 4 in total when the original
symmetries of the problem are combined with the conditional symmetries. Using the
5 original conditional symmetries for n = 6, we saw only a slight reduction in search
which did not repay overheads. This is disappointing as the addition of a single SBDS
function often can reduce search by almost a factor of two.

4.1 A better implementation

There are two main disadvantages with our initial implementation of conditional sym-
metries. Firstly, the functions created are instance specific i.e. different functions are
needed for different values of n. This is partly due to the fact that for the all interval
series problem of size n, there are a variable number (n — 1) of these conditional sym-
metries. This number also adds to the run-time overheads. Secondly, the pre-condition
8 needs to be posted just once for each conditional symmetry. However, our implemen-
tation posts the pre-condition 8 redundantly as many as n — 1 times. We now show that
for the all-interval series problem, we can eliminate these two disadvantages.

Note that the location of the pivot can be represented as a variable. The value of
this variable could then be used to show how far the series needed to be cycled. Thus
we included a new variable pivot, and then wrote an SBDS function that returned a
constraint whose effect depends on pivot. We use Solver’s ability to index an array by
an integer variable. For example, the symmetric equivalent to vars[i] = j is vars[(i +
pivot) mod n] = j under the original conditional symmetry.3 The advantage of this
is that we (i) have an SBDS function that is not instance specific and (ii) have a single
SBDS function that breaks all n — 1 conditional symmetries. However, unlike our first
approach, it is not clear if this implementation technique generalises.

3 For simpler implementation we added n — 1 variables onto the end of vars, constrained so
that vars[i + n] = varsli], and then returned the SBDS constraint as vars[i + pivot] = j.

59

Proc. SymCon’03

Conditional Symmetry Breaking Conditional Symmetry Breaking + SBDS
n |Solutions Fails Choice Points Cpu (sec)|Solutions Fails Choice Points Cpu (sec)
3 2 1 2 <0.01 1 1 1 <0.01
4 2 6 7 <0.01 1 3 3 <0.01
5 4 14 17 <0.01 1 5 5 <0.01
6 12 40 51 0.02 3 14 16 0.01
7 16 143 158 0.03 4 39 42 <0.01
8 20 524 543 0.11 5 167 171 0.08
9 60 1908 1967 042 15 581 595 0.39
10 148 7798 7945 2.47 37 2451 2487 2.07
11 324 33741 34064 9.6 81 10494 10574 12.44
12 664 157000 157663 51.67 166 50050 50215 81.71
13 1600 772858 774457 340.97 400 244984 245383 500.26
14 4956 4067503 4072458 2355.05 1239 1316655 1317893 3682.79

Table 3. Results with conditional symmetry breaking. This used in conjunction with SBDS breaks
all symmetry to get the correct number of unique solutions.

Unfortunately, we still seem to have the same problems with the original implemen-
tation in that the pruning seems to take place late and there are significant overheads.
Table 3 shows results breaking just the original conditional symmetry, and the 7 non-
trivial combinations of a conditional and regular symmetry. While in the full case, we do
see a reduction in search and number of solutions, run time increases 20-fold compared
to the use of SBDS in Table 1.

5 Reformulating to Eliminate Symmetry

Unfortunately, so far we can only report bad results for conditional symmetry breaking
using SBDS. However, in the special case of all-interval series we now show that we
can reformulate the problem to eliminate all symmetry including conditional symmetry,
and that this gives a 50-fold runtime improvement on the best previous work.

In fact, we do more than reformulate the problem. We present a new problem. From
each solution of this problem we can read off eight solutions to the all-interval series
problem, corresponding to all combinations of conditional and ordinary symmetries.
A curiosity of the new problem is that we actually introduce symmetry, in that the
sequence can be rotated arbitrarily. However, it is easy to break this symmetry and in
doing so we also break the conditional symmetry in the original. In fact, the conditional
symmetry in the all-interval series corresponds to a rotation in the new problem. Since
we can break all rotations simply, we break the conditional symmetry automatically.
Indeed, it is notable that we have eliminated the problem of conditional symmetry in an
entirely unconditional way.

