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Ramunas Gutkovas

This thesis presents an automated tool for manipulation and analysis of mobile
concurrent systems described in the Psi-calculi framework. Psi-calculi is a family of
process calculi, parameterised on data, conditions and a logic. We provide a general
framework for implementing instantiations of these parameters, yielding a Psi-calculus.
The tool implements simulation of Psi-calculus processes based on symbolic
operational semantics, process constants for providing an environment for processes,
and a symbolic bisimulation algorithm for checking bisimilarity.  The tool has a
command interpreter frontend for interactive use.
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1 Introduction

Developing reliable concurrent software and hardware systems is a well
known challenge. In order to model such systems, we need to be able to
describe them in a formal and precise way.

Process calculi are one of the means for modeling and reasoning about
communicating concurrent systems which are systems composed of pro-
cesses simultaneously exchanging messages between themselves. The pi-
calculus [21, 24, 20] is one of the more prominent calculi; its attractiveness
is due to well established simple and expressive mathematical theory and its
ability to model mobility.

The pi-calculus is a minimalistic process calculus where the only data
structure is a communication channel name. Nevertheless, other data struc-
tures like integers, booleans, lists can be encoded [20]. But when model-
ing complex systems in practice, such a minimalistic process calculus soon
becomes a disadvantage as the models grow in size and irrelevant details
obscure and increase the complexity of the model analysed. By depart-
ing from minimalism, a number of process calculi intended for application,
building on the pi-calculus foundation, have been developed. For example,
the Spi-calculus [1] extends the pi-calculus with cryptographic primitives.

Psi-calculi [4] are a framework of process calculi retaining many aspects
of the pi-calculus semantic ‘pureness’. Psi-calculi are parameterised with
three nominal datatypes for data structures called terms, conditions, and
logical assertions. The requisites on these parameters allows for a wide range
of process calculi, for instance, the terms can be the lambda calculus terms,
and the conditions and the assertions can be formulae in some higher order
logic. In the Psi-calculi framework many proposed pi-calculus extensions
are expressible, so Psi-calculi is also an attempt to unify them (see [4] for a
survey of pi-calculus extensions).

The theory of Psi-calculus is formulated in Nominal Logic [25]. Nom-
inal Logic allows for a rigorous treatment of languages with binding con-
structs such as Psi-calculi and their parameters. Psi-calculi have been for-
malised [5] in the theorem prover assistant Nominal Isabelle [28].

The operational semantics of the Psi-calculi is not directly implementable
in an automated tool because of possibly infinite branching of the concrete
values received in an input action. By representing the branching of concrete
values with a single name and by pushing the derivation decision procedure
to a later stage, the symbolic Psi-calculi semantics [17] avoids infinite branch-
ing. The symbolic semantics and non-symbolic semantics of Psi-calculi agree
on the derivation of agents. The symbolic Psi-calculi semantics is used in an
algorithm [18] for computing weak and strong bisimulations. The symbolic
Psi-calculi semantics work is largely based on the work of [14, 15, 6].

The Psi-calculus is intended for practical modeling of concurrent com-
municating systems. For it to be useful in practice, an automated tool is
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needed, since real-world models tend to be complex, tedious to handle, and
have many details which are prone to a human error. Traditionally, auto-
mated tools with simulation and bisimulation checking have been developed
for all major process calculi: tools for the pi-calculus include [30, 8], and for
the spi-calculus [7].

We developed a tool for Psi-calculi called Psi-calculi Workbench. Its
main components are a symbolic simulator [17] and a weak symbolic bisim-
ulation checker [18]. We also developed a framework for implementing Psi-
calculi parameters and symbolic constraint solvers for the simulator and the
weak bisimulation checker. The symbolic constraints are generated by the
simulator and the weak bisimulation algorithm [18].

As part of this thesis, we defined terminating symbolic operational se-
mantics for the Psi-calculi. We showed that the original symbolic semantics
and the terminating symbolic semantics coincide up to the bisimulation. We
implemented the terminating symbolic operational semantics in the tool.

We extend Psi-calculi with process constants (definition and environment
for processes) for conveniently defining larger models. This meant adding
another form of process to Psi-calculi, and adding an invocation rule to the
terminating symbolic operational semantics.

Outline: this text is divided into two major parts. In the theory part (Sec-
tion 2), we first establish the theory of Nominal Logic (Section 2.1), next, the
theory of Psi-calculi (Section 2.2) and the symbolic operational semantics
(Section 2.3), then we discuss the terminating symbolic operational seman-
tics (Section 2.4) and process constants (Section 2.5) in greater detail giving
theorems and proofs where appropriate. In the tool part (Section 3), we
discuss the tool from two perspectives: from perspective of a user operating
the tool on predefined Psi-calculus instances, and from perspective of a user
implementing an instance in the tool framework. We also give examples of
the implementation of three Psi-calculus instances (Section 3.2).
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2 Theory

In this section, we introduce Psi-calculi [4] and its symbolic operational
semantics [17, 18]. We also introduce Nominal Logic [25] which we use to
define Psi-calculi. We define the terminating symbolic operational semantics
and establish equivalence with the symbolic operational semantics. Lastly,
we introduce an extension of Psi-calculi with process constants.

2.1 Nominal logic

When doing mathematics with pen and paper on formal languages involving
variable-binding constructs, bindings seemingly do not pose any difficulties.
One usually needs to be careful when introducing free variables to avoid
unintentional capture by a binder. Words ‘careful’ and ‘avoid’ are well un-
derstood in the context of binders, and are established as a convention. This
practice is not always sound, since the intention is to work with equivalence
classes, but proofs are instead done on well chosen representatives and in-
duction on representatives may be too weak, yet this is usually glossed over.
Clearly, this style of proof is not suited for machine checking or an imple-
mentation.

Nominal Logic [25] is a solution that bridges the gap between the formal
and informal practice. Its purpose is twofold: give a solid mathematical
footing to pen-and-paper proofs [25], and allow machine checked proofs to
be as close as possible to the pen-and-paper counterparts [28]. What is
more, the underlying concepts of Nominal Logic are well suited [27] to be
integrated into a programming language to ease the programming task of
manipulating and constructing syntactical structures. Even when such an
extended programming language is not available, the Nominal Logic theory
has a functional ‘feel’ [25]; it allows for a straightforward implementation in
a functional programming language, and removes the need for case-by-case
solutions.

We first examine some examples of Nominal Logic application to the
lambda calculus. In the first part of this section, we introduce concepts
informally, while in the second part, we give formal definitions of Nominal
Logic. This section is not intended to be a complete exposition of the theory,
we only present key concepts see [25] for full account.

Let us recall the lambda calculus.

M,N ::= λx.M |MN | y

where x and y are variables, and x binds into M .
The cornerstone of Nominal logic is the concept of atom (name) swap-

ping. By swapping we mean a function (x y) ·M which exchanges every
occurrence of x with y in M and vice versa, no matter where they occur in
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M . For instance:
(x y)·(λy.λx.y) = λx.λy.x

Note that atom swapping preserves α-equivalence. Compare this with a
renaming:

{x/y}(λy.λx.y) = λx.λx.x

Swapping, in a sense, is a more fundamental notion than renaming, since
swapping does not need to know where the variable occurs and whether it
is a binder or a free variable. Swapping preserves α-equivalence if an atom
is swapped with an atom which is fresh for a term.

(x y)·M =α M if y#M

where y#M denotes the atom y is fresh for the lambda term M , or in this
case, that the name y is not in free names of the lambda term M .

Nominal logic moves α-equivalence into the logical framework itself. In
Nominal logic the following is true:

λx.x = λy.y

In Nominal logic, the usual capture avoiding substitution is a total function:

x[x := L] = L

(NM)[x := L] = N [x := L]M [x := L]

(λy.M)[x := L] = λy.M [x := L] if x#y

Let us now see the formal definitions of Nominal Logic. All the defini-
tions, except for the definition of support, are first-order derivable and in
fact Nominal Logic provides axioms which entail them.

Definition 1. (Atoms (or Names)) A countably infinite set N . Ranged over
by a, b, . . . .

Any infinite countable set is suitable as a atom set. Atoms are subjected
to binding, atom swapping, etc.

Definition 2 (Atom swapping). The swapping function on atoms a, b, d is
defined as follows:

(a b)·d def
=


a if d = b

b if d = a

d otherwise

A nominal set is intended to interpret the syntax of a formal language.
For instance, the first-order feature allows us to express lambda-calculus as
a set: Λ = N ∪ {λx.N : x ∈ N ∧N ∈ Λ} ∪ {NM : N,M ∈ Λ}.
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Definition 3 (Nominal set). A nominal set X is a set |X|, such that for
every element x ∈ |X| and every pair of atoms a, b ∈ N there is a swapping
(a b)·x defined such that (a b)·x ∈ |X|.

A nominal set is required to have the following properties.

• Properties of swapping. For all a, b, c, d ∈ N and all x ∈ |X|:

(a a)·x = x

(a b)·(a b)·x = x

(a b)·(c d)·x = ((a b)·c (a b)·d)·(a b)·x

• Finite support property. Each member of a nominal set x ∈ |X| in-
volves a finite number of atoms: given x, there exists a finite subset
w ⊆fin N such that for all a, b ∈ N \ w holds (a b)·x = x.

The notion of support is a direct consequence of the finite support prop-
erty and the following definition is provable [25].

