
Breaking Row and Column Symmetry
in Matrix Models

Pierre Flener(1), Alan M. Frisch(2), Brahim Hnich(1),
Zeynep Kızıltan(1), Ian Miguel(2), Justin Pearson(2), and Toby Walsh(3)(1) Uppsala University, Uppsala, Sweden(2) The University of York, York, England(3) Cork Constraint Computation Centre, Cork, Ireland

Abstract. We identify an important class of symmetries in constraint programming:
matrices of decision variables with rows and columns that are symmetric. We show
how we can lexicographically order both rows and columns to break such symmetry.
Whilst lexicographically ordering rows breaks all row symmetry (and lexicographi-
cally ordering columns breaks all column symmetry), lexicographically ordering both
rows and columns fails to break all row and column symmetry. Nevertheless, our ex-
perimental results show that it is effective at dealing withrow and column symmetry.
We extend these results to cope with symmetries in 3 or more dimensions, partial sym-
metries, and symmetric values. Finally, we identify a number of special cases where
all row and column symmetry can be eliminated by the additionof some simple sym-
metry breaking constraints.

1 Introduction

Modelling is one of the most difficult parts of constraint programming. Indeed, Freuder has
identified it as the “last frontier” [5]. One source of difficulty is dealing with symmetry effi-
ciently and effectively. Symmetry occurs in many assignment, scheduling, configuration, and
design problems. Identical machines in a factory, repeat orders, equivalent time periods and
equally skilled workers are just a few of the items likely to introduce symmetry into a con-
straint program. If we ignore symmetry, the constraint program will waste time considering
symmetric but essentially equivalent assignments. As there are often an exponential number
of symmetries, this can be very costly. To help tackle this problem, we identify an important
class of symmetries that occurs frequently in constraint programs. We show how simple con-
straints can be added to the model to break such symmetries, and analyse the effectiveness of
these methods theoretically and experimentally on balanced incomplete block design (BIBD)
generation.

2 Matrix models

A matrix modelis a constraint program that contains (one or more) matricesof decision
variables. For example, a natural model of the round robin tournament scheduling problem
(prob026 at www.csplib.org) is a 2-dimensional (2-d) matrix of decision variables, each of
which is assigned a value corresponding to the match played in a given week and period [7].



In this case, the matrix is obvious in the solution to the problem: we need atableof fixtures.
However, many other problems that are less obviously definedin terms of matrices of values
can be efficiently represented and effectively solved usingmatrix models [4]. For example,
the rack configuration problem can be modelled with a 2-d 0/1 matrix representing which
cards go into which racks [8].

Symmetry is an important aspect of matrix models. Symmetry often occurs because ob-
jects within the model are indistinguishable. For example,in the rack configuration problem,
racks of the same type are indistinguishable. We can therefore permute any two racks of the
same type. That is, we can permute any two columns of the associated matrix. Similarly, in
the tournament scheduling problem, weeks and periods are indistinguishable. We can there-
fore permute any two weeks or any two periods in the schedule.That is, we can permute
any two rows or any two columns of the associated matrix. We define asymmetryof a ma-
trix model as a bijection on the decision variables in the matrix that preserves solutions. We
say that two variables areindistinguishableif they occur in the same cycle of one of these
symmetry bijections.

Two common types of symmetry in matrix models are row symmetry and column sym-
metry. The two examples in the last paragraph are row and column symmetries. We define
a column symmetryof a 2-d matrix model as a bijection on non-identical columnsthat pre-
serves solutions, and arow symmetryas a bijection on non-identical rows that again preserves
solutions. We say that two columns (rows) areindistinguishableif they occur in the same cy-
cle of one of these symmetry bijections. Note that we ignore bijections between identical
rows or columns, as they do not increase the number of symmetric solutions. Row and col-
umn symmetry are both trivially symmetries of a matrix model. Note that the reverse does
not hold in general (for example, the rotational symmetry ofa matrix model is neither a row
nor a column symmetry). We say that a matrix model hasrow symmetry(column symmetry)
iff all non-identical rows (columns) are indistinguishable. We say that a matrix model has
partial row symmetry(partial column symmetry) iff a strict subset of the non-identical rows
(columns) are indistinguishable. These definitions can easily be extended to matrix models
with more or less than 2 dimensions.