The new problem is as follows. Consider a cycle formed by n nodes, with the n dif-
ferences between consecutive nodes satisfying the constraint that every difference from
1 to n—1 appears at least once, and one difference appears exactly twice. From any solu-
tion to this we can form two all-interval series, by breaking the cycle at either one of the

60

Proc. SymCon’03

repeated differences. Forexample,0 6 1 3 2 5 4 isasolution to the new problem.
The repeated difference is 1. We can split the sequence between the 3 and 2 or between
5 and 4, giving two all-intervalseries2 5 4 0 6 1 3and4 0 6 1 3 2 5.Note
that there is no requirement that the repeated difference be between first and last ele-
ments.

Now let us consider the symmetry of this new problem. Because we included the
difference between first and last elements of the sequence, we introduce new symmetry
because we can rotate the cycle. We break this simply by insisting the first element is 0.
Next, we note that 0 and n — 1 must be adjacent, and since we can reverse any sequence,
we insist that the second element is n — 1. Finally, where does the difference n — 2 come
in? It can only be by putting n — 2 at the end, i.e. before 0 in the cycle, or 1 after n — 1.
But if we put n — 2 before 0, we would have n — 2,0, n — 1, which by negation and
reversal would be 0, — 1, 1. So we can insist that the sequence starts 0,n — 1, 1.* This
makes the reformulated problem in full:

Definition 2 (Reformulation of All-interval series problem). Given n > 3, find a
vector (8g, .-y Sn—1), such that:

1. sis a permutation of {0,1,,n — 1}, and

2. the interval vector (|s1—sg|, |s2 — 51|, --.|Sn—1 — Sn—2|, |Sn—1 — S0|) contains every
integerin {1,2,...,n — 1} with exactly one integer repeated; and

3. 50=0,s1=n—-1,s, =1.

In the appendix prove some useful lemmas about this new version of the problem.
The two most important ones show that:

— For n > 4, there are exactly 8 times as many solutions to the original all-interval
series problem as to the reformulated one.

— We can add a derived constraint, that the repeated difference is even if n is congru-
enttoQorl mod 4.

To code this formulation, we simply changed the all different constraint to an II-
cDistribute constraint, subject to every difference occurring at least once: the fact that
there are n differences automatically encodes that one will appear twice. We experi-
mented with different levels of propagation on the IlcDistribute constraint, and while
search was reduced slightly, it did not repay the extra overheads, so we used the mini-
mum. As the differences are no longer all different, we cannot use the dual p variables,
and we also omitted the dual y variables as they were no longer cost effective. Finally
we added the constraint on the parity of the repeated difference. This did reduce run
time by about a third. Again we used the lexicographic heuristic.’

Table 4 shows results using the reformulated encoding. For n > 4 we correctly
obtain half the number of solutions reported by SBDS in Table 1 and an eighth of that
with no symmetry breaking, and the same number of solutions as in the right hand side

4 Thus, in effect we have added the same constraints we tested in Table 2, that the sequence
0,7 — 1,1 occurs.
5 Our code is actually Solver 4.4 code compiled and run under Solver 5.2.

61

Proc. SymCon’03

n |Solutions Fails Choice Points Cpu (sec)|Speedup Fails/Solution
3 1 0 0 0.01 - 0
4 1 0 0 <0.01 - 0
5 1 0 0 <0.01 - 0
6 3 1 3 <0.01 - 0.33
7 4 1 4 <0.01 - 0.25
8 5 9 13 <0.01 - 1.80
9 15 14 28 0.01 9 0.93
10 37 69 105 0.02 13 1.97
11 81 278 358 0.02 61 3.43
12 166 858 1,023 0.06 116 5.17
13 400 3,758 4,157 0.28 121 9.40
14 1,239 19,531 20,769 1.78 103 15.76
15 3,199 91,695 94,893 8.85 - 28.66
16 6,990 389,142 396,131 36.94 - 55.67
17\ 17,899 2,093,203 2,111,101 215.61 - 116.95
18| 63,837 13,447,654 13,511,490 1,508.26 - 212.15
19| 181,412 79,270,906 79,452,317 9,778.94 - 436.97
20| 437,168 435,374,856 435,812,023 53,431.50 - 995.90

Table 4. Run times for reformulated version of the all-interval series problem. Where meaningful,
the column for speedup indicates the factor by which these run times improve those of SBDS in
Table 1, on the same machine. The final column indicates the number of fails encountered per
solution: from n = 9 this almost doubles for each step in n.

of Table 3. Where we have meaningful comparisons, from about n = 11 to 14, we
seem to have a speedup of about 100 times compared to using SBDS in Table 1. This
represents a roughly 50-fold speedup on Puget and Régin’s results [9] and our own from
Table 2. It is disappointing that the speedup does not improve with n. Given the growth
in run time, this corresponds only to an ability to solve n + 3 in time similar to solve
n using SBDS.® Nevertheless, it is clear that this formulation is by a very wide margin
the best way to count solutions to the all-interval series problems.