Definition 4 (Support). Let x be a member of some nominal set, then the
support of x is

n(x)
def
= {a ∈ N : {b ∈ N : (a b)·x 6= x} is not finite}

The intuition of the support of a term is a set of atoms which modify
the term when swapped.

Definition 5 (Fresh). Let a be an atom and X be a nominal set, then a is
said to be fresh in X

a#X
def
= a /∈ n(X)

Morphisms (functions on a underlying nominal set) on nominal sets must
be equivariant. Equivariance, intuitively, means that the equality is pre-
served by atom swapping.

Definition 6 (Equivariance). Let f : X → Y be a morphism of nominal
sets X,Y . The morphism f is equivariant if

f((a b)·x) = (a b)·f(x)

In particular, a capture avoiding substitution is such a morphism (func-
tion).

Definition 7 (Nominal datatype). A Nominal datatype T is a nominal set
T with a set of equivariant functions defined on it.

Lastly, we need to be able to tell which syntactic constructs are binders.
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Definition 8 (Nominal logic syntax). Nominal logic syntax is that of first-
order many-sorted logic with equality, plus the following:

• Sorts S are divided into two: sorts of atoms (A) and sorts of data (D).
Sorts S can also be formed by atom abstraction [A]S.

S ::= A | D | [A]S

• The swap function symbol (• •)·•, with arity A,A, S → S.

• The freshness relation symbol •#•, with arity A,S.

Nominal Logic is a first order logic with equality, coupled with the nom-
inal logic syntax with the obvious interpretation of nominal symbols, with
equivariant relations and functions, and with the set of first-order definable
underlying nominal logic axioms (see [25]).

Definitions and reasoning in Psi-calculus theory is done in Nominal Logic
formalism. By using the Nominal Isabelle [28] theorem prover which is based
on Nominal Logic, much of Psi-calculi meta-theory has been formalised and
machine checked [5].

2.2 Psi-calculus

In this section, we give basic definitions of the Psi-calculi framework [4]
together with additional requirements [18] on them needed to define the
symbolic operational semantics (Section 2.3). For full account of Psi-calculi
and the symbolic operational semantics we refer to [4, 18].

Psi-calculi is a family of process calculi, a member of this family is called
a Psi-calculus instance. A Psi-calculus process models a synchronous con-
current communicating (message passing) system. A process P interacts
with other processes in an environment, or the processes which compose the
process P interact internally, and P transitions into a new process P ′. A
transition is labelled with an action.

We first cover the possible forms of Psi-calculus agents. Let us fix a
countably infinite set of names N (Definition 1) ranged over by a, b, . . . , z
for Psi-calculi.

1. An empty process 0 which performs no actions.

2. An output prefix process M N .P performs the output action M (νã)N
and transitions into the process P . The intuition is that the process
sends the data (the object) N through the channel (the subject) M .
Moreover, the process may send a set of private names enclosed within
the object N , which are denoted with ã in the action. A process cannot
disclose more private names than necessary for the transmission of the
object N .
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3. An input prefix process M(x).P performs the input action M(x) and
transitions into the process P . Intuitively, the process receives an
object N through the channel M , the name x refers to the object N ,
and x binds into P .

4. A case process case ϕ1 : P1 [] · · · [] ϕn : Pn may enact one of the sub-
processes Pi whenever respective condition ϕi holds. If several con-
ditions hold, a process is non-deterministically chosen. The process
transitions into (and performs the action) that the chosen subprocess
Pi transitions into. If none of the conditions hold, the process does
not have any actions, like the 0 process.

5. A restriction process (νa)P acts as P but with the name a made
private to the process P . The name a is considered to be distinct from
names in the process’ environment but it can be transmitted to other
processes.

6. A parallel process P |Q models concurrent execution. The processes P
and Q communicate and issue the silent action τ if one process does
an input action and the other does an output action with channel
equivalent subjects. The processes P andQ can also act independently.

7. A replication process !P can be though as a process with infinitely
many copies of P in parallel.

8. An assertion process LΨM is an environment which can interact with
agents in parallel by triggering conditions.

Now we turn to formal definitions. We first give the formal syntax of
a Psi-calculus agents P,Q. We give the terms M,N , conditions ϕi, and
assertions Ψ after.

Definition 9 (Psi-calculus agents). Given valid Psi-calculus parameters as
in Definitions 13 and 15, the Psi-calculus agents, ranged over by P,Q, . . .,
are of the following forms.

0 Nil

M N .P Output
M(x).P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P |Q Parallel
!P Replication
LΨM Assertion

In the Input M(x) . P , x binds its occurrences in P . Restriction (νa)P
binds a in P .
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Not all agents generated by the above rules are considered wellformed.

Definition 10 (Guarded assertion). An assertion is guarded if it is a sub-
term of an Input or Output.

Definition 11 (Wellformed agent). An agent is well formed if in a replica-
tion !P there are no unguarded assertions in P , and there are no unguarded
assertion in any Pi in case ϕ1 : P1 [] · · · [] ϕn : Pn.

Definition 12 (Actions). The actions ranged over by α, β are of the fol-
lowing three kinds:

M (νã)N Output
M(x) Input
τ Silent

where in Output ã binds into N , and all memebers of ã must occur in N ,
i.e. ã ⊆ n(N).

As mentioned above, Psi-calculi is parameterised with three nominal
datatypes and four equivariant operations. By providing these parameters
and by satisfying the requisites, we obtain a concrete process calculus, a Psi-
calculus instance. The parameters are for data (including communication
channels), conditions, and logical assertions.

Definition 13 (Psi-calculus parameters). A Psi-calculus requires the three
(not necessarily disjoint) nominal data types:

T the (data) terms, ranged over by M,N
C the conditions, ranged over by ϕ
A the assertions, ranged over by Ψ

and the four equivariant operators:

.↔ : T×T→ C Channel Equivalence
⊗ : A×A→ A Composition
1 : A Unit
` ⊆ A×C Entailment

and substitution functions [ã := M̃ ], substituting terms for names, on all of
T, C, and A.

The channel equivalence
.↔ operator is intended to tell if two terms

represent the same communication channel. The composition ⊗ operator
merges two assertions into one assertion. A unit assertion 1 which does
not introduce any new information to compositions. The entailment rela-
tion ` interprets a condition based on the information in an assertion. Note
that channel equivalence produces a condition, so communication can be
influenced by the environment (assertion).

Two assertions are equivalent if and only if they entail the same condi-
tions. This relation is used in requisites on the parameters.
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Definition 14 (Assertion equivalence). Ψ ' Ψ′ if ∀ϕ. Ψ ` ϕ⇔ Ψ′ ` ϕ

Note that the following requirements are quite lax: the channel equiva-
lence is not required to be reflexive, and assertion composition is not required
to be idempotent.

Definition 15 (Requisites on valid Psi-calculus parameters).

Channel symmetry: Ψ `M .↔ N =⇒ Ψ ` N .↔M
Channel transitivity: Ψ `M .↔ N ∧ Ψ ` N .↔ L =⇒ Ψ `M .↔ L

Composition: Ψ ' Ψ′ =⇒ Ψ⊗Ψ′′ ' Ψ′⊗Ψ′′

Identity: Ψ⊗1 ' Ψ
Associativity: (Ψ⊗Ψ′)⊗Ψ′′ ' Ψ⊗(Ψ′⊗Ψ′′)
Commutativity: Ψ⊗Ψ′ ' Ψ′⊗Ψ

Weakening: Ψ ` ϕ =⇒ Ψ⊗Ψ′ ` ϕ
Names are terms: N ⊆ T

The last two requisites weakening and names are terms are not among
the original requisites [4]. They are part of the requisites of the symbolic
operational semantics (Section 2.3). Although they are quite natural, in
particular names are terms requisite is satisfied whenever T is the carrier
set of some term algebra (see Appendix B).

We require a substitution function defined on all the nominal datatype
parameters of the Psi-calculus instance. The requirements on it give the
expected substitution function.

Definition 16 (Substitution function). The Psi-calculus requisites for a
substitution function on nominal datatypes are:

1. If ã ⊆ n(X) and b ∈ n(T̃ ) then b ∈ n(X[ã := T̃ ]).

2. If b̃#X then X[ã := T̃ ] = ((̃b ã)·X)[̃b := T̃ ].

The first requirement says that a substitution function does not lose any
names when substituting. If we apply the substitution on X, we can still
find all the names in X that are in all the supports of terms which are in
the range of the substitution function. In other words, the substitution is a
capture avoiding substitution.

The second requirement tells that a substitution function is not affected
by the concrete name, so that we can do substitution on α-variants.

Additionally, we require the following properties on a substitution func-
tion for use with the symbolic operational semantics (see [18, Section 7]).
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Definition 17 (Symbolic substitution function). We require the following
of a substitution function on nominal datatype X.

X[x := x] = X

x[x := M ] = M

X[x := M ] = X if x#X

X[x := L][y := M ] = X[y := M ][x := L] if x#y,M and y#L

2.3 Symbolic operational semantics

The Psi-calculi operational semantics [4] is not suitable for a direct imple-
mentation due to a possibly infinite branching of concrete values in an input
action. We instead use the Psi-calculi symbolic operational semantics [17, 18]
which is finitely branching. The main idea behind it is to abstract the possi-
ble concrete values with a single name and to collect a set of conditions which
the derivation of a transition needs to satisfy, called a constraint, in order
to decide if the derivation is valid. The constraint solving is performed at a
later stage. In contrast with the Psi-calculi operational semantics, the Psi-
calculi symbolic operational semantics may produce impossible transition
derivations, but a derived transition is valid only if we can find a solution to
the simultaneously derived constraint. The constraint solver can be thought
as an additional parameter to the Psi-calculus instance. The symbolic Psi-
calculi operational semantics is fully abstract with regard to bisimulation
congruence in Psi-calculi operational semantics, i.e. the semantics agree on
the derived agents.

