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Abstract. We present a technique for modeling and automatic verifica-
tion of network protocols, based on graph transformation. It is suitable
for protocols with a potentially unbounded number of nodes, in which
the structure and topology of the network is a central aspect, such as
routing protocols for ad hoc networks. Safety properties are specified as
a set of undesirable global configurations. We verify that there is no un-
desirable configuration which is reachable from an initial configuration,
by means of symbolic backward reachability analysis.
In general, the reachability problem is undecidable. We implement the
technique in a graph grammar analysis tool, and automatically verify
several interesting nontrivial examples. Notably, we prove loop freedom
for the DYMO ad hoc routing protocol. DYMO is currently on the IETF
standards track, to potentially become an Internet standard.

1 Introduction

The verification of network protocols has been one of the most important driv-
ing forces for the development of model checking technology. Most approaches
(e.g., [15]) analyze finite-state models of protocols, but an increasing number
of techniques are developed for analyzing parameterized or infinite-state models
(e.g., [2]). In this paper, we consider verification of protocols for networks with a
potentially unbounded number of nodes, possibly with a dynamically changing
topology. This is a large class of protocols, including protocols for wireless ad
hoc networks, many distributed algorithms, security protocols, telephone system
services, etc. Global configurations of such protocols are naturally modeled using
graphs, that are transformed by the protocol’s dynamic behavior, and therefore
various forms of graph transformation systems have been used to model and
analyze them [19, 7].

In this paper, we present a technique for modeling and verification of pro-
tocols using a variant of graph transformation systems (GTSs) [19, 7]. We use
a general mechanism for expressing conditions on the applicability of a rule, in
the form of negative application conditions (NACs). Sets of global configurations
are symbolically represented by graph patterns [7], which are graphs extended
with NACs. Intuitively, a graph pattern represents the set of configurations that
contain it as a subgraph, but none of the NACs. A safety property of a proto-
col is represented by a set of graph patterns that represent undesirable global
configurations.



We consider the problem of verifying safety properties. This can be reduced
to the problem whether an undesirable configuration can be reached, by a se-
quence of graph transformation steps, from some initial global configuration.
We present a method for automatically checking such a reachability problem by
backward reachability analysis. Backward reachability analysis is a powerful ver-
ification technique, which has generated decidability results for many classes of
parameterized and infinite-state systems (e.g., [3, 2, 13]) and proven to be highly
useful also for undecidable verification problems (e.g., [1]). By fixed point com-
putation, we compute an over-approximation of the set of configurations from
which a bad configuration can be reached, and check that this set contains no
initial configuration. The central part of the backward reachability procedure
is to compute the predecessors of a set of configurations in this symbolic rep-
resentation. Since the reachability problem is undecidable in general, the fixed
point computation is not guaranteed to terminate. However, we show that the
techniques are powerful enough for verifying several interesting nontrivial ex-
amples, indicating that the approach is useful for network protocols where the
dynamically changing topology of the network is a central aspect.

A main motivation for our work is to analyze protocols for wireless ad hoc net-
works, including the important class of routing protocols. We have implemented
our technique, and successfully verified that the DYMO protocol [10] will never
generate routing loops. Verifying loop freedom for ad hoc routing protocols has
been the subject of much work [8, 12]; several previous protocol proposals have
been incorrect in this respect [9, 4]. Our verification method handles a detailed
ad hoc routing protocol model, with relatively little effort. In our work, we have
also found GTSs to be an intuitive and visually clear form of modeling.

For space limitations, proofs are not included in this paper; instead see the
extended version [22].

Related work. There have been several efforts to verify loop freedom of routing
protocols for ad hoc networks. Bhargavan et al. [8] verified AODV [21] to be
loop free, using a combination of SPIN for model checking a finite network
model, and HOL theorem proving for generalizing the proof. In contrast, we
prove the same property automatically for an arbitrary number of nodes. Our
experience is that modeling using GTSs is more intuitive than to separately
construct SPIN models and HOL proofs. Das and Dill [12] developed automatic
predicate discovery for use in predicate abstraction, and proved loop freedom
for a simplified version of AODV, excluding timeouts. The construction of an
abstract system and discovery of relevant abstraction predicates require many
calls to a theorem prover; our method does not need to interact with a theorem
prover. We check the graphs directly for inconsistencies.

