Breaking Row and Column Symmetry
In Matrix Models

Pierre Flenet), Alan M. Frisch?, Brahim Hnichb),
Zeynep Kiziltaf), lan Miguel®, Justin Pearsdfi, and Toby WalsH)
(1) Uppsala University, Uppsala, Sweden
(2) The University of York, York, England
(3) Cork Constraint Computation Centre, Cork, Ireland

Abstract. We identify an important class of symmetries in constranaigpamming:
matrices of decision variables with rows and columns thatsgmmetric. We show
how we can lexicographically order both rows and columnsréak such symmetry.
Whilst lexicographically ordering rows breaks all row syetny (and lexicographi-
cally ordering columns breaks all column symmetry), legi@phically ordering both
rows and columns fails to break all row and column symmeteyéitheless, our ex-
perimental results show that it is effective at dealing witv and column symmetry.
We extend these results to cope with symmetries in 3 or manermions, partial sym-
metries, and symmetric values. Finally, we identify a numifespecial cases where
all row and column symmetry can be eliminated by the addibfbsome simple sym-
metry breaking constraints.

1 Introduction

Modelling is one of the most difficult parts of constraint gramming. Indeed, Freuder has
identified it as the “last frontier” [5]. One source of diffitpis dealing with symmetry effi-
ciently and effectively. Symmetry occurs in many assigntygeheduling, configuration, and
design problems. Identical machines in a factory, repedgrsy equivalent time periods and
equally skilled workers are just a few of the items likely tdroduce symmetry into a con-
straint program. If we ignore symmetry, the constraint paog will waste time considering
symmetric but essentially equivalent assignments. Asthex often an exponential number
of symmetries, this can be very costly. To help tackle thabfgm, we identify an important
class of symmetries that occurs frequently in constraiog@ms. We show how simple con-
straints can be added to the model to break such symmetmnigsrelyse the effectiveness of
these methods theoretically and experimentally on bathmm®mplete block design (BIBD)
generation.

2 Matrix models

A matrix modelis a constraint program that contains (one or more) matdagecision

variables. For example, a natural model of the round robimnament scheduling problem
(prob026 at www.csplib.org) is a 2-dimensional (2-d) mati decision variables, each of
which is assigned a value corresponding to the match playadjiven week and period [7].

In this case, the matrix is obvious in the solution to the peob we need &able of fixtures.
However, many other problems that are less obviously defm>ms of matrices of values
can be efficiently represented and effectively solved usiagrix models [4]. For example,
the rack configuration problem can be modelled with a 2-d Gatrimrepresenting which
cards go into which racks [8].

Symmetry is an important aspect of matrix models. Symmeftgnooccurs because ob-
jects within the model are indistinguishable. For examipi¢he rack configuration problem,
racks of the same type are indistinguishable. We can thergermute any two racks of the
same type. That is, we can permute any two columns of the iassdanatrix. Similarly, in
the tournament scheduling problem, weeks and periods digtimguishable. We can there-
fore permute any two weeks or any two periods in the schedtiat is, we can permute
any two rows or any two columns of the associated matrix. Wmee@symmetryof a ma-
trix model as a bijection on the decision variables in thermm#hbat preserves solutions. We
say that two variables aiedistinguishablef they occur in the same cycle of one of these
symmetry bijections.

Two common types of symmetry in matrix models are row symynatid column sym-
metry. The two examples in the last paragraph are row androokymmetries. We define
a column symmetrgf a 2-d matrix model as a bijection on non-identical colurtiveg pre-
serves solutions, andraw symmetras a bijection on non-identical rows that again preserves
solutions. We say that two columns (rows) ardistinguishablef they occur in the same cy-
cle of one of these symmetry bijections. Note that we ignajections between identical
rows or columns, as they do not increase the number of synusetfutions. Row and col-
umn symmetry are both trivially symmetries of a matrix modébte that the reverse does
not hold in general (for example, the rotational symmetrg afatrix model is neither a row
nor a column symmetry). We say that a matrix model foas symmetry{column symmetjy
iff all non-identical rows (columns) are indistinguishabWe say that a matrix model has
partial row symmetry{partial column symmetpyiff a strict subset of the non-identical rows
(columns) are indistinguishable. These definitions cailyebhs extended to matrix models
with more or less than 2 dimensions.