The definitions that follow are required for the definition of the symbolic
operational semantics (Figure 1).

Definition 18 (Frame). A frame is of the form (νb̃)Ψ where b̃ is a sequence
of names that bind into the assertion Ψ. We identify alpha variants of
frames.

Definition 19 (Frame of an agent). The frame F(P ) of an agent P is
defined inductively as follows:

F(0) = F(M(x).P ) = F(M N.P ) = F(case ϕ̃ : P̃ ) = F(!P ) = 1
F(LΨM) = (νε)Ψ
F(P |Q) = F(P ) ⊗ F(Q)
F((νb)P ) = (νb)F(P )

Definition 20 (Equivalence of frames). We define F ` ϕ to mean that
there exists an alpha variant (νb̃)Ψ of F such that b̃#ϕ and Ψ ` ϕ. We
also define F ' G to mean that for all ϕ it holds that F ` ϕ iff G ` ϕ.
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In

Ψ B M(x) . P
y(x)

−−−−−−−→
{|Ψ`M .↔y|}

P

y#Ψ,M, P, x

Case

Ψ B Pi
α−→
C

P ′

Ψ B case ϕ̃ : P̃
α−−−−−−−→

C∧{|Ψ`ϕi|}
P ′

Out
Ψ B M N .P

y N−−−−−−−→
{|Ψ`M .↔y|}

P
y#Ψ,M,N, P

Com

ΨQ⊗Ψ B P
y(νã)N−−−−−−−−−−−−−−−→

(νb̃P ){|Ψ′`MP
.↔y|}∧CP

P ′

ΨP⊗Ψ B Q
z(x)−−−−−−−−−−−−−−−→

(νb̃Q){|Ψ′`MQ
.↔z|}∧CQ

Q′

Ψ B P |Q τ−−−→
Ccom

(νã)(P ′ |Q′[x := N ])

ã#Q,
y#z

Ψ′ = Ψ⊗ΨP⊗ΨQ

Par

Ψ⊗ΨQ B P
α−→
C

P ′

Ψ B P |Q α−−−−→
(νb̃Q)C

P ′ |Q
bn(α)#Q

α = τ ∨ subj(α)#Q

Scope

Ψ B P
α−→
C

P ′

Ψ B (νb)P
α−−−→

(νb)C
(νb)P ′

b#α,Ψ

Open

Ψ B P
y(νã)N−−−−→
C

P ′

Ψ B (νb)P
y(νã∪{b})N−−−−−−−→

(νb)C
P ′

b ∈ n(N)
b#ã,Ψ, y Rep

Ψ B P | !P α−→
C

P ′

ΨB !P
α−→
C

P ′

Figure 1: Transition rules for the symbolic semantics. Symmetric versions of
Com and Par are elided. In the rule Com we assume that F(P ) = (νb̃P )ΨP

and F(Q) = (νb̃Q)ΨQ where b̃P is fresh for all of Ψ, b̃Q, Q and P , and that

b̃Q is correspondingly fresh. We also assume that y, z#Ψ, b̃P , P, b̃Q, Q,N, ã.

In Com, Ccom = (νb̃P , b̃Q){|Ψ′ `MP
.↔MQ|} ∧ (νb̃Q)CP ∧ (νb̃P )CQ. In the

rule Par we assume that F(Q) = (νb̃Q)ΨQ where b̃Q is fresh for Ψ, P and
α. In Open the expression νã ∪ {b} means the sequence ã with b inserted
anywhere.
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Definition 21 (Transition constraint). A solution is a pair (σ,Ψ) where σ
is a substitution sequence of terms for names, and Ψ is an assertion. The
transition constraints, ranged over by C,Ct and corresponding solutions,
sol(C) are defined by:

Constraint Solutions
C,C ′ ::= true {(σ,Ψ) : σ is a subst. sequence ∧ Ψ ∈ A}

false ∅
(νã){|Ψ ` ϕ|} {(σ,Ψ′) : ∃b̃.̃b#σ,Ψ′ ∧ ((ã b̃) ·Ψ)σ⊗Ψ′ ` ((ã b̃) · ϕ)σ}
C ∧ C ′ sol(C) ∩ sol(C ′)

In (νã){|Ψ ` ϕ|} ã are binding occurrences into Ψ and ϕ. We let (νã)(C∧
C ′) mean (νã)C ∧ (νã)C ′, and we let (νã)true mean true, and similarly
for false. We adopt the notation (σ,Ψ) |= C to say that (σ,Ψ) ∈ sol(C).

In the symbolic operational semantics, the transition relation has the
following form.

P
α−→
C

P ′

The weak symbolic transitions abstract from the internal interactions of
processes.

Definition 22 (Weak symbolic transitions).

Ψ B P ===⇒
true

P

if Ψ B P
τ−→
C

P ′′ ∧ Ψ B P ′′ =⇒
C′

P ′ then Ψ B P ===⇒
C∧C′

P ′

if Ψ B P =⇒
C

P ′′ ∧Ψ B P ′′
α−→
C′

P ′′′ ∧Ψ B P ′′′ ==⇒
C′′

P ′

then Ψ B P
α

======⇒
C∧C′∧C′′

P ′

2.4 Terminating symbolic operational semantics

The derivation of transitions using the symbolic operational semantics dis-
cussed in the previous Section 2.3 is non-terminating. The reason for non-
termination is the replication rule Rep (Figure 1); the Rep rule generates
infinite derivation trees (see [9] for treatment of termination, as the one
presented here, and other forms of replication in process calculi).

Consider the following agent.

!a (x).P

18



The following is a possible derivation tree of a transition for this agent.

Rep

Par-R

Rep

Par-R

...

a (x).P | !a (x).P
···−→
···
· · ·

!a (x).P
···−→
···
· · ·

a (x).P | !a (x).P
···−→
···
· · ·

!a (x).P
···−→
···
· · ·

so if we kept applying the Par rule to the right agent of the parallel while
applying the Rep rule we would be repeating this procedure ad infinitum.
Hence the symbolic operational semantics is non-terminating.

But how to know when to stop? Intuition tells us that we do not need
to generate an infinite number of same agents to derive a transition, and it
is surely not the intention of the Psi-calculus designers. But how many do
we need? Since Psi-calculi features a point-to-point communication between
agents and we can express non-deterministic choice with a case form, a repli-
cation process may produce agents which communicate among themselves,
for instance the following agent

!(case a = a : b (x).P [] a = a : b y.Q)

silently transitions into

P [x := y] | Q | !(case a = a : b (x).P [] a = a : b y.Q)

Another possibility is, as in the first example, one replicated copy does
an input or an output action. But instead of counting the uses of Rep
while computing derivation trees, and as a result complicating the derivation
logic, we replace the Rep rule with two new rules which make the symbolic
operational semantics terminating.

In figure 2, we present the Psi-calculi terminating symbolic operational
semantics. The rule Rep-Com derives a silent transition if the replica-
tion produces self communicating agents. Note new rules have structurally
smaller agents in their premises.

The idea and structure of Rep-Com is simple, and yet it may be lost
in the verbosity arising from the need of stating constraints explicitly; for
clarity we give the rule stripped from the symbolic constraints:

P
M N−−−→ P ′ P

M (x)−−−→ P ′′

!P
τ−→ P | P ′′[x := N ] | !P

Up until now we only discussed the feasibility of the terminating sym-
bolic operational semantics and argued for it informally. Here we establish
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Rep-Com

guarded(P ) b̃, b̃′#Ψ, !P b̃′#b̃ y#z ã#P

Ψ B P
y(νã)N7−−−−−−−−−−−−−→

(νb̃){|Ψ`M .↔y|}∧CP ′

P ′ Ψ B P
z(x)7−−−−−−−−−−−−−−→

(νb̃′){|Ψ`M ′ .↔z|}∧CP ′′

P ′′

ΨB !P
τ7−−−−−−−−−−−−−−−−−−−−−−−−→

(νb̃,b̃′){|Ψ`M .↔M ′|}∧(νb̃)CP ′∧(νb̃′)CP ′′

(νã)(P ′ | P ′′[x := N ]) | !P

Rep-i

Ψ B P
α7−→
C

P ′ guarded(P )

ΨB !P
α7−→
C

P ′ | !P
bn(α)#!P

Figure 2: The Psi-calculic terminating symbolic operational semantics. The
semantics are obtained by replacing the Rep rule in the Psi-calculi symbolic
operational semantics (Figure 1) with rules Rep-Com and Rep-I.

that the terminating symbolic operational semantics derive the same transi-
tions as the symbolic operational semantics and vice versa (Lemma 24 and
Lemma 23).

Using the terminating symbolic operational semantics it is possible to
contract P | !P to !P modulo bisimilarity.

Lemma 23 (Replication contraction). If Ψ B P | !P α7−→
C

P ′ then there is

P ′′ such that ΨB !P
α7−→
C′

P ′′ and P ′ ∼ P ′′ and sol(C) = sol(C ′).

Proof. The proof goes by investigation of the possible derivations of

Ψ B P | !P α7−→
C

P ′

First we determine all possible transition derivation cases of P |!P . By doing
this, we get assumptions which are the top-most premises and from these
assumptions and !P we derive a bisimilar agent.