Many examples of row and column symmetry have been observed in a wide variety of
constraint programs [4]. For instance, row and column symmetries occur in matrix models of
the BIBD problem (prob028 at www.csplib.org), the steel mill slab design problem [4], the
social golfers problems (prob010 at www.csplib.org), the template design problem (prob002
at www.csplib.org), the progressive party problem (prob013 at www.csplib.org), and (as ar-
gued above) the rack configuration and round robin tournament scheduling problems.

3 Breaking symmetry

There are a number of ways of dealing with symmetry in constraint programming (see Section
7 for a longer discussion). A popular and simple approach is to add constraints which break
the symmetry [2].

3.1 Row or column symmetry

One common method to break symmetry is to order the symmetricobjects. To break row or
column symmetry, we can simply order the rows or columns lexicographically. We say that



the rows in a matrix arelexicographically orderedif each row is lexicographically bigger than
the previous, andanti-lexicographically orderedif each row is lexicographically smaller than
the previous. Similarly, we say that the columns in a matrix are lexicographically ordered if
each column is lexicographically larger than the previous,and anti-lexicographically ordered
if each column is lexicographically smaller than the previous. As a lexicographical ordering
is total, adding a lexicographical (or anti-lexicographical) ordering constraint to the rows will
break all row symmetry. Dually, adding a lexicographical (or anti-lexicographical) ordering
constraint to the columns will break all column symmetry.

3.2 Row and column symmetry

Whilst breaking row or column symmetry in a matrix model is easy, breakingboth row and
column symmetry is difficult since the rows and columns intersect. Lexicographically or-
dering the rows will tend to put the columns into lexicographic order. However, it does not
always order the columns lexicographically, and lexicographically ordering the columns can
then disrupt the lexicographic ordering on the rows.

Example 1. Consider a 3 by 4 matrix of 0/1 variables,xij, with the constraints that
Pij xij =7, and

Pi xij:xik � 1 for j 6= k (i.e. the dot product of any two rows is 1 or less). This model
has both row and column symmetry. A solution with lexicographically ordered rows, but not
lexicographically ordered columns, is:0BB�0 1 00 1 11 0 11 1 01CCA
A solution with lexicographically ordered columns, but notlexicographically ordered rows

is: 0BB�0 0 10 1 11 1 01 0 11CCA
However, by reordering the last two rows, we get a solution that is lexicographically ordered
along both rows and columns: 0BB�0 0 10 1 11 0 11 1 01CCA

It is not difficult to construct examples that need several rounds of ordering rows then
columns. Despite such conflicts, it is always possible to getthe rows and columns into lexi-
cographic order.

Theorem 1. If a 2-d matrix model with row and column symmetry has a solution, then it has
a solution with both the rows and columns lexicographicallyordered.

Proof: To show that there is a matrix with lexicographically ordered rows and columns, we
give an ordering on matrices (denoted�mat) that strictly decreases each time we lexicograph-
ically order a pair of rows or columns. As this matrix ordering is finite and bounded below,
ordering rows and columns must terminate, giving an elementwith rows and columns lexi-
cographically ordered. To compare two matrices, we simply apply the lexicographic ordering
to the sequence formed by appending their rows together in order. Ordering a pair of rows



replaces a larger row at the front of this sequence by a smaller row from further down. Hence,
ordering a pair of rows moves us down the matrix ordering. Ordering columns also moves
us down this matrix ordering. The columns may have a number ofvalues in common at the
top. Swapping these columns does not affect the matrix ordering when just considering the
corresponding top rows. However, there is then one value in the left column that is replaced
by a smaller value in the right column. This moves us down the matrix ordering. The matrix
ordering is also finite, as there are only a finite number of permutations of the values in the
matrix, and bounded below, namely by a matrix with rows and columns lexicographically
ordered.2

The last result shows that we can lexicographically order both rows and columns. Du-
ally, we can anti-lexicographically order both rows and columns. However, we cannot always
lexicographically order the rows and anti-lexicographically order the columns. Lexicograph-
ically ordering the rows will tend to push the largest valuesto the bottom left of the matrix.
Anti-lexicographically ordering the columns will tend to push the larger values to the top
right. For this reason, the two orders can conflict.