There have been several other approaches to modeling and analysis using
variants of GTSs. König and Kozioura [19] over-approximate graph transforma-
tion systems using Petri nets, successively constructed using forward counter-
example guided abstraction refinement. Their technique does not support the use
of NACs. We have found NACs to be an advantage during modeling and veri-
fication. For example, our first approach at verifying the DYMO protocol was



without NACs, resulting in a more complex model with features not directly
related to the central protocol function.

Kastenberg and Rensink [18] translate GTSs to finite-state models in the
GROOVE tool by putting an upper bound on the number of nodes in a network.
Becker et al. [7] verified safety properties of mechatronic systems, modeled by
GTSs that are similar to ours. However, they only check that the set of non-
bad configurations is an inductive invariant. That worked for their application,
but for verifying safety properties in general it requires the user to supply an
inductive invariant. Bauer and Wilhelm [6, 5] use partner abstraction to verify
dynamic communication systems; two nodes are not distinguished if they have
the same labels and the sets of labels of their adjacent nodes are equal, respecting
edge directions. That abstraction is not suited for ad hoc protocols, because
nodes do not have dedicated roles.

Backward reachability analysis has also been used to verify safety properties
in many parameterized and infinite-state system models, with less general con-
nection patterns than those possible in GTSs. Examples include totally homoge-
neous topologies in which nodes can not identify different partners, resulting in
Petri nets with variants (e.g., [13]), systems with linear structure and some ex-
tensions (e.g., [1]), and systems with binary connections between nodes, tailored
for modeling telephone services [17].

Organization of paper. We give a brief outline of the DYMO protocol in Sec-
tion 2. The graph transformation system formalism and the backward reacha-
bility procedure are presented in Sections 3 and 4. In Section 5 we describe how
we modeled DYMO, and present our verification results in Section 6. Finally,
Section 7 concludes the paper.

2 DYMO

We are interested in modeling and verification of ad hoc routing protocols. These
protocols are used in networks that vary dynamically in size and topology. Every
network node that participates in an ad hoc routing protocol acts as a router,
using forwarding information stored in a routing table. The purpose of the ad
hoc routing protocol is to dynamically update the routing tables so that they
reflect the current network topology. DYMO [10] is one of two ad hoc routing
protocols currently considered for standardization by the IETF MANET group
[23]. The latest DYMO version at the time of writing is specified in version 10
of the DYMO Internet draft [11]. This is the version we have used as basis for
our modeling. The following is a simplified description of the main properties of
DYMO. The reader is referred to the Internet draft for the details.

In our protocol model, each DYMO network node A has an address, a routing
table and a sequence number. The routing table of A contains the following fields
for each destination node D.

– RouteNextHopAddressA(D) is the node to which A currently forwards pack-
ets, destined for node D.



– RouteSeqNoA(D) is the sequence number that node A has recorded for the
route to destination D. It is a measure of the freshness of a route; a higher
number means more recent routing information. Note that this sequence
number concerns the route to D from A, and is not related to the sequence
number of A.

– RouteHopCntA(D) is the recorded distance between nodes A and D, in terms
of number of hops.

– BrokenA(D) is an indicator of whether or not the route from A to D can
be used. The protocol has a mechanism to detect when a link on a route is
broken [11]. Information regarding broken links is propagated through route
error messages (RERR).

When a network node A wants to send a packet to another network node D,
it first checks its routing table to see if it has an entry with BrokenA(D) = false.
If that is the case, it forwards the packet to node RouteNextHopAddressA(D).
Otherwise, node A needs to find a route to D, which it does by issuing a route
request (RREQ) message. The route request is flooded through the network. It
contains the addresses of nodes A and D, the sequence number of A, and a hop
counter. The hop counter contains the value 1 when the RREQ is issued; each re-
transmitting node then increases it by one. Node A increases its own sequence
number after each issued route request.

When the destination of a route request, D, receives it, it generates a route
reply message (RREP). The route reply contains the same fields as the request.
Route replies are not flooded, but instead routed through the network using
available routing table entries. RREPs and RREQs are collectively referred to as
routing messages (RMs).