• Suppose Ψ B P | !P α7−→
C

P ′ was derived as follows.

Par-L

Ψ⊗1 B P
α7−→
C

P ′′

Ψ B P | !P α7−→
C

P ′′ | !P

This can be simulated by the following and by using Ψ⊗1 ' Ψ:

Rep-I

Ψ B P
α7−→
C

P ′′

ΨB !P
α7−→
C

P ′′ | !P
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• The next derivation to consider:

Par-R

Rep-I

Ψ⊗1 B P
α7−→
C

P ′

Ψ⊗1B !P
α7−→
C

P ′ | !P

Ψ B P | !P α7−−−−→
(νb̃P )C

P | (P ′ | !P )

This can be simulated by:

Rep-I

Ψ B P
α7−→
C

P ′

ΨB !P
α7−→
C

P ′ | !P

It is easy to see that both derivatives are structurally equivalent:
P |(P ′ | !P )

.∼Ψ (P ′ | !P ) |P .∼Ψ P ′ |(!P |P )
.∼Ψ

.∼Ψ P ′ |(P | !P )
.∼Ψ P ′ | !P .

We know F(P ) = (νb̃P )1 and b̃P#Ψ, !P, α in the Par-R rule above,
hence b̃P#C. And from Definition 21 of solutions we know that
sol(C) = sol((νb̃P )C).

• The final derivation to consider is when !P is “self communicating”:

Com

Ψ⊗1 B P
y(νã)N7−−−−−−−−−−−−−→

(νb̃P ){|Ψ′`M .↔y|}∧C
P ′

Rep-I

Ψ⊗1 B P
z(x)7−−−−−−−−−−−−−−→

(νb̃′P ){|Ψ′`M ′ .↔z|}∧C′
P ′′

Ψ⊗1B !P
z(x)7−−−−−−−−−−−−−−→

(νb̃′P ){|Ψ′`M ′ .↔z|}∧C′
P ′′ | !P

Ψ B P | !P τ7−−−−−−−−−−−−−−−−−−−−−−−−→
(νb̃P ,b̃

′
P ){|Ψ′`M .↔M ′|}∧(b̃′P )C∧(b̃P )C′

(νã)(P ′ | (P ′′ | !P )[x := N ])

where Ψ′ = Ψ⊗1⊗1 ' Ψ.

This is simulated by the Rep-Com rule given above. Now to get the
required derivative:

(νã)(P ′ | (P ′′ | !P )[x := N ])
= (νã)(P ′ | (P ′′[x := N ] | !P ))

x#!P side condition of Rep-I
.∼Ψ (νã)((P ′ | P ′′[x := N ]) | !P )

associativity
.∼Ψ (νã)(P ′ | P ′′[x := N ]) | !P

due to ã#!P side condition of Com rule
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No further possible derivations; proof is complete.

Lemma 24 (→ simulated by 7→).

Whenever Ψ B P
α−→
C

P ′ then there is P ′′ such that Ψ B P
α7−→
C′

P ′′ and

P ′ ∼ P ′′ and sol(C) = sol(C ′).

Proof. Proof goes on the length of derivation of
α−→
C

.

We only consider Rep rule case, as other rules can be trivially simulated.
By induction hypothesis we have Ψ B P | !P α7−→

C
P ′′ and P ′ ∼ P ′′; we need

to prove (simulate) ΨB !P
α7−→
C

P ′′′ and P ′ ∼ P ′′′. By applying Lemma 23

to the induction hypothesis, we get the right conclusion and that P ′′ ∼ P ′′′,
and finally by transitivity P ′ ∼ P ′′′.

Lemma 25 (7→ simulated by →).

Whenever Ψ B P
α7−→
C

P ′ then there is P ′′ such that Ψ B P
α−→
C

P ′′ and

P ′ ∼ P ′′.

Proof. By the length of the derivation of 7→. We will consider the two cases
Rep-Com, and Rep-I as others are trivial.

Rep-Com Suppose we used the Rep-Com rule for derivation, then we sim-
ulate that as in figure 3. The premises come from the induction hy-
pothesis and to get the desired derivative we follow the same reasoning
as in the last case of the proof of Lemma 23.

Rep-I This case is simulated by the following.

Rep

Par-L

Ψ⊗1 B P
α7−→
C

P ′

Ψ B P | !P α7−→
C

P ′ | !P

ΨB !P
α7−→
C

P ′ | !P

We defined terminating symbolic operational semantics and established
that it gives equivalent transitions with regard to the symbolic operational
semantics up to bisimulation.
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2.5 Process constants: abstraction and parameters

The Psi-calculi does not provide a direct way of defining and invoking process
constants, since it does not have the usual environment for definitions, and
a construct for invoking those definitions in processes. Let us illustrate what
we mean, the example below defines two process constants Send and Recv,
where Send takes two arguments as terms and Recv takes one argument
as a term.

Send(ch, obj) ⇐ ch obj

Recv(sock) ⇐ sock(x).sock x

The following is a valid agent with two process constant invocations, where x, y
are names (and terms).

Send〈y, x〉 | Recv〈y〉 =

ch obj[ch := y, obj := x] | sock(x).sock x[sock := y] =

y x | y(x).y x
τ−→ y x

The intention of the process constants is to provide a convenient way of
defining aliases for more complicated agents when composing larger models.

Instead of using terms in the invocation form, we chose to restrict it to
constants in order to be able to do static analysis, for instance, to inform
the user of exceptional cases: whenever the environment contains several
definitions with the same constant, or an invocation is used of a clause
which has a non-empty support.

Formally, we introduce the following new agent form called invocation.

A〈M̃〉

where A is a process constant (ranged over by A,B, . . . ) with empty sup-
port, which identifies an agent (possibly, multiple agents) in an environment
consisting of clauses:

A(x̃)⇐ P

where n(P ) ⊆ x̃. The set of clauses is required to be a nominal datatype,
here Ct is a fixed countably infinite set of constants.

ClCt = {A(x̃)⇐P : A ∈ C ∧ x̃ ∈ N |x̃| ∧ P ∈ P ∧ guarded P}

Additionally, we also allow a non-deterministic behaviour, such as

SendRecv(sock) ⇐ sock sock
SendRecv(sock) ⇐ sock(x)

allowing the invocation of SendRecv〈y〉 to either send or receive.
We say that a function e : Ct → Pfin(ClCt) is an environment. We

parameterise the symbolic operational semantics with an environment, and
we get the following transition system:

Ψ, e B P
α−→
C

P ′
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Furthermore, we add the following rule to the symbolic operational seman-
tics (Figure 1) to obtain Psi-calculi with process constants.

Invocation

n(P ) ⊆ x̃ |x̃| = |M̃ | guardede(P )

A(x̃)⇐P ∈ e Ψ, e B P [x̃ := M̃ ]
α−→
C

P ′

Ψ, e B A〈M̃〉 α−→
C

P ′

Note that we fix the environment when deriving, therefore we do not
need to merge environments in Par and Com (Figure 1) rules. We only
need to propagate the fixed one.

What is more, the A in A〈M̃〉 is a constant, consequentially, it is immune

to substitution A〈M̃〉[x̃ := L̃] = A〈M̃ [x̃ := L̃]〉.
As the last step we need to extend the guarded definition for taking

into account the passed environment. Let guarded be defined as in [3, Sec-
tion 24.5] and extended with a second parameter which is passed unchanged,
and equipped with an additional clause, so the full definition:

guardede(LΨM, V ) = false

guardede(0, V ) = guardede(M (x).P, V ) = guardede(M N.Q, V ) = true
guardede(P |Q,V ) = guardede(P, V ) ∧ guardede(Q,V )
guardede((νx)P, V ) = guardede(!P, V ) = guardede(P, V )
guardede(case ϕi : Pi, V ) = (∀i)guardede(Pi, V )

guardede(A〈M̃〉, V ) =

(∀(A(x̃)⇐P ) ∈ e(A)) 〈A, |M̃ |〉 6∈ V ∧ guardede(P, V ∪ {〈A, |M̃ |〉})

In this section we defined a new form of process, invocation, and extended
the symbolic operational semantics with the Invocation rule. Although
invocations need to be guarded, process constants are useful as a convenience
for developing larger Psi-calculi models.
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3 Workbench

In this section we present the tool. In the first part, we present the user’s
guide of the tool. In the second part, we present sample implementations
for extending the tool with Psi-calculus instances.

3.1 Tool

3.1.1 Syntax

We have three levels of syntactical categories (inspired by the Isabelle syn-
tax [23]):

• Command interpreter. Handled by the command interpreter parser.

• Psi-calculus agents. Handled by the Psi-calculus agent parser, a part
of command interpreter parser. Some of the parsing is delegated to
the user provided instance implementation.

• Instance. Handled by user implemented parsers.

The Psi-calculus agents syntax is summarised in the table 1. The agent
parser accepts an input in ASCII.

Form Notation ASCII

Nil 0 0

Output MN.P ’M<N>.P

AbbrInput M(x).P M(x).P

Input M(λx̃)N.P M(\x1, · · · , xn)N.P

Restriction (νa)P (new a)P

Replication !P !P

Assertion (|Ψ|) (| Psi |)

Invocation A〈M̃〉 A<M1, · · · , Mn>

Parallel P | Q P | Q

Case
case φ1 : P1

[] · · ·
[] φn : Pn

case phi1 : P1
[] · · ·
[] phin : Pn

Table 1: Forms handled by the parser. Note: the abbreviated input form
AbbrInput is defined as M(x).P =def M(λx)x.P .