Example 2. Consider a 2 by 2 matrix of 0/1 variables,xij, with the constraints that
Pi xij =1 and

Pj xij = 1 (i.e., every row and column has a single 1 in it). This matrix model has
both row and column symmetry, and has two symmetric solutions:�0 11 0�; �1 00 1�
The first solution has rows and columns that are lexicographically ordered, whilst the second
has rows and columns that are anti-lexicographically ordered. There is no solution in which
rows are lexicographically ordered and columns are anti-lexicographically ordered.

Lexicographically ordering the rows (resp. columns) breaks all row (resp. column) sym-
metry. We were therefore very surprised to discover that lexicographically ordering the rows
and columns does not break all row and column symmetry.

Example 3. Consider a 3 by 3 matrix of 0/1 variables,xij, with the constraints thatxi1 +xi2 + xi3 � 1 and
Pij xij = 4. This model has both row and column symmetry. There are

three symmetric solutions that have lexicographically ordered rows and columns:0�0 0 10 1 11 0 01A; 0�0 0 10 1 01 0 11A; 0�0 0 10 1 01 1 01A
Whilst lexicographically ordering the rows and columns in amatrix model does not break

all row and column symmetry, our experimental result (see Section 6) suggest that it breaks
enough symmetry to be useful practically.

4 Extensions

We consider a number of extensions which extend the utility of these results considerably.

4.1 Higher dimensions

Many problems can be efficiently and effectively modelled using matrix models with more
than two dimensions. For example, the social golfers problem can be modelled with a 3-d



matrix whose dimensions correspond to weeks, groups, and players [12]. A variablexijk in
this matrix is true iff in weeki playerj plays in groupk. This matrix model is symmetric
along each of its three dimensions: weeks are indistinguishable, as are groups and players.
We can generalize lexicographical ordering constraints tothree or more dimensions to break
such symmetry.

Consider a 2-d matrix model. If we look along a particular dimension, we see 1-d vectors
at right angles to this axis. To break symmetry, we simply order these vectors lexicographi-
cally. Now consider a 3-d matrix model. If we look along a particular dimension, we see 2-d
“slices” of the matrix which are orthogonal to this axis. To break symmetry, we simply need
to order these slices. A simple way is to flatten each slice onto a vector, and lexicographically
order them. And ind dimensions, we see slices which ared � 1 dimensional hypercubes,
which can be compared by flattening them onto vectors and lexicographically ordering them.

Definition 1 (multi-dimensional lexicographical ordering).
For 2-dimensional matrices:
lex2(X[℄[℄) iff 8i; j lex(X[i℄[℄; X[i + 1℄[℄) and lex(X[℄[j℄; X[℄[j + 1℄).
For 3-dimensional matrices:
lex3(X[℄[℄[℄) iff 8i; j; k lex(flat(X[i℄[℄[℄); flat(X[i+ 1℄[℄[℄));
lex(flat(X[℄[j℄[℄); flat(X[℄[j + 1℄[℄)) and lex(flat(X[℄[℄[k℄); flat(X[℄[℄[k + 1℄)).
For a d-dimensional matrix:
lexd(X[℄[℄ : : : [℄) iff 8i; j; : : : ; l lex(flat(X[i℄[℄ : : : [℄); flat(X[i+ 1℄[℄ : : : [℄)),
lex(flat(X[℄[j℄ : : : [℄); flat(X[℄[j + 1℄ : : : [℄)), : : :, lex(flat(X[℄[℄ : : : [l℄); flat(X[℄[℄ : : : [l + 1℄)).
Whereflat(X[℄) = X[℄ andflat(X[℄[℄ : : : [℄) = app(flat(X[1℄[℄ : : : [℄); : : : flat(X[n℄[℄ : : : [℄))

As in the 2-dimensional case, we can show that this multi-dimensional lexicographical
ordering breaks some of the symmetry. Unfortunately, it does not break all symmetry as the
2-dimensional counter-examples easily generalize to three or more dimensions.