Many examples of row and column symmetry have been observadnide variety of
constraint programs [4]. For instance, row and column sytriggeoccur in matrix models of
the BIBD problem (prob028 at www.csplib.org), the steellrsihb design problem [4], the
social golfers problems (prob010 at www.csplib.org), tmplate design problem (prob002
at www.csplib.org), the progressive party problem (prdb@twww.csplib.org), and (as ar-
gued above) the rack configuration and round robin tournaswreduling problems.

3 Breaking symmetry

There are a number of ways of dealing with symmetry in coimgtpiogramming (see Section
7 for a longer discussion). A popular and simple approact &litd constraints which break
the symmetry [2].

3.1 Row or column symmetry

One common method to break symmetry is to order the symnuijexts. To break row or
column symmetry, we can simply order the rows or columnstegiaphically. We say that

the rows in a matrix arexicographically orderedf each row is lexicographically bigger than
the previous, andnti-lexicographically orderedf each row is lexicographically smaller than
the previous. Similarly, we say that the columns in a matrexlaxicographically ordered if

each column is lexicographically larger than the previans anti-lexicographically ordered
if each column is lexicographically smaller than the pregioAs a lexicographical ordering
is total, adding a lexicographical (or anti-lexicograg@tj@rdering constraint to the rows will

break all row symmetry. Dually, adding a lexicographical &ati-lexicographical) ordering

constraint to the columns will break all column symmetry.

3.2 Row and column symmetry

Whilst breaking row or column symmetry in a matrix model isyareakingoothrow and
column symmetry is difficult since the rows and columns iseet. Lexicographically or-
dering the rows will tend to put the columns into lexicogrigpbrder. However, it does not
always order the columns lexicographically, and lexicpbreally ordering the columns can
then disrupt the lexicographic ordering on the rows.

Example 1. Consider a 3 by 4 matrix of 0/1 variables,;, with the constraints that_,; z;; =

7,and) . x;;.x, < 1forj # k (i.e. the dot product of any two rows is 1 or less). This model
has both row and column symmetry. A solution with lexicogiegdly ordered rows, but not
lexicographically ordered columns, is:

A solution with lexicographically ordered columns, but feticographically ordered rows

)

However, by reordering the last two rows, we get a soluti@t ik lexicographically ordered
along both rows and columns:

It is not difficult to construct examples that need severahas of ordering rows then
columns. Despite such conflicts, it is always possible talgerows and columns into lexi-
cographic order.

= =0 O
— o~
orRKFOo

== o o
o~ O
—_ o~ -

== o o
— oo
=

Theorem 1. If a 2-d matrix model with row and column symmetry has a sotytihen it has
a solution with both the rows and columns lexicographicalyered.

Proof: To show that there is a matrix with lexicographically orderews and columns, we
give an ordering on matrices (denoteg,;) that strictly decreases each time we lexicograph-
ically order a pair of rows or columns. As this matrix orderis finite and bounded below,
ordering rows and columns must terminate, giving an elemahtrows and columns lexi-
cographically ordered. To compare two matrices, we simpphathe lexicographic ordering
to the sequence formed by appending their rows togetherderoOrdering a pair of rows

replaces a larger row at the front of this sequence by a smmaliefrom further down. Hence,
ordering a pair of rows moves us down the matrix ordering.e@rd) columns also moves
us down this matrix ordering. The columns may have a numbealoles in common at the
top. Swapping these columns does not affect the matrix mglevhen just considering the
corresponding top rows. However, there is then one valuldneft column that is replaced
by a smaller value in the right column. This moves us down th&imordering. The matrix
ordering is also finite, as there are only a finite number ofeations of the values in the
matrix, and bounded below, namely by a matrix with rows anldiroos lexicographically
orderedd

The last result shows that we can lexicographically ordéh bows and columns. Du-
ally, we can anti-lexicographically order both rows anducohs. However, we cannot always
lexicographically order the rows and anti-lexicographycarder the columns. Lexicograph-
ically ordering the rows will tend to push the largest valteethe bottom left of the matrix.
Anti-lexicographically ordering the columns will tend tagh the larger values to the top
right. For this reason, the two orders can conflict.