In Table 1 T are ranged over by M,N, C are ranged over by phi, A ranged
by Psi, and names N are ranged over by a, x. These parameters belong to
the instance syntactical category. The parser either accepts alpha-numeric
strings or quoted strings. Since the parameters may have an arbitrary syn-
tax, in most occurrences they need to be quoted. The following is a list of
quotations.
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• {* · · · *} is a string, where · · · is any string of characters not con-
taining ‘*}’, and ‘*}’ cannot be escaped.

• " · · · " is a string of characters, where · · · does not contain ‘"’, but
it can be escaped as ‘\"’.

• ’ · · · ’, similarly, as above, just with ‘’’ as quotation character.

The parser treats the following lexical objects as whitespace:

• In-line comments are started with ‘--’ and they span until the end of
the line.

• Multi-line comments are (* · · · *). Can be nested.

• The usual whitespace characters.

The forms in Table 1 is listed in a precedence order from highest to the
lowest. The Parallel is right associative. For instance, the following agent

case ϕ : (νa)P | P ′ [] ϕ :!Q |Q′ |Q′′

would be parsed as

(case ϕ : (((νa)P ) | P ′) [] ϕ : (!Q)) | (Q′ |Q′′)

The following is an example Pi-calculus instance script accepted by the
parser:

(∗
Multi−l i n e comment

∗)
case ”a = b” : (new a ) ’ b<a>

[ ] ”a = b” : b( x )
| −− in p a r a l l e l with the above ’ case ’ ( in−l i n e comment)

! ’b<a>.0 ;

and the interpreter outputs the accepted agent:

case ”a = b” : (new a ) ( ’b<a> ) [ ] ”a = b” : (b( x ) ) | ( ! ( ’ b<a>))

Notice that term equality in above example needs to be quoted, as it is
not alpha-numeric.

The formal grammar is given in Appendix D.

3.1.2 Command interpreter

The command interpreter manages the process clause environment and pro-
vides various commands for manipulating and analysing agents. In the com-
mand interpreter every command must be separated by a semicolon ‘;’. If
the command interpreter does not recognise a command then it treats the
input as an agent and passes that agent to the agent command. The fol-
lowing is a list of commands supported by the command interpreter.
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• agent P accepts an agent P and pretty prints it. This command also
supports the following forms:

– agent n(P) computes the support of the agent P and prints the
set of names of that support.

– agent P[x:=M,y:=N,. . . ] applies the provided substitution func-
tion to the agent P and pretty prints the result.

– agent guarded(P) checks if the assertions in the agent P are
guarded, prints true or false.

– agent P = Q checks if P and Q are α-equivalent, and print true
or false.

The keyword agent may be ommited.

• sstep P enters the strong symbolic execution simulator for the agent
P . Simulator supports the following commands, which must be sepa-
rated by a newline.

– N where N is the number of a transition derived by the simulator.
Upon entering this number the simulator chooses the derivative
with this number and computes new transitions from that deriva-
tive.

– b backtracks to the previous derivative.

– q quits the simulator.

• wsstep P enters the weak symbolic execution simulator for the agent P
using the. The command language is the same as for sstep.

• env prints the current process clause environment.

• drop A removes all process clauses for the constant A from the envi-
ronment.

• input "file" reads commands from the file file (quotes are not part
of the file name, also any type of quotation can be used in place of
quotes).

• exit exits the interpreter.

• def { A(x,y,...) <= P ; B(x,y,...) <= Q ; ... }.
Inserts process clauses into the environment. Process clauses are sepa-
rated by a semicolon ‘;’. Any number of clauses can be given. Newlines
and other whitespace are insignificant. Clauses can be given the same
name, introducing non-determinism, and the clauses may be mutually
recursive.
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• A(x,y,...)<= P is an abbreviation for def {A(x,y,...)<= P;}.
Multiple clauses with the same name can only be introduced inside
the def form, otherwise old clauses are replaced and the command
interpreter issues a warning.

• P ~ Q runs the bisimulation algorithm (Appendix C.1) on P and Q,
and prints the simplified constraint and the solution to that constraint
if there is one.

Any of the P,Q above are of the syntax given in Section 3.1.1.

3.1.3 Loading the command interpreter

The command interpreter and Psi-calculus instance are loaded from a run-
ning Sml interpreter. For instance the Pi-calculus instance can be loaded
by the following:

use ”workbench .ML” ;
use ” p i .ML” ;
Pi . s t a r t ( ) ;

where workbench.ML is the main Workbench Sml file containing the required
definitions for implementing a Psi-calculus instance for Workbench. The
file pi .ML has the definition of the Pi-calculus instance, see the example in
Section 3.2.1. The function Pi. start enters the Workbench command inter-
preter.

3.1.4 Sample session

In this section, we demonstrate a sample session of interaction with the
command interpreter using the Pi-calculus instance. We load the command
interpreter as described above in Section 3.1.3.

We typeset the command interpreter’s prompt as

psi >

the input text as

command_name argument1 argument2 ... ;

and the output of the command interpreter as

Command output

Let us consider the following agent as an running example.

a (x).hello x | aworld
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We expect the above agent to τ transition into

helloworld | 0

Let us try this in the loaded command interpreter with a command sstep,
which expects an agent as argument.

psi > sstep a(x).’hello<x> | ’a<world> ;

Type <num> for selecting derivative, b - for backtracking, q - quit

3 possible derivative(s)

1 ---

1 |>

--|tau|-->

Constraint:

{| "a = a" |}
Solution:

([], 1)

Derivative:

(’hello<world>) | (0)

2 ---

1 |>

--|ga(x)|-->

Constraint:

{| "a = ga" |}
Solution:

([ga := a], 1)

Derivative:

(’hello<x>) | (’a<world>)

3 ---

1 |>

--|ga world|-->

Constraint:

{| "a = ga" |}
Solution:

([ga := a], 1)

Derivative:

(a(x). ’hello<x>) | (0)

sstep >

We are presented with three possible derivatives of the agent, and we
are also presented with a different prompt which signifies the command
interpreter of sstep simulator. A brief description of the commands of
sstep are given at the top of the output above. The one we are most
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interested in is the first, the τ transition. The interpretation of the above
output marked as 1 -- is under the constraint {|"a = a"|} and a solution
([],1) found for the constraint, where [] is the identity substitution and 1

is the unit assertion, we can derive the agent hello<world> | 0.
The other possible derivatives are the agents transitioning separately.

The second transition is an input whenever the name a is channel equivalent
to a freely chosen name ga. The third transition is an output.

So, let us follow the first transition

sstep > 1

1 possible derivative(s)

1 ---

1 |>

--|ga world|-->

Constraint:

| "hello = ga" |

Solution:

([ga := hello], 1)

Derivative:

(0) | (0)

Now the only possible transition for the agent is an output on the la-
bel hello. By choosing that derivative the interpreter outputs

sstep > 1

0 possible derivative(s)

At any point, we may quit the sstep command interpreter with the
command q or return to the previous transitions (arbitrary times) by using
the b command.

sstep > q

psi >

In the above interaction, we entered the process directly in the sstep
command. Although this was convenient, for bigger agents it may become
cumbersome. We may provide aliases for agents, for the left hand agent

psi > A(ch,hello) <= ch(x). ’hello<x>;

A(ch,hello) <= ch(x). ’hello<x>

;

and the right hand agent

psi > B(ch, world) <= ’ch<world>;

B(ch, world) <= ’ch<world>

;
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We may inspect the current environment after the definitions

psi > env;

B(ch, world) <= ’ch<world>

A(ch, hello) <= ch(x). ’hello<x>

By using the sstep command we get the same transitions as follows

psi > sstep A<a,hello> | B<a, world>;

Type <num> for selecting derivative, b - for backtracking, q - quit

3 possible derivative(s)

1 ---

1 |>

--|tau|-->

Constraint:

{| "a = a" |}
Solution:

([], 1)

Derivative:

(’hello<world>) | (0)
...

Other derivatives are omitted.
We provide an alternative way of defining process constants, the def

block. In the def block agents may reference other agents mutually recur-
sively.

psi >

def {
C(a,hello,world) <= B<a,hello> | A<a,world> ;

A(a,world) <= ’a<world>;

B(a,hello) <= a(x).’hello<x>;

};

def {
C(a, hello, world) <= (B<a, hello>) | (A<a, world>);

A(a, world) <= ’a<world>;

B(a, hello) <= a(x). ’hello<x>;

};

-- Warning: redefined clause A

-- Warning: redefined clause B
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The command interpreter issues two warnings. Both warnings are to
notify us that we replaced previous definitions.

If we execute the following command, we get the expected transitions.

psi > sstep C<a,hello,world>;

Lastly, an important note is that data types with non alpha-numeric
syntax need to be quoted, for instance, the condition a

.↔ b of the agent

case a
.↔ b : 0

needs to be quoted in command interpreter as

psi > agent case "a = b" : 0;

case "a = b" : 0

For a complete list of commands supported by the command interpreter
refer to section 3.1.2.

3.2 Implementation of Psi-calculus instance

In this section we give examples on how to go from a mathematical descrip-
tion of a Psi-calculus instance to implementation in the tool. We consider
three Psi-calculus instances: the first is the Pi-calculus instance where terms
are names; the second is the Frame Hopping Spread Spectrum which has
structured terms; and the third is Common Ether which has non-trivial
assertions. These instances all appeared in [4].