Whenever a network node A receives an RM, the routing table of A is com-
pared to the RM. If A does not have an entry pertaining to the originator of
the RM, then the information in the RM is inserted into the routing table of A.
Otherwise, the information in the RM replaces that of the routing table if the
information is more recent, or equally recent but better, in terms of distance to
the originator. The routing table update rules are detailed in Section 5.

3 Modeling Using Graph Transformation Systems

We model systems as transition systems of a particular form, in which config-
urations are hypergraphs, and transitions between configurations are specified
by graph rewriting rules. Constraints on configurations are represented by so-
called patterns, which are hypergraphs extended with a mechanism to describe
the absence of certain hyperedges: negative application conditions (NACs). Our
definitions are similar to the ones used by, e.g., Becker et al. [7], but with a more
general facility for expressing NACs.

Assume a finite set Λ of labels. A hypergraph is a pair 〈N,E〉, where N is a
finite set of nodes, and E ⊆ Λ×N∗ is a finite set of hyperedges. A hyperedge is
a pair (λ,−→n ), where λ ∈ Λ is its label and −→n ∈ N∗. The length of −→n is called



the arity of the hyperedge. A hyperedge is essentially a relation on nodes, and
can be visualized as a box labeled λ, with connections to each node n ∈ −→n .

A pattern is a tuple ϕ = 〈Nϕ, Eϕ,G−ϕ 〉, where 〈Nϕ, Eϕ〉 is a hypergraph, and
G−ϕ is a set of NACs. Each NAC is a hypergraph G− = 〈N−, E−〉, where N− is
a finite set of negative nodes disjoint from Nϕ, and E− ⊆ Λ × (Nϕ ∪N−)∗ is a
finite set of negative hyperedges. We refer to Nϕ and Eϕ as positive nodes and
edges of ϕ . We define Nodes(E) = {n ∈ −→n | (λ,−→n ) ∈ E}.

Example. Figure 1 shows a pattern — the left-hand side of one of the DYMO
model routing table update rules. The pattern models a network node receiving
routing information for a node to which it currently has no route. In the pattern,
positive nodes are drawn as circles and negative nodes as double circles. Nodes
have numeric names for identification. Positive and negative edges are drawn as
boxes and double boxes. Edge connections are numbered, to indicate their order.
The pattern contains a single NAC, consisting of the negative edges labeled
RouteEntry and RouteAddress along with their connected nodes. Without the
possibility to express non-existence, we would need to model traversal through
the entries to conclude the absence of an entry. In more detail, the pattern
consists of a network node A (node 3) and a routing message (node 1). A has a
routing table (node 4) that contains no routing table entry pointing to network
nodeD (node 6). The message has originatorD, a hop count (node 7), a sequence
number (node 5) and an IP source (node 2).
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Fig. 1. A pattern containing a NAC.

A hypergraph g = 〈Ng, Eg〉 is subsumed by a pattern ϕ = 〈Nϕ, Eϕ,G−ϕ 〉,
written g � ϕ , if there exists an injection h : Nϕ → Ng satisfying:

1. for each (λ,−→n ) ∈ Eϕ we have (λ, h(−→n )) ∈ Eg and
2. there exists no 〈N−, E−〉 ∈ G−ϕ and no injection k : N− → Ng such that

(λ, (h ∪ k)(−→n )) ∈ Eg for each (λ,−→n ) ∈ E−, where (h ∪ k) is defined as h on
Nϕ and as k on N− .

Intuitively, a pattern ϕ = 〈Nϕ, Eϕ,G−ϕ 〉 is a constraint, saying that a hypergraph
must contain 〈Nϕ, Eϕ〉 as a subgraph, which does not have a “match” for any
NAC in G−ϕ .



Above we let f((n1, . . . , nk)) = (f(n1), . . . , f(nk)) for a function on nodes
applied to a vector of nodes. If an injection h satisfying the above conditions
exists, we say that g � ϕ is witnessed by h, written g �h ϕ .

For a pattern ϕ we use [[ϕ]] to denote the set of hypergraphs g such that
g � ϕ . For a set of patterns Φ, we let [[Φ]] = ∪{[[ϕ]] | ϕ ∈ Φ}. We call ϕ
consistent if there is no 〈N−, E−〉 ∈ G−ϕ and no injection k : N− → Nϕ such
that (λ, k′(−→n )) ∈ Eϕ for each (λ,−→n ) ∈ E−, where k′ extends k by the identity
on Nϕ . Informally, ϕ is consistent if none of its NACs contradicts its positive
nodes and edges. An inconsistent pattern ψ represents an empty set, as g � ψ
is not satisfied by any g .