Theorem 2. If a d-dimensional matrix model (d � 1) with symmetry along each dimension
has a solution, then it has a solution under the multi-dimensional lexicographical ordering.

Proof: We give a proof for 3 dimensions. The proof generalizes to higher dimensions in
a straightforward way. As in the 2-dimensional case, we givean ordering on 3-dimensional
matrices that strictly decreases each time we re-order a pair of slices. This ordering is simply
that formed by flattening the 3-dimensional matrices and comparing the resulting vectors lex-
icographically. Note that, in each subcase of the definitionof 3-dimensional lexicographical
ordering, we flatten the remaining 2 dimensions of the matrixin the same order as we flatten
all 3 dimensions in the 3-dimensional matrix ordering. Thisensures compatibility between
the two orderings. Suppose we swap two slices from the first dimension of the 3-dimensional
matrix so that their flattened 2-dimensional slices are ordered. Trivially this must reduce
the 3-dimensional ordering. Suppose we swap two slices fromthe second dimension of the
3-dimensional matrix so that their flattened 2-dimensionalslices are ordered. Then the flat-
tened slices may have a number of elements in common at their start. Swapping these will
not affect the 3-dimensional matrix ordering. However, we will eventually meet an element
in the first flattened 2-dimensional slice which is being swapped for a smaller element in the
second. This moves us down the 3-dimensional matrix ordering. A similar argument holds
for swapping two slices in the third and final dimension of the3-dimensional matrix. Thus,
swapping two slices in any of the three dimensions moves us down the 3-dimensional matrix



ordering. The 3-dimensional matrix ordering is finite as there are only a finite number of per-
mutations of the values in a 3-dimensional matrix, and bounded below by the sequence with
values in increasing ordering. Hence, swapping slices mustterminate, giving us a minimal
element with respect to the multi-dimensional lexicographical ordering.2
4.2 Partial symmetry

We may only have partial row or column symmetry in a matrix model. For example, in the
rack design problem, only those columns which correspond toracks of the same type are
symmetric to each other. We cannot lexicographically orderthe columns in such a situation. It
is easy, however, to generalize lexicographical ordering constraints to break such partial row
or column symmetry. For each subset of rows (or columns) which are symmetric, we post
a lexicographical ordering constraint on this subset. In fact, we do not even need to do this.
Suppose we have a partial column symmetry. We add an extra first row to the matrix, in which
we label identically those columns in the same equivalence class. Then lexicographically
ordering the columns will break this partial column symmetry. Lexicographically ordering
with this extra first row will separate the columns into equivalence classes which need to be
ordered separately.

4.3 Value symmetry

We can also deal with symmetric values using the same techniques we have developed for
dealing with symmetric variables. A variableX that takes a single value or a set of values
from a domain ofn indistinguishable values can be replaced by a vector ofn variables, each
with the 0/1 domain. This converts indistinguishable values into indistinguishable rows or
columns. Consider, for example, a 2-d matrix model of the progressive party problem [4].
A variablexij in this matrix takes as values the number of the host boat visited by guesti in periodj. Now host boats of the same capacity are indistinguishable.We can turn this
partial value symmetry into partial variable symmetry by channelling into a 3-d 0/1 matrix
(that has no value symmetry). A variableyijk in this new matrix is 1 iff the host boatk is
visited by guesti in periodj. Channeling constraints of the formxij = k iff yijk = 1 link
the two matrices together. The 3-d matrix has partial row symmetry along thek dimension.
We can therefore use lexicographical ordering constraintsto break this partial symmetry. The
advantage of this approach is that we can use multi-dimensional lexicographical ordering to
deal simultaneously with symmetric variables and symmetric values. We can also use the
techniques outlined in the last section to deal with values which are only partially symmetric.

5 Breaking all row and column symmetry

We now identify three special cases where all row and column symmetry can be easily broken.
These cases provide insight into why it is hard to break all row and column symmetry in
general.

If all the values in the matrix aredistinct (e.g. in the magic square problem), ordering
the row and column with the largest value (which puts the largest value in the bottom-right
corner) breaks all symmetry. It is therefore the symmetry between identical values that makes
it difficult to break all row and column symmetry.