Example 2. Consider a 2 by 2 matrix of 0/1 variables,;, with the constraints tha} _, z;; =
1 and Zj z;; = 1 (i.e., every row and column has a single 1 in it). This matrodei has
both row and column symmetry, and has two symmetric sokition

0 1 1 0
5 s) ()
The first solution has rows and columns that are lexicogrealhy ordered, whilst the second

has rows and columns that are anti-lexicographically omterThere is no solution in which
rows are lexicographically ordered and columns are ankidegraphically ordered.

Lexicographically ordering the rows (resp. columns) beeak row (resp. column) sym-
metry. We were therefore very surprised to discover thatteraphically ordering the rows
and columns does not break all row and column symmetry.

Example 3. Consider a 3 by 3 matrix of 0/1 variables;;, with the constraints that;; +
ZTio + x5 > 1 and Zij z;; = 4. This model has both row and column symmetry. There are
three symmetric solutions that have lexicographicallyspedl rows and columns:

0 0 1 0 0 1 0 0 1
o1 1), [o 1 o], [0 1 0o
1 0 0 1 0 1 1 1 0

Whilst lexicographically ordering the rows and columns matrix model does not break
all row and column symmetry, our experimental result (sedi®e 6) suggest that it breaks
enough symmetry to be useful practically.

4 Extensions

We consider a number of extensions which extend the utifithese results considerably.

4.1 Higher dimensions

Many problems can be efficiently and effectively modellethgsnatrix models with more
than two dimensions. For example, the social golfers proldan be modelled with a 3-d

matrix whose dimensions correspond to weeks, groups, ayers [12]. A variabler;j; in
this matrix is true iff in weeki player; plays in groupk. This matrix model is symmetric
along each of its three dimensions: weeks are indistingibigh as are groups and players.
We can generalize lexicographical ordering constraintirt®e or more dimensions to break
such symmetry.

Consider a 2-d matrix model. If we look along a particular éitsion, we see 1-d vectors
at right angles to this axis. To break symmetry, we simplyeottiese vectors lexicographi-
cally. Now consider a 3-d matrix model. If we look along a gautar dimension, we see 2-d
“slices” of the matrix which are orthogonal to this axis. Teék symmetry, we simply need
to order these slices. A simple way is to flatten each slice amector, and lexicographically
order them. And in/ dimensions, we see slices which ate- 1 dimensional hypercubes,
which can be compared by flattening them onto vectors anddgkaphically ordering them.

Definition 1 (multi-dimensional lexicographical ordering).

For 2-dimensional matrices:

lex? (X [][]) iff Vi, j lex(X [4][], X[+ 1][]) andlex(X[][5], X][+ 1).

For 3-dimensional matrices:

lex* (XINI) iff Vi, 5, k lex(Rat(X [i][]]), flat(X[i + 1][1),

lex(flat(X][7][]), flat(X][; + 1][])) andlex(flat(X [J[}[k]), flat(CX [][}[k + 1])).
For a d-dimensional matrix:

lext(X[)[]...[) iff Vi, j, ... 0 lex(flat(Xi][] ...), flat(X[i + 1] ...),
lex(flat(X[[j] . .. []), flat(X|[j + 1] ... [)), . .., lex(flat(X][] ... [I]), flat(X][] . .. [+ 1])).
Whereflat(X[)) = X[] andflat(X[][] ... []) = appflat(X[1][]...[]),. .. flat(X[n][] ... [)))

As in the 2-dimensional case, we can show that this multietisional lexicographical
ordering breaks some of the symmetry. Unfortunately, itsdoat break all symmetry as the
2-dimensional counter-examples easily generalize tetbrenore dimensions.

Theorem 2. If a d-dimensional matrix modet/(> 1) with symmetry along each dimension
has a solution, then it has a solution under the multi-dinneamesl lexicographical ordering.