A pattern ϕ is subsumed by the pattern ψ, denoted ϕ � ψ, if [[ϕ]] ⊆ [[ψ]] . The
relation � on patterns can be checked according to the following Proposition.

Proposition 1. Given patterns ϕ = 〈Nϕ, Eϕ,G−ϕ 〉 and ψ = 〈Nψ, Eψ,G−ψ 〉 which
are consistent, we have that ϕ � ψ iff there exists an injection h : Nψ → Nϕ,
such that 〈Nϕ, Eϕ〉 �h 〈Nψ, Eψ, ∅〉 and for each NAC 〈M−, F−〉 ∈ G−ψ there is
a NAC 〈N−, E−〉 ∈ G−ϕ and an injection k : N−→M− such that

– (Nodes(E−) \N−) ⊆ h(Nψ), and
– for each (λ,−→n ) ∈ E−, we have (λ, (h−1 ∪ k)(−→n )) ∈ F− . ut

Intuitively, ϕ � ψ if and only if the positive part of ψ is a subgraph of the
positive part of ϕ, and for each NAC in G−ψ , there is a corresponding NAC in
G−ϕ which is a subgraph of the former NAC.

In our system model, configurations are represented by hypergraphs. Transi-
tions are specified by actions, which are (hypergraph) rewrite rules.

Definition 1. An action is a pair 〈L,R〉, where L = 〈NL, EL,G−L 〉 is a pattern
and R = 〈NR, ER〉 is a hypergraph with NL ⊆ NR (i.e., actions can create
nodes, but not delete them). The action α = 〈L,R〉 denotes the set [[α]] of pairs
of configurations (g, g′), with g = 〈Ng, Eg〉, g′ = 〈Ng′ , Eg′〉 and Ng ⊆ Ng′ such
that there is an injection h : NR → Ng′ satisfying:

– g � L is witnessed by the restriction of h to NL
– Ng′ = Ng ∪ h(NR)
– Eg′ = (Eg \ h(EL)) ∪ h(ER) . ut

Example. Figure 2(a) shows an action α = 〈L,R〉. The pattern L is to the
left of the arrow (=⇒) and R to the right. The action does not create any
nodes, i.e., NL = NR. Figure 2(b) shows a pair (g, g′) ∈ [[α]], i.e., g can be
rewritten via α to g′. The subsumption g � L is witnessed by the injection
h = {1 7→ a, 2 7→ b}. The injection h satisfies Ng′ = Ng ∪ h(NR) = {a, b} and
Eg′ = (Eg \ h(EL)) ∪ h(ER) = h(ER). Figure 2(c) shows a configuration g such
that there is no g′ with (g, g′) ∈ [[α]], since g 6� L. In other words, g cannot be
rewritten via α.

Definition 2. A system model is a pair 〈γ0,A〉 consisting of an initial config-
uration γ0 together with a finite set of actions A. ut



1 2RouteEntry0 1 Broken0 =⇒ 1 2RouteEntry0 1 Broken0

(a) Action α

a bRouteEntry0 1 →α
a bRouteEntry0 1 Broken0

(b) Pair of configurations (g, g′) ∈ [[α]]

a bRouteEntry0 1 Broken0 6→α

(c) Configuration g such that ¬∃g′.(g, g′) ∈ [[α]]

Fig. 2. Example of an action and its semantics.

For a set Γ of configurations and an action α, let pre (α, Γ ) = {g | ∃g′ ∈
Γ. (g, g′) ∈ [[α]]}, i.e., the configurations which in one step can be rewritten to
Γ using α. Similarly, for a set of actions A, let pre∗(A, Γ ) denote the set of
configurations which can reach a configuration in Γ by a sequence of rewritings
using actions in A.

4 Symbolic Verification

We formulate a verification scenario as the problem whether a set of configu-
rations, represented by a set of patterns, is reachable. More precisely, given a
system model 〈γ0,A〉, and a set of patterns Φ, the reachability problem asks
whether there is a sequence of transitions from γ0 to some configuration in [[Φ]].