Theorem 3. If a 2-dimensional matrix model with row and column symmetryhas a solution
and all values in the matrix are distinct, then it has a uniquesolution with the largest value
placed in the bottom-right corner and the last row and last column ordered.

Proof: The row occupied by the largest value contains distinct values that can be permuted
by ordering the columns. By ordering this row, we break all possible column symmetry. Sim-
ilarly, the column occupied by the largest value contains distinct values that can be permuted
by ordering the rows. By ordering this column, we break all possible row symmetry.2

In fact, our proof shows that we break all symmetry even if theother rows and columns
contain repeated values. Ordering the row and column with the largest value will fix all the
other values in the matrix in a unique way. We do not thereforeneed every value in the matrix
to be distinct (although this is sufficient to make the row andcolumn with the largest value
contain no repeated values).

Even when matrices have repeated values, it is still possible in certain situations to break
all row and column symmetry by means of some simple symmetry breaking constraints. In
particular, 0/1 matrices with a single1 in each row can have all row and column symmetry
broken. Such matrix models are quite common. For example, the 2-d matrix models used in
the rack configuration problem have this form [8]. Lexicographically ordering both rows and
columns fails to break all symmetry in such models.

Example 4. Consider a 2 by 3 matrix of 0/1 variables, with the constraints that
Pij xij = 3,

and
Pi xij = 1 for all j. There are two symmetric solutions with lexicographicallyordered

rows and columns: 0�0 10 11 01A; 0�0 11 01 01A
If we add the constraint that the columns are also ordered by their sum, then all row

and column symmetry is broken. Note that we can have the column sums in increasing or
decreasing order, depending on which is preferable.

Theorem 4. Given a 2-dimensional 0/1 matrix that has a single 1 in each row, ordering its
rows lexicographically, and its columns lexicographically and by their sums breaks all row
and column symmetry.

Proof: The top row contains a single 1. Suppose it occurs anywhere but at the top right. Then
the column it occurs in will be lexicographically larger than the last column (which must start
with a 0). Hence the top right corner must contain a 1. Supposethat in the next row down, the
1 occurs to the right of where it does in this row. Then the nextrow is not lexicographically
larger. Suppose that it occurs more than one column across tothe left. Then the columns in
between are not lexicographically larger. Hence, the 1 in the next row down must occur either
directly below or one column to the left. The only freedom is in how many consecutive rows
have 1s in the same column. This symmetry is broken by ordering the sums of the columns.2

One final situation in which all row and column symmetry can beeasily broken is when
every row sum is different. Again, the row sums can be in increasing or decreasing order
depending on which is preferable.

Theorem 5. Given a 2-dimensional 0/1 matrix where the row sums are all different, ordering
its rows by their sums as well as its columns lexicographically breaks all row and column
symmetry.



row & col lex set 1st row & col row lex col lex
Instance distinct #sol total #sol #sol time #sol time #sol time #sol timeh7; 7; 3; 3; 1i 1 � 2:5M 1 1:05 216 8:1 30 2:9 30 3:6h6; 10; 5; 3; 2i 1 � 2:5M 1 0:95 17; 280 332 60; 480 3; 243 12 2h7; 14; 6; 3; 2i 4 � 2:5M 24 10:63 � 90; 448 � � 68; 040 � 465 55:4h9; 12; 4; 3; 1i 1 � 2:5M 8 28:14 � 5; 340 � � 342 � 840 1; 356h8; 14; 7; 4; 3i 4 � 2:5M 92 171 � 5; 648 � � 2; 588 � � 5; 496 �h6; 20; 10; 3; 4i � � 2:5M 21 10:3 � 538; 272 � � 429; 657 � 73 19:6

Table 1: Experimental results on BIBD instances, where ”�” indicates one clock hour, ”�” indicates that the
number of distinct solutions is unknown, and ”M” stands for millions.

Proof: If a 2-dimensional matrix model with row and column symmetryhas a solution, then it
has a solution with the rows ordered by their sum and the columns ordered lexicographically.
We can order the rows by their sums and then freely order the columns lexicographically
without violating the sum of any row. If we now swap any two rows, we will break the order
on their sums. Any column permutation following this row permutation cannot undo this
change as column permutations do not change row sums. Thus, we have broken all row and
column symmetry.2
6 Experimental results

To test the ability of lexicographical ordering constraints to break row and column symmetry,
we ran some experiments on BIBD generation. This is a standard combinatorial problem from
design theory. It has applications in experimental design and cryptography (see prob028 at
www.csplib.org for more details).