Proof: We give a proof for 3 dimensions. The proof generalizes tdéiglimensions in
a straightforward way. As in the 2-dimensional case, we giverdering on 3-dimensional
matrices that strictly decreases each time we re-orderapslices. This ordering is simply
that formed by flattening the 3-dimensional matrices andpamng the resulting vectors lex-
icographically. Note that, in each subcase of the definitib8-dimensional lexicographical
ordering, we flatten the remaining 2 dimensions of the matrthe same order as we flatten
all 3 dimensions in the 3-dimensional matrix ordering. Témsures compatibility between
the two orderings. Suppose we swap two slices from the finsédsion of the 3-dimensional
matrix so that their flattened 2-dimensional slices are redleTrivially this must reduce
the 3-dimensional ordering. Suppose we swap two slices frensecond dimension of the
3-dimensional matrix so that their flattened 2-dimensiatiaks are ordered. Then the flat-
tened slices may have a number of elements in common at taeir Swapping these will
not affect the 3-dimensional matrix ordering. However, wt @ventually meet an element
in the first flattened 2-dimensional slice which is being speapfor a smaller element in the
second. This moves us down the 3-dimensional matrix orgeAnsimilar argument holds
for swapping two slices in the third and final dimension of 8adimensional matrix. Thus,
swapping two slices in any of the three dimensions moves ws dioe 3-dimensional matrix

ordering. The 3-dimensional matrix ordering is finite agéhare only a finite number of per-
mutations of the values in a 3-dimensional matrix, and bedratlow by the sequence with
values in increasing ordering. Hence, swapping slices meustinate, giving us a minimal
element with respect to the multi-dimensional lexicogieghordering.0

4.2 Partial symmetry

We may only have partial row or column symmetry in a matrix elo&or example, in the
rack design problem, only those columns which correspon@dks of the same type are
symmetric to each other. We cannot lexicographically otideccolumns in such a situation. It
is easy, however, to generalize lexicographical orderomgstraints to break such partial row
or column symmetry. For each subset of rows (or columns) vare symmetric, we post
a lexicographical ordering constraint on this subset. th, fae do not even need to do this.
Suppose we have a partial column symmetry. We add an extreofivéo the matrix, in which
we label identically those columns in the same equivaletagsc Then lexicographically
ordering the columns will break this partial column symmelrexicographically ordering
with this extra first row will separate the columns into e@l@nce classes which need to be
ordered separately.

4.3 Value symmetry

We can also deal with symmetric values using the same tegbsige have developed for
dealing with symmetric variables. A variablé¢ that takes a single value or a set of values
from a domain of indistinguishable values can be replaced by a vectar\@riables, each
with the 0/1 domain. This converts indistinguishable valugo indistinguishable rows or
columns. Consider, for example, a 2-d matrix model of thegpssive party problem [4].
A variable z;; in this matrix takes as values the number of the host boatedidly guest

¢ in periodj. Now host boats of the same capacity are indistinguish&téecan turn this
partial value symmetry into partial variable symmetry bychelling into a 3-d 0/1 matrix
(that has no value symmetry). A variabjg,, in this new matrix is 1 iff the host bodt is
visited by guest in period;. Channeling constraints of the form; = & iff y;;, = 1 link
the two matrices together. The 3-d matrix has partial rowrsgtny along the: dimension.
We can therefore use lexicographical ordering constréaritseak this partial symmetry. The
advantage of this approach is that we can use multi-dimeaklexicographical ordering to
deal simultaneously with symmetric variables and symmetaiues. We can also use the
techniques outlined in the last section to deal with valuegkvare only partially symmetric.

5 Breaking all row and column symmetry

We now identify three special cases where all row and colwmmsetry can be easily broken.
These cases provide insight into why it is hard to break all amd column symmetry in
general.

If all the values in the matrix ardistinct (e.g. in the magic square problem), ordering
the row and column with the largest value (which puts thedargalue in the bottom-right
corner) breaks all symmetry. It is therefore the symmettwben identical values that makes
it difficult to break all row and column symmetry.

Theorem 3. If a 2-dimensional matrix model with row and column symmb#y a solution
and all values in the matrix are distinct, then it has a unigaéution with the largest value
placed in the bottom-right corner and the last row and ladtioan ordered.