In our approach, we analyze a reachability problem using backward reachabil-
ity analysis, in which we compute an over-approximation of the set pre∗(A, [[Φ]])
of configurations, and check whether it includes γ0. We clarify why and when the
computation is not exact in the Approximation paragraph below. In general, the
reachability problem is undecidable, and our analysis is not guaranteed to termi-
nate. However, the technique is sufficiently powerful to verify several nontrivial
network protocols (see Section 6).

We attempt to compute pre∗(A, [[Φ]]) by standard fixed point iteration, using
predecessor computation, as shown in Procedure 1. In the procedure, V and W
are sets of patterns whose predecessors already have (V ) and have not (W ) been
computed. In each iteration of the while loop, we choose a pattern ϕ from W . If
γ0 ∈ [[ϕ]] then we have found a path from γ0 to [[Φ]]. Otherwise, we check whether
ϕ is redundant, meaning that it is subsumed by some other pattern which will be
or has been explored. If not, we add to W a set of patterns over-approximating
pre (A, [[ϕ]]). As a further optimization, not shown in Procedure 1, at line 7 we
also remove patterns from V and W that are subsumed by ϕ; keeping V and W
small speeds up the procedure.



Procedure 1 Backward Reachability Analysis
Require: System model 〈γ0,A〉 and a set Φ of (bad) patterns
Ensure: If terminates; answers whether a configuration in [[Φ]] is reachable from γ0

1 V := ∅, W := Φ
2 while W 6= ∅ do
3 choose ϕ ∈W
4 W := W \ {ϕ}
5 if γ0 ∈ [[ϕ]] then
6 return “Reachable”
7 if ∀ψ ∈ (V ∪W ). ¬(ϕ � ψ) then
8 V := V ∪ {ϕ}
9 for each α ∈ A do

10 W := W ∪ Pre(α,ϕ)
11 return “Unreachable”

The central part of Procedure 1 is the (nontrivial) computation of prede-
cessors of a pattern; it is done as in Procedure 2, whose description follows.
Procedure 2 terminates on any input, as all loops are finite.

Procedure 2 Pre(α,ϕ)
Require: Action α = 〈L,R〉, pattern ϕ = 〈Nϕ, Eϕ,G−ϕ 〉
Ensure: Φ is a set of patterns satisfying pre (α, [[ϕ]]) ⊆ [[Φ]]

1 Φ := ∅
2 Rename nodes in Nϕ so that Nϕ is disjoint from NR

3 for each partial injection h : NR → Nϕ do
4 Rename each node h(n) in the range of h to n
5 if ∃n ∈ Domain(h)−NL . Edges+(n, ϕ) 6⊆ Edges+(n,R) ∨

Inconsistent(ϕ+R) then
6 skip
7 else
8 ϕ′ := (ϕ	αR) + L
9 for each G− ∈ G−ϕ do

10 if Inconsistent((L 	E R) +G−) then
11 ϕ′ = ϕ′−G−

12 if ¬ Inconsistent(ϕ′) then
13 Φ := Φ ∪ ϕ′
14 return Φ

Let a partial injection, or matching, from a set N to a set N ′ be an injection
from a nonempty subset of N to N ′. For two patterns ϕ = 〈Nϕ, Eϕ,G−ϕ 〉 and
ψ = 〈Nψ, Eψ,G−ψ 〉, we use ϕ + ψ to denote 〈Nϕ ∪ Nψ , Eϕ ∪ Eψ , G−ϕ ∪ G−ψ 〉.
When adding patterns, if the node and edge sets are not disjoint, the result is a
“merge”. No automatic renaming is assumed.

We use the following two subtraction operations in Procedure 2. First, for a
pattern ϕ = 〈Nϕ, Eϕ,G−ϕ 〉, and an action α = 〈L,R〉, let ϕ 	α R be the pattern



ψ = 〈Nψ, Eψ,G−ϕ 〉, with Eψ = Eϕ \ ER and Nψ = Nϕ \ (NR \NL) . Second, for
a pattern ϕ = 〈Nϕ, Eϕ,G−ϕ 〉, and a hypergraph g = 〈Ng, Eg〉, let ϕ	E g be the
pattern ψ = 〈Nψ, Eψ,G−ϕ 〉, with Eψ = Eϕ \ Eg and Nψ = Nodes(Eψ).