A BIBD is an arrangement ofv distinct objects intob blocks, such that each block contains
exactlyk distinct objects, each object occurs in exactlyr different blocks, and every two
distinct objects occur together in exactly� blocks. A BIBD instance is thus determined by its
parametershv; b; r; k; �i. One way of modelling a BIBD is in terms of its incidence matrix,
which is av by b 0/1 matrix with exactlyr ones per row,k ones per column, and with a
scalar product of� between any pair of distinct rows [4]. This matrix model has row and
column symmetry since we can permute any rows or columns freely without affecting any
of the constraints. This type of symmetry is often broken by setting the first row and the first
column. However, this breaks less symmetry than lexicographically ordering both the rows
and columns.

Table 1 shows our experimental results on some BIBD instances. We use the ECLIPSE
toolkit as this provides a lexicographical ordering constraint. The instances in this table are
also used in [9] and [10]. For reasons of space, we only present a representative sample of
our experiments. We enforced lexicographical ordering between neighbouring pairs of rows
and columns. This will ensure any two rows or columns are lexicographically ordered. We
also include the results when we set the first row and the first column, and when we impose
lexicographical ordering constraints only on the rows or only on the columns.

There are at least three ways of labelling the variables: along one row and then down one
column, along the rows or along the columns. The best labelling strategy varies, so the table
reports the best results achieved among these three strategies.

For each instance, we show the total number of distinct solutions (denoted by distinct
#sol), the total number of solutions (denoted by total #sol )when no symmetry breaking
constraints are used, and the total number of solutions (denoted by #sol) found as well as the



runtimes (in seconds or a “�” whenever 1 clock hour is exceeded) for each of the symmetry
breaking techniques.

Column lexicographical ordering constraints are much moreefficient than row lexico-
graphical ordering constraints. This is true for many otherinstances (which are not shown
in the table). We conjecture that the scalar product constraint so tightly constrains the rows
that little work is left to be done by the row lexicographicalordering constraints. The column
lexicographical ordering constraints act orthogonally and so are more constraining.

The results confirm that lexicographically ordering rows and columns breaks most of the
row and column symmetry. In a recent study [10], a binary CSP model encoded in SAT that
breaks symmetries in a different way was proposed to solve several BIBD instances using
SATZ, WSAT, and CLS. All its instances could be solved fast enough with our 2-d 0/1 matrix
model using row and column lexicographical ordering constraints. For example, our model
solves the instanceh8; 14; 7; 4; 3i in 171 seconds, and this instance was not solved in several
hours with any algorithm or encoding in [10].

7 Related work

There is currently much interest in symmetry in constraint satisfaction. Existing approaches
can be broadly categorised into four types. The first, as advocated here, adds symmetry-
breaking constraints to the initial model in an attempt to remove symmetrybeforesearch
starts [11]. A second method adds symmetry-breaking constraints during search to prune
symmetric branches (e.g Backofen and Will’s approach [1] orGent and Smith’s SBDS [6]).
A disadvantage of methods like SBDS is that they require the symmetries to be explicitly
listed and there are an exponential number of row and column symmetries. Recently, Gent
and Smith have looked at combining symmetry breaking beforeand during search [14]. They
report promising results with combined methods that break some of the symmetry using row
sum and partial column lexicographical ordering. A third approach is to break symmetry
by means of aheuristic variable-orderingthat directs the search towards subspaces with a
high density of non-symmetric states (e.g. [9]). Lastly, itis sometimes possible toremodel
a problem to remove symmetry, for example via the use of set variables. However, this can
produce a more complex model [13].

All of these approaches would benefit from an efficient means of automatic symmetry
detection. However, symmetry detection has been shown to begraph-isomorphism complete
in the general case [3]. Therefore, it is often assumed that the symmetries are known by the
user. Since matrices of decision variable are common in constraint programs [4], and rows
and columns in such matrices are often symmetric, making matrices first-class objects in the
modelling language would give a heuristic symmetry-detection technique obvious clues as to
where to look.