Proof: The row occupied by the largest value contains distinctesbhat can be permuted
by ordering the columns. By ordering this row, we break afigible column symmetry. Sim-
ilarly, the column occupied by the largest value contaissinict values that can be permuted
by ordering the rows. By ordering this column, we break aigible row symmetry

In fact, our proof shows that we break all symmetry even ifdtieer rows and columns
contain repeated values. Ordering the row and column weHatgest value will fix all the
other values in the matrix in a unique way. We do not therefi@ed every value in the matrix
to be distinct (although this is sufficient to make the row antlimn with the largest value
contain no repeated values).

Even when matrices have repeated values, it is still passildertain situations to break
all row and column symmetry by means of some simple symmetgking constraints. In
particular, 0/1 matrices with a singlein each row can have all row and column symmetry
broken. Such matrix models are quite common. For exampde? ith matrix models used in
the rack configuration problem have this form [8]. Lexicqgraally ordering both rows and
columns fails to break all symmetry in such models.

Example 4. Consider a 2 by 3 matrix of 0/1 variables, with the constraithiat) _,; x;; = 3,
and)_, z;; = 1 for all j. There are two symmetric solutions with lexicographicaligered
rows and columns:

If we add the constraint that the columns are also orderechéy sum, then all row
and column symmetry is broken. Note that we can have the aokums in increasing or
decreasing order, depending on which is preferable.

Theorem 4. Given a 2-dimensional 0/1 matrix that has a single 1 in eaah mrdering its
rows lexicographically, and its columns lexicographigadind by their sums breaks all row
and column symmetry.

Proof: The top row contains a single 1. Suppose it occurs anywhea bhe top right. Then
the column it occurs in will be lexicographically larger thide last column (which must start
with a 0). Hence the top right corner must contain a 1. Supfiagen the next row down, the
1 occurs to the right of where it does in this row. Then the mextis not lexicographically
larger. Suppose that it occurs more than one column acrdbe teft. Then the columns in
between are not lexicographically larger. Hence, the 1emixt row down must occur either
directly below or one column to the left. The only freedommisibw many consecutive rows
have 1s in the same column. This symmetry is broken by orgéhi@ sums of the columns.
O

One final situation in which all row and column symmetry carebsily broken is when
every row sum is different. Again, the row sums can be in iasigg or decreasing order
depending on which is preferable.

Theorem 5. Given a 2-dimensional 0/1 matrix where the row sums are #kdint, ordering
its rows by their sums as well as its columns lexicographydateaks all row and column
symmetry.

row & col lex set 1st row & col row lex col lex

Instance distinct #sol total #sqgl #sol time #sol time #sol time #sol time
(7,7,3,3,1) 1 > 2.5M 1 1.05 216 8.1 30 2.9 30 3.6
(6,10,5,3,2) 1 > 2.5M 1 0.9 17,280 332 60,480 3,243 12 2
(7,14,6,3,2) 4 > 2.5M 24 10.63 > 90,448 - > 68,040 - 465 55.4
(9,12,4,3,1) 1 > 2.5M 8 28.14 > 5,340 - > 342 - 840 1,356
(8,14,7,4,3) 4 > 2.5M 92 171 > 5,648 - > 2,588 — | >5,496 -
(6,20,10,3,4) * >25M | 21 10.3 | > 538,272 — | > 429,657 - 73 19.6

Table 1: Experimental results on BIBD instances, wheré ihdicates one clock hour«” indicates that the
number of distinct solutions is unknown, and "M” stands falions.

Proof: If a 2-dimensional matrix model with row and column symmétag a solution, then it
has a solution with the rows ordered by their sum and the catuondered lexicographically.
We can order the rows by their sums and then freely order therots lexicographically
without violating the sum of any row. If we now swap any two spwe will break the order
on their sums. Any column permutation following this row ipettation cannot undo this
change as column permutations do not change row sums. Tleusave broken all row and
column symmetryd

6 Experimental results

To test the ability of lexicographical ordering constraitd break row and column symmetry,
we ran some experiments on BIBD generation. This is a stdraembinatorial problem from
design theory. It has applications in experimental desigh@&yptography (see prob028 at
www.csplib.org for more details).