For a NAC G−, we use ϕ + G− to denote 〈Nϕ, Eϕ, G−ϕ ∪G−〉 and ϕ−G−

to denote 〈Nϕ, Eϕ, G−ϕ \ G−〉. If n ∈ Nϕ, let Edges+(n, 〈Nϕ, Eϕ,G−ϕ 〉) denote
the set of edges in Eϕ connected to n.

Procedure 2 first renames the nodes (line 2) to avoid unintended node colli-
sions between ϕ and α. Thereafter, the loop starting at line 3 performs a sequence
of operations for each possible matching between some nodes of NR and Nϕ .

On line 4 each node h(n) in the range of h is renamed to n, in order to
“merge” R and ϕ according to h. Since nodes that are created by α must also
have all their edges created by α, we should discard matchings which violate
this (line 5). On line 5 we also discard inconsistent matchings. The procedure
Inconsistent(ϕ) returns true iff pattern ϕ is not consistent.

On line 8 the action α is “executed” backwards to obtain a pattern ϕ′ that is
a potential predecessor of ϕ . Using the special subtraction 	α nodes and edges
created by α are removed from ϕ . On lines 9–11, we remove all NACs from ϕ′

which contradict subgraphs removed by α . This may introduce approximation
(see the paragraph below). Since by definition α cannot remove nodes, we use
the special subtraction 	E which ignores nodes not connected to edges. On line
12, we discard the resulting predecessor pattern if it is inconsistent – this can
happen if a NAC in L contradicts a positive subgraph of ϕ′. Finally, if we reach
line 13, we have found a predecessor pattern, which is added to Φ.

Approximation. The predecessor computation in Procedure 2 sometimes intro-
duces an approximation at line 11. If α removes a subgraph which is forbidden
by ϕ, then pre (α, [[ϕ]]) should say that there is exactly one subgraph of this
form. However, patterns cannot express “exactly one” occurrence of a subgraph.
In this situation, Procedure 2 therefore lets the resulting pattern say that “there
is at least one occurrence” of this subgraph. As an example, consider the simple
situation in Figure 3, where α, shown in Figure 3(a), removes an RM-edge be-
tween two nodes, and ϕ, the rightmost pattern in Figure 3(b), says that there is
no RM-edge. The exact predecessor of ϕ is: “there is exactly one RM-edge between
two nodes”. However, the resulting predecessor (the leftmost pattern in Figure
3(b)) represents that there is at least one RM-edge connected to graph node 1. To
illustrate the effect of lines 9–11 of Procedure 2, an intermediate pattern, where
the contradiction has not yet been resolved, is shown in Figure 3(b).

Optimizations. To make the analysis more efficient, we have (implemented) two
mechanisms for the user to specify simple type constraints. One is to annotate
nodes with types that are respected in the analysis, with the semantics that
nodes may only “match” nodes of same type. Another is to add patterns that
describe multiplicity constraints on edges. For example, our DYMO models use
“a network node can have at most one routing table”, by specifying a pattern
where a node has two routing tables as “impossible”.



1 2RM0 1 =⇒ 1 2

(a) Idealized action α

1 2RM0 1 ← 1

2RM
0

1

 RM
0

1

← 1 RM0 1

(b) Predecessor computation showing intermediate pattern

Fig. 3. Approximation due to upwards-closure.

We need to model integer-valued variables, as DYMO uses sequence numbers
and hop counts. This is done by representing integers as nodes, and greater
than (>) and equality (=) relations as edges between these nodes. We do not
represent concrete integer values. Hence, we cannot compare integers which are
not connected by a relational edge. We have extended our tool to handle the
transitive closure of > and = , as part of the predecessor computation. For each
predecessor pattern generated, the closure of all transitive numerical relations
present in the pattern is computed. New relational edges are then added to the
pattern accordingly. The reason is that our syntactic subsumption check cannot
deduce such semantic information about relations. The check for created nodes
on line 5 of Procedure 2 was also extended to take into account the transitivity
of numerical relations.