The first example, the Pi-calculus instance, is a gentle introduction to an
implementation of an instance. We describe this example in greater detail
compared to the other examples we give. In this example only, we implement
a bisimulation constraint solver, which can be found in Appendix A.

In all three examples, we mainly focus on developing and implementing
a constraint solver for the transition constraints (see Section 2.3), since this
is required by a working simulator.

We also give explanations of the underlying theory and present the def-
initions of the instances.

3.2.1 Pi-calculus instance

As our first example we will implement a Pi-calculus symbolic instance based
on [4, Section 2.4] with some minor divergence to the Psi-calculus nominal
datatypes. The Pi-calculus instance does not feature the more advanced ca-
pabilities of Psi-calculus, e.g. non-trivial assertions, and terms with binders,
therefore it is a perfect means to show the mechanics of implementing an
instance without concerning ourselves with more intricate details.

This section is a complete step-by-step presentation of the Sml imple-
mentation of the Pi-calculus instance in literate programming style. Sml
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lines are numbered to make a clear distinction between the running text and
the Sml code.

The instance is defined in three steps:

• First we define nominal datatypes, equivariant operators, substitution
functions and functions deciding alpha equality. These requirements
are listed in the PSI INSTANCE NOM signature.

• Next we define the requirements needed to construct a symbolic Psi-
calculus simulator on the instance. The requirements are a function
which maps names to terms, a constraint solver for transition con-
straints, and a constraint solver for constraints produced by the bisim-
ulation algorithm. The SYMBOLIC PSI FLAT signature satisfies the
requirements for this step.

• The final step is to define functions for pretty printing and parsing the
nominal datatypes. The signature for this is C PSI.

The previously mentioned signatures in fact are part of the C PSI in-
terface and PSI INSTANCE NOM ⊂ SYMBOLIC PSI FLAT ⊂ C PSI. Indeed,
the file looks like the following:

structure PiInstanceNom = struct
. . .

end ;
structure PiSymbol ic Instance = struct

open PiInstanceNom
. . .

end ;
structure PiCalcu lus : C PSI = struct

open PiSymbol ic Instance
. . .

end ;
Pi = Command( PiCalcu lus ) ;

This splitting of structures for implementing one signature is because of
Sml lack of mutually recursive definitions for structures, as we need to refer
to functions and datatypes when implementing the constraint solvers, print-
ers and parsers. The first two structures are not restricted to the signature,
otherwise it would close the datatype constructors.

The following text will be divided in three sections accordingly.

Instance definition

First we will define Sml datatypes to represent nominal datatypes, then
the Sml functions implementing equivariant operators, next the nominal
equivariant functions on Sml datatypes, making those datatypes full fledged
nominal datatypes, and substitution functions.
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1 structure PiInstanceNom (∗ : PSI INSTANCE NOM ∗) =
2 struct

Before we begin writing down datatypes, let us look at the definition of
nominal datatypes for Pi-calculus instance as defined in [4]. We diverge here
from [4] by extending C with condition > to represent an always entailed
condition, such that we can encode P +Q as case > : P [] > : Q, rather
than (νa)case a = a : P [] a = a : Q where we would need to introduce a
new name.

T
def
= N

C
def
= {a = b : a, b ∈ T} ∪ {>} where > 6∈ T

A
def
= {1}

where N is countably infinite set of atomic names as usual.
A good candidate to represent names is the string type, since the frame-

work provides the structure StringName with default functionality, and term

is defined as name. C forms a carrier for a condition term algebra, hence it
is only natural to represent it with algebraic datatypes1 of Sml, in condition

below. Eq (a,b) corresponds to a = b and T to >, and assertion is an empty
data constructor Unit.

3 type name = string
4 type term = name
5 datatype cond i t i on = Eq of term ∗ term | T
6 datatype a s s e r t i o n = Unit

Next we turn to model the operators of Psi-calculus. Let us recall the
definition of the operators. The difference with [4] is that we always entail >.

.↔ def
= =

⊗ def
= λ〈Ψ1,Ψ2〉.1

1
def
= 1

` def
= {〈1, a = a〉 : a ∈ N} ∪ {〈1,>〉}

As we can see, channel equivalence is defined as an equality condition.
This is trivial in our Sml representation, chaneq below. The composition
and the unit of assertions are straightforward and the Sml code is close to
the above definition. The entailment, `, relation is defined as a boolean
function on the assertion and condition datatypes. The assertion datatype has
only one constructor, therefore the function entails has two cases: Eq(m,n)

computes a string equality on m and n, and T always returns true.

1 It is worth noting that an instance implementor is free to choose any Sml datatypes
for implementing nominal datatypes as long it is possible to provide functions required by
the NOMINAL signature for the corresponding types.

35



7 fun chaneq (a , b) = Eq ( a , b)
8 fun compose ( ps i1 , p s i 2 ) = Unit
9 val uni t = Unit

10 fun e n t a i l s ( Unit , Eq (m, n ) ) = (m = n)
11 | e n t a i l s ( Unit ,T) = t rue

The function swap name is not necessary for the implementation of the
instance and it is derived by the Command functor, but we need it for the
definitions of the swapping function, and the substitution function. The
swap name function implements the usual swap function on names (a b) · n.
The StringName structure provides a default implementation for generating
new names and swapping names for the type string which we use here.

12 fun swap name (a , b) n = StringName . swap name (a , b) n

The new function is used for generating fresh names, the requirement
is that new provides a name which is not in the xvec list, i.e. (∀n ∈ x̃)n 6=
new(x̃). Again StringName provides the default implementation.

13 fun new xvec = StringName . g e n e r a t e D i s t i n c t xvec

The Pi-calculus terms, conditions and assertions do not have binders,
thus the implementation of the support is routine. The support is repre-
sented as a list of names. The function supportT computes the term support,
and as we have names as our terms we only return the given name as a
singleton list. The function supportC result can contain two names or none,
and supportA returns an empty list.

14 fun supportT n = [ n ]
15 fun supportC (Eq ( a , b ) ) = [ a , b ]
16 | supportC T = [ ]
17 fun supportA = [ ]

As terms are just names, swapping a name in a term is the same as
applying the swap name function. Similarly for conditions while assertions
are not affected by swapping.

18 fun swapT pi n = swap name pi n
19 fun swapC T = T
20 | swapC pi (Eq ( t1 , t2 ) ) =
21 Eq (swap name pi t1 , swap name pi t2 )
22 fun swapA = Unit

We also require an instance to provide an α-equivalence for the nominal
datatypes. All the equality functions take as a first argument a function
to be called for deciding α-equality for a datatype with binders. None of
the nominal datatypes in Pi-calculus feature binders, and so α-equality is
just syntactic equality, as can be seen below expressed with built-in Sml
equality and the first argument ignored. However, it is worth mentioning
how to use these functions to implement an α-equality for nominal datatypes
with binders which bind into the whole instance of a datatype.
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Consider the lambda calculus language

M,N ::= λx.M |MN | x

we define the nominal set of the terms of the lambda calculus as

T = {λx.N : x ∈ N ∧N ∈ T} ∪ {MN : M ∈ T ∧N ∈ T} ∪ N

and the Sml datatype for terms is

datatype lam = Lam of name ∗ lam | App of lam ∗ lam | Var of name

with nominal operations defined on it as expected. Thus a possible imple-
mentation of α-equality over lam terms may be:

fun eqT aEq (Lam (x ,m) , Lam (y , n ) ) =
aEq ( ( x ,m) , (y , n ) )

| eqT aEq (App (n ,m) , App (n ’ ,m’ ) ) =
eqT aEq (n , n ’ ) andalso eqT aEq (m,m’ )

| eqT aEq ( Var x , Var y ) =
x = y

| eqT = f a l s e

In the first case, two lambda abstractions are equated. We make use of
the provided aEq function, which takes two tuples, where each tuple has as
a first member a binder and as a second a term in which the binder binds
into. The function aEq finds a fresh name for both terms and swaps both
bound names with that name in those terms, and then calls back into eqT

with the swapped name terms. This kind of mutual recursive behaviour of
functions aEq and eqT relates to the Nominal Logic axiom A1 from [25]

a.x = a′.x′ ⇐⇒ (a = a′ ∧ x = x′) ∨ (a′#x ∧ x′ = (a a′)x)

where a.x is an abstraction with a being a binder binding into x: in our
setting, the function eEq does the right hand side judgment, and the equating
of terms x and x′ are done by the function eqT.

The α-equality of application case is just a matter of recursively calling
eqT with structurally smaller terms and by passing along the same aEq.
Equating variables is just checking their name equality.

Since, as mentioned, Pi-calculus terms do not feature terms with binders,
therefore we just ignore the provided function and use the builtin Sml equal-
ity.

23 fun eqT ( a , b) = a = b
24 fun eqC ( a , b) = a = b
25 fun eqA ( a , b) = a = b

Next we define a substitution function on the nominal datatypes. Each
substitution function takes a substitution sequence sigma (a list of name and
term pairs) and an instance of a nominal datatype.
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The function substT finds a matching name in sigma, if found it returns
the pairing term (name), otherwise it returns the name unchanged. substC

distributes as substT, and assertions are not affected by the substitution.

26 fun substT sigma n =
27 case List . f i n d ( fn (x , ) ⇒ x = n) sigma of
28 NONE ⇒ n
29 | SOME ( , t ) ⇒ t
30 fun substC sigma T = T
31 | substC sigma (Eq ( t1 , t2 ) ) =
32 Eq ( substT sigma t1 , substT sigma t2 )
33 fun substA sigma Unit = Unit

This ends the first part of definitions.