A BIBD is an arrangement af distinct objects intd blocks, such that each block contains
exactly £ distinct objects, each object occurs in exaatlgifferent blocks, and every two
distinct objects occur together in exacylocks. A BIBD instance is thus determined by its
parametersuv, b, r, k, \). One way of modelling a BIBD is in terms of its incidence matri
which is av by b 0/1 matrix with exactlyr ones per rowk ones per column, and with a
scalar product of\ between any pair of distinct rows [4]. This matrix model haw rand
column symmetry since we can permute any rows or columngyfreghout affecting any
of the constraints. This type of symmetry is often brokenduyiisg the first row and the first
column. However, this breaks less symmetry than lexicdycatly ordering both the rows
and columns.

Table 1 shows our experimental results on some BIBD instantle use the ECLIPSE
toolkit as this provides a lexicographical ordering coaistr. The instances in this table are
also used in [9] and [10]. For reasons of space, we only ptesespresentative sample of
our experiments. We enforced lexicographical orderingvbeh neighbouring pairs of rows
and columns. This will ensure any two rows or columns arectegiiaphically ordered. We
also include the results when we set the first row and the faisihan, and when we impose
lexicographical ordering constraints only on the rows dy@m the columns.

There are at least three ways of labelling the variablesigadme row and then down one
column, along the rows or along the columns. The best latgetitrategy varies, so the table
reports the best results achieved among these three ssateg

For each instance, we show the total number of distinct moist(denoted by distinct
#sol), the total number of solutions (denoted by total #sehgen no symmetry breaking
constraints are used, and the total number of solutionofddrby #sol) found as well as the

runtimes (in seconds or a" whenever 1 clock hour is exceeded) for each of the symmetry
breaking techniques.

Column lexicographical ordering constraints are much neffieient than row lexico-
graphical ordering constraints. This is true for many otihetances (which are not shown
in the table). We conjecture that the scalar product coimstsa tightly constrains the rows
that little work is left to be done by the row lexicographicatlering constraints. The column
lexicographical ordering constraints act orthogonallgt ao are more constraining.

The results confirm that lexicographically ordering rowd anlumns breaks most of the
row and column symmetry. In a recent study [10], a binary C®ehencoded in SAT that
breaks symmetries in a different way was proposed to solweraeBIBD instances using
SATZ, WSAT, and CLS. All its instances could be solved fasiwegh with our 2-d 0/1 matrix
model using row and column lexicographical ordering caists. For example, our model
solves the instances, 14,7, 4, 3) in 171 seconds, and this instance was not solved in several
hours with any algorithm or encoding in [10].

7 Related work

There is currently much interest in symmetry in constraaiséaction. Existing approaches
can be broadly categorised into four types. The first, as @ated here, adds symmetry-
breaking constraints to the initial model in an attempt tmoge symmetrybeforesearch
starts [11]. A second method adds symmetry-breaking cainssrduring search to prune
symmetric branches (e.g Backofen and Will's approach [Xpent and Smith’'s SBDS [6]).
A disadvantage of methods like SBDS is that they require yimensetries to be explicitly
listed and there are an exponential number of row and colymmreetries. Recently, Gent
and Smith have looked at combining symmetry breaking befodeduring search [14]. They
report promising results with combined methods that breakesof the symmetry using row
sum and partial column lexicographical ordering. A thirgpegach is to break symmetry
by means of deuristic variable-orderinghat directs the search towards subspaces with a
high density of non-symmetric states (e.g. [9]). Lastlysisometimes possible temodel

a problem to remove symmetry, for example via the use of s@hlas. However, this can
produce a more complex model [13].

All of these approaches would benefit from an efficient medrsutomatic symmetry
detection. However, symmetry detection has been shown ¢pap-isomorphism complete
in the general case [3]. Therefore, it is often assumed Hesymmetries are known by the
user. Since matrices of decision variable are common intang programs [4], and rows
and columns in such matrices are often symmetric, makingeeatfirst-class objects in the
modelling language would give a heuristic symmetry-déd@diechnique obvious clues as to
where to look.