5 Modeling and Verification of DYMO

In this section we describe how we modeled the DYMO protocol (more precisely,
the latest version at the time of writing, version 10 [11], and version 5). See our
project home page [14] for the complete models. In total, our DYMO v10 model
consists of one initial graph (“an empty network”) and 77 actions. Of these, 38
actions model routing table update rules, similar to the one in Figure 4 below.
We have only used unary and binary hyperedges in our models, although our
implementation supports hyperedges of any arity.

Modeling network topology and message transmission. We represent arbitrary
network topologies by letting the initial system configuration be an empty net-
work (i.e., an empty graph), and including an action for creating an arbitrary
network node; thus any initial topology can be formed. We do not explicitly
model connectivity in the network. Instead all nodes can potentially react on
all messages in the network; this reaction on a message can be postponed in-
definitely, corresponding to a node being out of range or otherwise incapable of



receiving the message. Messages can also be non-deterministically removed, cor-
responding to message loss. In our modeling of message transmission, messages
are left in the network after a node has handled them (until they are potentially
dropped): this accounts for messages being duplicated.

Handling of timeouts and hop limits. DYMO uses timeouts to determine if a
RREQ should be retransmitted, if a link is broken, or if a routing table entry
should be removed. We over-approximate timeouts as “event x can happen at
any time”, which covers all possibilities for a timeout. It is known from previous
work on the AODV protocol [8], that if entries are removed from the routing
table, loops may form. The reason is that obsolete information can then be
accepted. In DYMO, routing table entries are invalidated (set to broken) after
some time, and later removed; temporary loops are thus tolerated. We exclude
removal of routing table entries from our analysis; they can only be invalidated.
In practice, we thus verify loop-freedom under the assumption that routing table
entries are kept “long enough”.

We do not model DYMO hop limits [11], used to limit packet traversal.
However, since we include actions for arbitrary dropping of RMs and RERRs,
we implicitly cover all possible hop limit settings.

Routing table update rules. The DYMO specification [11] prescribes when a node
should update its own routing table upon receiving routing data, i.e., when re-
ceived routing data should replace existing data. Existing data is represented by a
routing table entry, with fields RouteSeqNo, RouteHopCnt, and Broken. Received
data is represented by a routing message with fields OrigSeqNo, NodeHopCnt and
message type RM – either a route request (RREQ) or a route reply (RREP). The
table entry should be updated in the following cases:

1. OrigSeqNo > RouteSeqNo
2. OrigSeqNo = RouteSeqNo ∧ NodeHopCnt < RouteHopCnt
3. OrigSeqNo = RouteSeqNo ∧ NodeHopCnt = RouteHopCnt ∧ RM = RREP
4. OrigSeqNo = RouteSeqNo ∧ NodeHopCnt = RouteHopCnt ∧ Broken

The rules say that an update is allowed if (1) the message has a higher sequence
number for the destination, or (2) the message has the same sequence number,
but a shorter route, or (3) the message has the same routing metric value, and
the message is a route reply, or (4) the table entry is broken. See Figure 4 for an
illustration of how we model the update rules. The figure corresponds to rule (2).
In our framework, we have to model each combination of network nodes used in
the rules, such as when IPSource equals Orig, or RouteNextHopAddress equals
RouteAddress, etc., as separate actions; however, we have tool support for doing
this.

Formalizing the non-looping property. A central property of ad hoc routing pro-
tocols is that they never cause routing loops, as a routing loop prevents a packet
from reaching its intended destination. A routing loop is a nonempty finite se-
quence of nodes n1, . . . , nk such that for some destination D it holds that for all
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Fig. 4. Action modeling a routing table update.

i : 1 ≤ i ≤ k node n(i+1)(mod k) is the next hop towards D from node ni, and
ni 6= D.

We define the ordering <D on nodes in a configuration as: n <D n′ iff
RouteSeqNon(D) > RouteSeqNon′(D)∨(RouteSeqNon(D) = RouteSeqNon′(D)∧
RouteHopCntn(D) < RouteHopCntn′(D)). There can be no routing loops towards
a destination D, if each hop from a node n towards D goes to a node n′ with
n′ <D n. Since <D is a partial order, any routing path towards D can contain a
node at most once. The same ordering was used in the proof of loop freedom for
AODV in [8]. The following property, LP , implies the pairwise ordering along
routing paths; if LP is invariant for DYMO, there are no routing loops.