34 end ;

We need to close this structure as this structure’s definitions will be used
by functors in the structure PiSymbolicInstance.

Symbolic instance definition

We continue by defining extra requirements for the symbolic Psi-calculus and
by implementing a constraint solver for a symbolic simulator and symbolic
bisimulation checker.

35 structure PiSymbol ic Instance (∗ : SYMBOLIC PSI FLAT ∗) =
36 struct

First we include the previously defined structure.

37 open PiInstanceNom

Additionally the symbolic Psi-calculus requires that names should be
among the terms (Definition 15), i.e. N ⊆ T. This is modeled in the tool’s
framework by the function var : name →term; in our case it is the identity
function.

38 fun var x = x

Now we turn our attention to solving the transition constraints. Before
we can do anything useful we need to define the Constraint sub-structure
which implements constraint datatypes and some useful functions, like sub-
stitution and nominal functions.

The functor Constraint defines the constraints needed for the simulator
(symbolic operational semantics), of the form:

C,C ′ ::= (νã){|Ψ ` ϕ|}
| C ∧ C ′

The C constrain Constraint.constraint is a synonym for Constraint.atomic list

and (νã){|Ψ ` ϕ|} is Constraint.atomic (avec, psi , phi). These datatypes are
nominal datatypes, meaning they have swap, new, etc. defined on them in
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the Constraint structure. The Constraint functor also provides a default im-
plementation of capture avoiding substitution. As we can see, the functor
uses the definitions from PiInstanceNom, which is one of the reasons we need
to split the structure.

39 structure Constra int = Constra int ( PiInstanceNom )

The Pi-calculus instance conditions are syntactic and their interpreta-
tion is syntactical equality on names defined by the entailment relation.
Furthermore we can view, the transition constraint as a syntactic equation
system. In order to solve this system, we implement a syntactic unification
algorithm known as Martelli-Montanari algorithm. We use the form of algo-
rithm given in [19], which treats equations as a sequence of goals rather than
a term rewriting system since it is easier to implement in our framework.

The outcome of a successful unification is a substitution sequence. This
sequence is computed by composing smaller sequences at an appropriate
algorithm step, as we will see later. We only need a special case where
substitution sequence is extended with a new substitution clause.

[x̃ := L̃][x′ := L′] =

{
[x̃ := L̃[x′ := L′]] if x′ ∈ x̃
[x̃ := L̃[x′ := L′]] ∪ [x′ := L′] if x′ 6∈ x̃

In Sml a substitution sequence is represented as a list of pairs of name
and term. Hence getting the domain x̃ of [x̃ := L̃] is just a matter of taking
the first member of each pair.

40 fun dom sigma = map ( fn (n , t ) ⇒ n) sigma

Below is the implementation of the substitution sequence composition
given above, where sigma is [x̃ := L̃] and s is [x′ := L′]. So firstly it applies
the substitution s to the range of sigma and then adds s to the sequence if x′

is not in the domain of sigma.

41 fun composeSubst sigma ( s as (x ’ , l ’ ) ) =
42 let
43 val app = map ( fn (n , t ) ⇒ (n , substT [ s ] t ) ) sigma
44 in
45 i f Lst . member x ’ (dom sigma )
46 then app
47 else s :: app
48 end

Next we present the unification rules tailored to the Pi-calculus case. We
omit the assertion from the constraint, since it is always unit, we write (νã){|ϕ|}
for (νã){|1 ` ϕ|}, and we write {|ϕ|} for (νε){|ϕ|}.
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These rules solve the unification problem for the Pi-calculus instance.

(νã){|a .↔ b|} ∧ C
[b:=a]
� C[b := a] if a, b#ã and a#b (Elim)

(νã){|a .↔ a|} ∧ C � C (Tr1)
(νã){|>|} ∧ C � C (Tr2)
(νã){|a .↔ b|} ∧ C � � if a#b and a ∈ ã ∨ b ∈ ã (Fail)

The first rule, (Elim), produces a singleton substitution sequence and
applies that to the residual whenever both names are free and are not the
same. Notice that in the substitution the order of the names are swapped.
This is done because when an agent does an input or an output the fresh
name generated for the subject name is placed on the right hand side of the
equality. In this manner we will always be substituting away the generated
name, in order to give a more “informative” substitution sequence. (Fail)
rule says that there is no name which can be equated to a restricted name,
and stops with a failure. (Tr1) and (Tr2) handle trivial cases. The algo-
rithm succeeds with �, when there are no more constraints and the labels
of the rewrite steps gives a sequence of substitution sequences.

As an example of the application of the above rules, let us consider this
example:

case a
.↔ c : case c

.↔ b : case a
.↔ b : d(x)

This agent would give rise to the following constraint.

{|d .↔ f |} ∧ {|a .↔ b|} ∧ {|c .↔ b|} ∧ {|a .↔ c|}

where f is a freshly chosen name.
One possible sequence of unification rule application is the following

{|d .↔ f |} ∧ {|a .↔ b|} ∧ {|c .↔ b|} ∧ {|a .↔ c|}
[f :=d]
�

{|a .↔ b|} ∧ {|c .↔ b|} ∧ {|a .↔ c|}
[b:=a]
�

{|c .↔ a|} ∧ {|a .↔ c|}
[a:=c]
� {|c .↔ c|}��

We just showed that the channel equivalence, =, is transitive. By com-
posing all the substitutions on the arrows in sequence we get a solution sub-
stitution [f := d][b := a][a := c] = [f := d, b := c, a := c]. It is clear that this
solution is not unique, for instance the substitution [f := d, b := a, c := a]
also satisfies the above constraint. In fact, the unification algorithm gives a
substitution unique up to a permutation of names, i.e. a bijective renaming
(cf. [19]).

In contrast to the above example, below is an agent which gives rise to
a transition constraint with no solutions.

(νa)a(x)
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The constraint to be solved is (νa){|a .↔ b|} (where b is chosen fresh b#a);
this satisfies the (Fail) rule.

Before we continue implementing the unification, we define a convenience
sub-structure which provides nominal functions for a list of names, such that
we can compute a#x̃ with L.fresh a xvec.

49 structure L = NominalNameList (
50 struct type atom = name val new = new end)

The function mgu is an implementation of the above unification rules.
We represent success, �, by returning Either.RIGHT sigma with the substitu-
tion sequence, and failure, �, by returning Either.LEFT phi with the offending
condition. The function mgu takes a constraint as the first argument, and
the accumulated substitution sequence as the second. The function mgu

computes a new substitution sequence when the (Elim) rule is applicable.
The lines that correspond to each of the above unification rules are an-

notated to the right.

51 fun mgu [ ] sigma = Either . RIGHT sigma �
52 | mgu ( ( avec , Unit , T ) :: c s ) sigma = (Tr2)
53 mgu cs sigma
54 | mgu ( ( avec , Unit , (Eq (a , b ) ) ) :: c s ) sigma =
55 i f a = b then mgu cs sigma (Tr1)
56 else
57 i f L . f r e s h a avec andalso L . f r e s h b avec (Elim)
58 then mgu ( Constra int . subst cs [ ( b , a ) ] )
59 ( composeSubst sigma (b , a ) )
60 else Either . LEFT [ Eq ( a , b ) ] �

The last thing we need to provide to complete the implementation of a
constraint solver for transition constraints is the solve function. The solve

function accepts a constraint and produces either a list of solutions or a
list of failed conditions. In our case, the function solve is just a wrapper
for the mgu function. A solution to the constraint is only the substitution
sequence, as Pi-calculus has trivial assertions. And the mgu function gives
a Most General Unifier (up to a name permutation, or bijective renaming
substitution [19]). That is, it is sufficient to return only the substitution
sequence produced by mgu as all other solutions are entailed by the mgu

(again, up to name permutation).

61 fun s o l v e cs =
62 case mgu cs [ ] of
63 Either . RIGHT sigma ⇒ Either . RIGHT [ ( sigma , Unit ) ]
64 | Either . LEFT phi ⇒ Either . LEFT [ phi ]

...

This Pi-calculus instance implementation also hosts a constraint solver for
the constraints generated by the bisimulation algorithm (Appendix A). The
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constraints are more complicated to solve2 and require a more complicated
algorithm for finding solutions. However, the approach is in the same vein
as presented here: a bisimulation constraint solver is a function that takes
a constraint and produces either a solution or a counter example. Such
a constraint solver is not required for the simulation of agents, therefore
we omit it here and direct an interested reader to Appendix A for a full
implementation.

...

65 end ;

Implementation of printers and parsers

The last piece in the construction of a working simulator with command
interpreter is ability to pretty print and parse nominal datatypes.

At this stage we can restrict the PiCalculus structure to the C PSI signa-
ture.

66 structure PiCalcu lus : C PSI =
67 struct

As before we input the previously defined structure.

68 open PiSymbol ic Instance

First we need to settle on the ASCII syntax of the members of the nominal
datatypes. For names we choose an alphanumeric representation, conditions
for equality will be formed with =, the top value is written T and the unit
assertion is 1.

In summary

Notation ASCII

a a

a
.↔ b a = b

> T

1 1

First we turn to printing. Every nominal datatype and names have
corresponding print functions which take a member from nominal datatype
and return a string representation of it.

Names are represented by strings so printing functions are almost trivial,
as the printC inserts a = between the channel equality names.