8 Conclusions

We have identified an important class of symmetries in caimgtmodels: row and column
symmetry. We have shown how we can lexicographically oraeh lbows and columns to
break such symmetry. Whilst lexicographically orderingisdoreaks all row symmetry (and
lexicographically ordering columns breaks all column syetny), lexicographically order-
ing both rows and columns fails to break all row and column syatny. Nevertheless, our

experimental results show that it is effective at dealinthwow and column symmetry. We
have extended these results to cope with symmetries in 3 og dimensions, partial sym-
metries, and symmetric values. Finally, we have identifieaiiaber of special cases where
all row and column symmetry can be eliminated by means ofradsiome simple symmetry
breaking constraints.

In our future work, we intend to look at ways of identifyingir@and column symmetry
automatically, and at methods for enforcing these symnietgking constraints even more
efficiently and effectively.

Acknowledgments

This work is partially supported by grant 221-99-368 of VRIagrant GR/N16129 of ES-
PRC. The last author was supported by an ESPRC advancedctes$eliowship. We thank
Warwick Harvey and the members of the APES group, espediahpabara Smith, for their
helpful discussions.

References

[1] R. Backofen and S. Will, Excluding symmetries in con@umt constraint programming, igroc. of the
5th Int. Conf. on Principles and Practice of Constraint Pragiming ed., J. Jaffar, LNCS, pp. 73-87.
Springer-Verlag, 1999.

[2] J. Crawford, G. Luks, M. Ginsberg, and A. Roy, Symmetrgditing predicates for search problems, in
Proc. of the 5th Int. Conf. on Knowledge Representation agakBning, (KR '96)pp. 148-159, 1996.

[3] J.M. Crawford, A theoretical analysis of reasoning bynsgetry in first-order logic, ifProc. of the AAAI
workshop on tractable reasoning992.

[4] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, drT. Walsh, Matrix modelling, irProc. of the
CP-01 Workshop on Modelling and Problem Formulatig@01. Also available as technical report APES-
36-2001 from http://www.dcs.st-and.ac.sldpes/reports/apes-36-2001.ps.gz.

[5] E. Freuder, Modelling: The final frontier, iRroc. of PACLP’991999.

[6] I.P. Gent and B.M. Smith, Symmetry breaking in constraiogramming, irProc. of the 14th European
Conf. on Al ed., W. Horn, pp. 599-603, 2000.

[7] P. Van Hentenryck, L. Michel, L. Perron, and J-C. Rédhunstraint programming in OPL, iRroc. of
PPDP’99 ed., G. Nadathur, LNCS, pp. 97-116. Springer-Verlag, 1999

[8] Z. Kiziltan and B. Hnich, Symmetry breaking in a rack cguofiation problem, ifProc. of IJCAI-2001
Workshop on Modelling and Solving Problems with Constsa2®01.

[9] P. Meseguer and C. Torras, Exploiting symmetries wittonstraint satisfaction searcdhrtificial Intelli-
gencel1291-2), 133-163, 2001.
[10] S.D. Prestwich, Balanced incomplete block design &sfebility, in Proc. of the 12th Irish Conf. on Al
and Cognitive Scien¢c2001.

[11] J.-F. Puget, On the satisfiability of symmetrical coaisted satisfaction problems, Rroc. of ISMIS’93
eds., J. Komorowski and Z.W. Ras, LNAI, pp. 350-361. Spris\égrlag, 1993.

[12] B.M. Smith, Reducing symmetry in a combinatorial desjgroblem, inProc. of CP-AI-OR’012001.
Available as Research Report 2001.01, School of Computingyersity of Leeds.

[13] B.M. Smith, Reducing symmetry in a combinatorial despgoblem, inProc. of the IJCAI-2001 workshop
on Modelling and Solving Problems with Constrajmip. 105-112, 2001.

[14] B.M. Smith and I.P. Gent, Reducing symmetry in matrixdals:sbds v. constraints, Proc. of the CP-
2001 workshop on Symmetry in Constraji2801.