∀A,B,D
A 6= B,B 6= D,

A 6= D

∣∣∣∣∣∣ RouteNextHopAddressA(D) = B =⇒ B <D A (LP )

By negating the loop property (LP), we obtain a characterization of the bad
system configurations. Loops may thus form if the sequence number strictly
decreases, or the sequence number stays the same but the hop count does not
decrease, between a node A and its next hop B on a route towards a destination
node D. In our verification of DYMO, we verify unreachability for a set of six
bad patterns. Three represent a disjunct of (¬LP ) under quantification; two
represent a network node with a routing table entry pointing to the node itself;
and one pattern represents that a node has a next hop (which is not D) towards
some destination D, but the next hop has no entry for D. As an example, a
pattern representing one of the disjuncts of (¬LP ) is shown in Figure 5.
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6 Experimental Results

We have modeled and verified the DYMO protocol as described in Sections 5
and 4. Recall that the analysis is under an assumption of routing table entries
not being removed. The analysis has been performed using our tool GBT (Graph
Backwards Tool). GBT and the models are available at our project home page
[14]. The tool uses the .dot format for describing hypergraphs and patterns
(input and output). If the initial configuration can be reached, an error trace,
showing a sequence of actions leading to one of the bad patterns, is provided.
Note that this trace may be spurious, due to over-approximation.

We have verified the latest DYMO version at the time of writing, namely
version 10 of the Internet draft [11], as well as an older draft (version 5). Our
results are presented in Table 1. In the “dest. reply” models, only the destination
node replies to an RREQ, whereas in “interm. reply”, intermediate nodes may
also reply (in case they have a fresh enough route, see [11]). Column Actions con-
tains the number of actions in the model. Checked contains the total number of
unique non-impossible patterns generated by the predecessor computation, plus
the ones given as input. Covered contains the patterns which were subsumed (see
Section 4). Left contains the patterns left after the analysis has finished; none of
them contain the initial graph. Time contains the total verification time (GBT
start to end) on a machine with an AMD Opteron 2220 2.8 GHz processor.

Table 1. Measurement results from using GBT.

Protocol Actions Checked Covered Left Verified Time

DYMO draft 10
- dest. reply 56 185751 185695 56 Yes 2h 24 min
- interm. reply 77 295164 295108 56 Yes 4h 31 min
DYMO draft 05 50 118685 118637 48 Yes 1h 20 min

Pub/priv srv I 12 498 484 14 Yes 0.73 s
Pub/priv srv II 13 629 609 20 Yes 0.94 s

Firewall I 6 129 126 3 Yes 0.11 s
Firewall II 6 129 126 3 Yes 0.11 s



In Table 1 we have also included GBT verification results for the “Pub-
lic/private servers” and “Firewall” examples, used by König and Kozioura [19].
These examples required modifications to work with our tool: a NAC was added
to the left hand side of an action in “Public/private servers II” and the transi-
tivity handling in our tool was extended to include communication channels.

7 Conclusions and Future Work

We have described and implemented a general framework for modeling and veri-
fication of protocols using a variant of graph transformation systems, and applied
it to automatically prove loop freedom of the DYMO v10 ad hoc routing proto-
col. We expect that several of the actions used in our DYMO model need only
small modifications to work for other ad hoc routing protocols categorized as
reactive (i.e., on-demand). The reason is that reactive ad hoc routing protocols
generally use the same kind of flooding route discovery mechanism; examples
include AODV[21], DSR[16], and LUNAR[24] (see [20] for an extensive list).

As GTSs with NACs make up quite a generic modeling framework, there
should be possibilities for interesting case studies, and further development. Di-
rections for future work include further optimizations of the predecessor compu-
tation, e.g., by early detection of unfruitful matchings. We are currently working
on a new DYMO model, to investigate the effect on run-time performance when
using hyperedges of arity greater than two. Termination of the reachability anal-
ysis can be obtained by bounding and truncating the generated patterns, at the
cost of over-approximation, e.g., by enforcing a maximum size. The possibility
of spurious counter-examples, due to approximations in the predecessor compu-
tation, motivates looking at counter-example guided abstraction refinement.
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