8 Conclusions

We have identified an important class of symmetries in constraint models: row and column
symmetry. We have shown how we can lexicographically order both rows and columns to
break such symmetry. Whilst lexicographically ordering rows breaks all row symmetry (and
lexicographically ordering columns breaks all column symmetry), lexicographically order-
ing both rows and columns fails to break all row and column symmetry. Nevertheless, our



experimental results show that it is effective at dealing with row and column symmetry. We
have extended these results to cope with symmetries in 3 or more dimensions, partial sym-
metries, and symmetric values. Finally, we have identified anumber of special cases where
all row and column symmetry can be eliminated by means of adding some simple symmetry
breaking constraints.

In our future work, we intend to look at ways of identifying row and column symmetry
automatically, and at methods for enforcing these symmetrybreaking constraints even more
efficiently and effectively.

Acknowledgments

This work is partially supported by grant 221-99-368 of VR and grant GR/N16129 of ES-
PRC. The last author was supported by an ESPRC advanced research fellowship. We thank
Warwick Harvey and the members of the APES group, especiallyBarabara Smith, for their
helpful discussions.

References

[1] R. Backofen and S. Will, Excluding symmetries in concurrent constraint programming, inProc. of the
5th Int. Conf. on Principles and Practice of Constraint Programming, ed., J. Jaffar, LNCS, pp. 73–87.
Springer-Verlag, 1999.

[2] J. Crawford, G. Luks, M. Ginsberg, and A. Roy, Symmetry breaking predicates for search problems, in
Proc. of the 5th Int. Conf. on Knowledge Representation and Reasoning, (KR ’96), pp. 148–159, 1996.

[3] J.M. Crawford, A theoretical analysis of reasoning by symmetry in first-order logic, inProc. of the AAAI
workshop on tractable reasoning, 1992.

[4] P. Flener, A. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, and T. Walsh, Matrix modelling, inProc. of the
CP-01 Workshop on Modelling and Problem Formulation, 2001. Also available as technical report APES-
36-2001 from http://www.dcs.st-and.ac.uk/�apes/reports/apes-36-2001.ps.gz.

[5] E. Freuder, Modelling: The final frontier, inProc. of PACLP’99, 1999.

[6] I.P. Gent and B.M. Smith, Symmetry breaking in constraint programming, inProc. of the 14th European
Conf. on AI, ed., W. Horn, pp. 599–603, 2000.

[7] P. Van Hentenryck, L. Michel, L. Perron, and J-C. Régin,Constraint programming in OPL, inProc. of
PPDP’99, ed., G. Nadathur, LNCS, pp. 97–116. Springer-Verlag, 1999.

[8] Z. Kızıltan and B. Hnich, Symmetry breaking in a rack configuration problem, inProc. of IJCAI-2001
Workshop on Modelling and Solving Problems with Constraints. 2001.

[9] P. Meseguer and C. Torras, Exploiting symmetries withinconstraint satisfaction search,Artificial Intelli-
gence, 129(1–2), 133–163, 2001.

[10] S.D. Prestwich, Balanced incomplete block design as satisfiability, in Proc. of the 12th Irish Conf. on AI
and Cognitive Science, 2001.

[11] J.-F. Puget, On the satisfiability of symmetrical constrained satisfaction problems, inProc. of ISMIS’93,
eds., J. Komorowski and Z.W. Ras, LNAI, pp. 350–361. Springer-Verlag, 1993.

[12] B.M. Smith, Reducing symmetry in a combinatorial design problem, inProc. of CP-AI-OR’01, 2001.
Available as Research Report 2001.01, School of Computing,University of Leeds.

[13] B.M. Smith, Reducing symmetry in a combinatorial design problem, inProc. of the IJCAI-2001 workshop
on Modelling and Solving Problems with Constraints, pp. 105–112, 2001.

[14] B.M. Smith and I.P. Gent, Reducing symmetry in matrix models:sbds v. constraints, inProc. of the CP-
2001 workshop on Symmetry in Constraints, 2001.