Table 4 shows that the number of fails per solution roughly doubles for each in-
crement in n. Thus, while sometimes regarded as the easiest problem in CSPLib, the
all-interval series still seems to involve considerable combinatorial search. However,
it remains possible that further ideas will show that the enumeration problem to be
easy. One idea we have not explored is to generalise our deduction of the parity of the
repeated difference. We have to partition the set of differences (and the repeated differ-
ence) into two equal sets: those where z;1 > x; and those where z;4; < z;. Search
in this number partitioning problem can be reduced using modulo arithmetic [5].

© Interestingly, this seems to correspond to the fact that three variables are set before search.

62

Proc. SymCon’03

6 Conclusions

In this paper we have formally defined “conditional symmetry”, a class of symmetry
that has been observed previously in CSPs, but not defined in general. Many new ques-
tions are raised by this. Most importantly, how do we best deal with conditional sym-
metries? While we showed that it works, our results suggest that “hacking” SBDS to
break conditional symmetries is not a long term solution. It may be possible to modify
some symmetry breaking method to cope with conditional symmetry. Once an efficient
method of dealing with conditional symmetries has been found, we need to be able
to use this research to perform conditional symmetry breaking in planning problems
(as already done by Ian Miguel in [7], and by Maria Fox and Derek Long in [3]) and
scheduling problems.

We also introduced a reformulated version of the all-interval series problem which
improves the state of the art for that problem by a factor of 50. The reasons for this
remarkable speedup are not entirely clear, but we can make the following points. First,
the reformulation entirely eliminates the conditional symmetries. Second, we introduce
n symmetries by creating a cycle, but this and the original symmetries are broken just by
setting 3 variables. This is probably the main reason for the speedup, as setting variables
is obviously a particularly strong form of symmetry breaking constraints. Third, we get
a small speedup from the parity constraint. (This in fact could be added in a different
form to the original all-interval series, but we have not tried that.) We would love to be
able to generalise the insights that led to a 50-fold improved reformulation, but sadly it
seems very special purpose to the particular problem.

Our results show that CSP practitioners should look out for conditional symmetries
when modelling. Just as with ordinary symmetries, we have shown that conditional
symmetries can be broken in full leading to a reduced number of solutions. While this
can be done in a number of ways, in this paper we saw the combination of reformulation
and symmetry breaking constraints to be a remarkably effective technique. We conclude
by suggesting that the topic of conditional symmetries in CSP is worthy of further study.

Acknowledgements

We have discussed conditional symmetries with many members of APES, whom we
thank. We specially thank Evgeny Selensky, Ian Miguel, Graeme Bell, and reviewers for
SymCon. This work is partly supported by EPSRC grants GR/R29666 and GR/R29673,
by a Royal Society of Edinburgh SEELLD Support Fellowship and by an EPSRC PhD
studentship.

References

1. C. Choi and JH. Lee, On the pruning behavior of minimal combined mod-
els for CSPs., Proceedings of the Workshop on Reformulating Constraint
Satisfaction Problems (A. Frisch, ed.), 2002, Available from http://www-
users.cs.york.ac.uk/ frisch/Reformulation/02/Proceedings/choi.ps.

63

Proc. SymCon’03

2. Filippo Focacci and Michaela Milano, Global cut framework for removing symmetries, Prin-
ciples and Practice of Constraint Programming - CP2001 (Toby Walsh, ed.), Springer, 2001,
pp- 77-92.

3. Maria Fox and Derek Long, Extending the exploitation of symmetries in planning, Artificial
Intelligence Planning Systems (Malik Ghallab, Joachim Hertzberg and Paolo Traverso, eds.),
2002, pp- 83-91.

4. 1.P. Gent and B.M. Smith, Symmetry breaking in constraint programming, Proceedings of
ECAI-2000 (W. Horn, ed.), I0S Press, 2000, pp. 599-603.

5. L.P. Gent and T. Walsh, From approximate to optimal solutions: Constructing pruning and
propagation rules, Proceedings of 1JCAI 97, 1997, pp. 1396-1401.

6. LP. Gent and T. Walsh, CSPLib: a benchmark library for constraints, Tech. report, Tech-
nical report APES-09-1999, 1999, Available from http://www.csplib.org/. A shorter version
appears in the Proceedings of the 5th International Conference on Principles and Practices of
Constraint Programming (CP-99).

7. lan Miguel, Symmetry-breaking in planning: Schematic constraints, SymCon’01: Symmetry
in Constraints 2001 (Pierre Flener and Justin Pearson, eds.), 2001, pp. 17-24.

8. K.E. Petrie and B.M. Smith, Symmetry breaking in graceful graphs, Proc. CP-03 (F. Rossi,
ed.), Springer, 2003.

9. J.-F. Puget and J.-C. Régin, Solving the all-interval problem, Available from
http://www.4c.ucc.ie/"tw/csplib/prob/prob007/puget.pdf.

10. H. Simonis and N. Beldiceanu, A note on CSPLIB prob007, Available from
http://www.4c.ucc.ie/"tw/csplib/prob/prob007/helmut.pdf.

Appendix: Theoretical Results on Reformulated Encoding

Lemma 1. Ifn > 4 then the difference n — 2 is never repeated.

Proof. The sequence starts 0,n — 1, 1. The only way to repeat the difference n — 2 is
to place n — 2 last, i.e. next to 0. So the sequence must be 0,n — 1,1,...,n — 2. But
now where can we get the difference n — 3? Only from placing 1 and n — 2 next to each
other. This is impossible since n > 4 and there are terms between 1 and n — 2.

Lemma 2. Given a solution to Definition 2, no combinations of the symmetries men-
tioned earlier, or of rotating the sequence, leads to a distinct solution.

Proof. In the new formulation, the conditional symmetry simply corresponds to a ro-
tation of the cycle. The constraint s = 0 disallows all rotations. Negating the vector
places 0 after n—1, and no rotation can correct this, so this is made impossible by setting
s1 = 0,82 = n — 1. The same holds for reversing the vector. The only remaining case
is the combination of negating the vector and reversing it. Consider n > 4. Negation
converts0,n—1,1,...inton —1,0,n — 2, ..., reversal makesitn —2,0,n—1,..., and
rotation to place O first makes this 0, — 1, ...,n — 2. But this is impossible forn > 4
by Lemma 1. In the exceptional cases of n = 3 and n = 4, the unique solutions are
0,2,1and 0,3,1, 2, and the reader can check that the operations of negation, reversal,
and anticlockwise rotation by 1, taken together lead to the identical solution.

Lemma 3. For n > 4, there are 8 distinct all-interval series corresponding to any
solution of Definition 2.

64

Proc. SymCon’03

Proof. There are two distinct all-interval series corresponding to the reformulated prob-
lem in which we do not apply any of the original problem symmetries. These are the
ones in which we split the sequence at one or other of the repeated differences. Note
that both contain the subsequence 0, n—1, 1. Doing nothing, reversing, complementing,
and complementing and reversing leads to four pairs of solutions containing the subse-
quences0,n—1,1;1,n—1,0;n—1,0,n —2;and n — 2,0, n — 1. These subsequences
characterise the pairs of solutions: only one can appear in each solution. To see this,
we note from Lemma 1 that n — 2 does not appear next to O in the original solution to
the reformulated problem since n > 4. This means that none of the subsequences can
be converted to another by cutting and regluing at the selected difference: this would
correspond to a rotation in the solution to the reformulated problem and would only be
possible if n — 2 was next to 0.’

Lemma 4. The repeated difference is even iff n is congruent to 0 or 1 mod 4.

Proof. The cycle starts with 0 and ends with 0. Therefore the total sum of all the differ-
ences in the cycle is even. Without the repeated difference, the sum of all the differences
is just n(n — 1) /2, which is even when n is 4k or 4k + 1, and odd otherwise. Therefore
the remaining, repeated, difference has to be of the same polarity.

" The proof does rely on n > 4. For n = 3,4 we can have n — 2 next to 0, in the solutions
0,2,1 and 0,3,1,2. For n = 3, 4, there is a unique solution to this problem and 4 to the original
all-interval series.

65