2 The bisimulation constraints expresses at least a first order logic with equality and
freshness constraints and without quantifiers.
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69 fun printN a = a
70 fun printT a = a
71 fun printC (Eq (a , b ) ) = a ˆ ” = ” ˆ b
72 | printC T = ”T”
73 fun printA p s i = ”1”

Parsing is more intricate. We parse nominal datatypes with the combi-
nator library provided with the tool, although it would not be very difficult
to write a custom parser for the terms of the Pi-calculus instance.

First we need to construct a parser structure which provides the combi-
nators on string streams.

74 structure Parser = Parser ( Str ingStream )

The functor PsiParserBase provides the Psi-calculus language lexical parser
combinators: the notion of whitespace, identifier, etc.

75 structure Lex = PsiParserBase ( Parser )

None of the structures defined above are opened here in order to make
the origin of functions clear.

Parsing combinators deserve some treatment here. A parsing combinator
is a value or a function with a result of the type ’a parser. The type ’a denotes
a parse result. The basic combinators are provided by the Parser structure,
we use the return combinator, which does not consume any input and always
succeeds by returning the value passed to it as a parse result. A parser
combinator may fail resulting in a parse error and/or backtracking if it is
a part of another parser combinator. This means that parser combinators
implement top down recursive descent parser3. In contrast, the zero value is
a combinator which does not consume any input and always fails.

We also use lexical parser combinators provided by the structure Lex.
Lexical combinators are in an accord with the lexical rules of Psi-calculi tool
(Section 3.1.1). The combinator identifier parses a series of alphanumeric
characters but removes any whitespace (including comments), and it first
returns the concatenated characters as a string. The other combinator of
interest is the function stok (mnemonic for ‘string token’) which also first
removes any whitespace and then matches the remaining input with its
string argument; if there is no match it fails.

More complex parsers are built from basic combinators by using se-
quencing functions p �= q with type ’a parser ∗ (’a → ’b parser) → ’b parser,
� with type ’a parser ∗ ’b parser → ’b parser. p �= q sequences two parsers,
by first applying the parser p, and then giving parse result of p to the func-
tion q which returns a new parser, which in turn can be used for further
sequencing or application. p � q is the same as �=, but ignores the result
of p, and applies q directly. Another crucial building block of parsers is a

3The problem of not handling left recursive grammars is inherited.
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choice4 between combinators, which comes in two flavours: deterministic
and non-deterministic. The one we use is the deterministic choice combi-
nator. The choice parser combinator composes two parser combinators by
trying to apply the first parser combinator to a stream; if the combinator
succeeds, choice returns that parser’s result and otherwise it tries the second
parser combinator.

These parser combinators are modelled after [16], which contains a ref-
erence and examples.

Let us first define some aliases.

76 fun p �= q = Parser .�= (p , q )
77 fun p � q = Parser .� (p , q )

We are now at the point where we can define the syntax of the datatypes.
We will first define parsers for the names, conditions and assertion. And
afterwards we provide the requisites for the signature. As mentioned be-
fore, the syntax of a name will coincide with the identifier syntax of Psi
Workbench. The value Lex. identifier is a parser combinator which define
Psi Workbench’s identifier syntax. The value Lex. identifier is of the type
string parser.

78 val name = Lex . i d e n t i f i e r

Now we define the syntax for conditions, which can be expressed in the
following grammar production rules.

〈cond-eq〉 ::= 〈name〉 ‘=’ 〈name〉

〈cond-t〉 ::= ‘T’

〈cond〉 ::= 〈cond-eq〉 | 〈cond-t〉

The condEq parser combinator defines the syntax of the 〈cond-eq〉. The
parser combinator condEq parses a name binds it to a, then expects some
whitespace and matches ”=”, and then again a name by binding it to b and
if none of the parsers failed builds a channel equality datatype. Hence, the
combinator’s condEq type is condition parser.

79 val condEq = name �=
80 ( fn a ⇒ Lex . stok ”=” �
81 name �=
82 ( fn b ⇒ Parser . r e turn (Eq (a , b ) )
83 ) )

The sequencing functions form a production rule, and�= provides a way
to refer to the results (in similar fashion as in attribute grammars). The

4It is worh noting that �= is associative, the combinator zero is a left and right unit
for choice combinator. In fact, the type ’a parser together with the discussed functions
is a monad, cf. [16].
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Parser.return function lifts an ordinary Sml value into a parser combinator;
this kind of parser combinator does not consume any input and always
succeeds by returning the value provided. The combinator Lex.stok takes a
string as an argument and treats it as a token by matching it to the input
before discarding any whitespace including comments; if the input matches
then it succeeds, otherwise it fails.

The parser to for the 〈cond-t〉 is now straightforward.

84 val condT = Lex . stok ”T” � Parser . r e turn T

By using deterministic choice to combine the condT and condEq we com-
plete the 〈cond〉 implementation.

85 val cond = Parser . cho i c e ( condT , condEq )

Assertion is similar to the condT.

86 val a s s r = Lex . stok ”1” � Parser . r e turn Unit

Parsing functions of nominal datatypes are required to take a string and
return either a corresponding nominal datatype or an error string. But
Parser.parse takes a parser combinator and a stream, so to bridge this we
define an auxiliary function. If a parser succeeds it returns a list of results,
and since we only used deterministic choice to construct parsers there will be
one result returned. The second case clause is just for inhibiting a compiler
warning of non exhaustive pattern matching.

87 fun parseResu l t p s =
88 case Parser . parse p ( Str ingStream . make s ) of
89 Either . RIGHT [ ( r , s ) ] ⇒ Either . RIGHT r
90 | Either . RIGHT ⇒ Err . undef ined ( )
91 | Either . LEFT ⇒ Either . LEFT ” Error par s ing ”

We can now fill in all the required parsing functions.

92 fun parseN s = parseResu l t name s
93 fun parseT s = parseN s
94 fun parseC s = parseResu l t cond s
95 fun parseA s = parseResu l t a s s r s

An important design decision when implementing printers and parsers is
to make them circular, i.e., parse a = parse (print (parse a)) and print a = print (parse (print a)).
This is not strictly enforced, but it is a good convention, as the output of
the command interpreter then can be reused as an input. Let’s take condi-
tions as an example, say we have a string ”a=b” which would be parsed into
Eq(”a”,”b”) by parseC. The function printC would produce a string ”a = b”

(note the spaces). The parser parseC would again, given the string ”a = b”,
return Eq(”a”,”b”), which is the same as previously. The parser function
parseC is implemented in terms of stok and identifier which contract any
whitespace and only parses the ‘essence’.

96 end ;
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The final matter is to construct a structure with the Command functor.
The structure provides a start : unit → unit function to start the command
interpreter.

97 structure Pi = Command( PiCalcu lus ) ;

In order to load this file, the file workbench.ML must be loaded first
which provides all the definitions required above (see Section 3.1.3).

This ends the Pi-calculus instance implementation using Psi-calculus
workbench framework. Most of the mathematical machinery involved in
defining a Psi-calculus instance is quite straightforward to carry over to
Sml code. This is not very surprising as we use term algebras, and Sml’s
algebraic datatypes are designed to easily represent term algebras. The same
is true for most of the associated operations. The most involved part is the
design and the implementation of a constraint solver for both transition and
bisimulation constraints.

3.2.2 Frequency hopping spread spectrum

In this section, we go through an implementation of a Psi-calculus instance
modelling Frequency hopping spread spectrum (FHSS). This instance show-
cases terms with more complex structure than a name, although they are
still syntactic. Additionally, this instance features additional rules to the
transition constraint solver of the Pi-calculus instance to handle these terms.

This time we diverge from following the literate-programming style as
closely as in the Pi-calculus instance example (Section 3.2.1) by omitting non
essential code but preserving the order of code as it would appear in a file,
thus we abstain from numbering code lines. We concentrate on the differ-
ences to the Pi-calculus instance arising from the introduction of non-trivial
terms; we leave out straightforward implementation details and functional-
ity which is transferable without much effort from the Pi-calculus instance;
we also omit the Sml structure declarations as it should be clear now of
which structures various Sml datatypes and functions are part of.

Here we reproduce from [4, section 4.1.1] a short description of what
FHSS is and what FHSS instance is modelling.

Wireless communication over a constant radio frequency has a
number of drawbacks. In a hostile environment a radio can be
tuned in to the correct frequency and monitor the communica-
tion which is also vulnerable to jamming. A solution to these
problems is to jump quickly between different frequencies in a
scheme called frequency hopping spread spectrum (FHSS), first
patented in 1942. To eavesdrop it would then be necessary to
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match both the order of the frequencies and the pace of switch-
ing. Jamming is also made more difficult since the available
power would have to be distributed over many frequencies.

Let us start with a simple example, the following is a valid agent of the
FHSS instance:

nextFreq(b) 〈nextFreq(b)〉.P | nextFreq(nextFreq(a)) (x).Q

which tries to communicate through channels nextFreq(nextFreq(a)) and
nextFreq(b), so in order for the communication to succeed b must be equal
to nextFreq(a). After a communication the agent continues as

P | Q[x := nextFreq(b)]

or with a solution applied,

(P | Q[x := nextFreq(b)])[b := nextFreq(a)]

Let us define the FHSS instance formally (this definition is based on [4,
Section 4.1.1]), we additionally introduce a > condition as in the Pi-calculus
instance.

T
def
= N ∪ {nextFreq(M) : M ∈ T}

C
def
= {M = N : M,N ∈ T} ∪ {>}

A
def
= {1}

1
def
= 1

.↔ def
= =

⊗ def
= λ〈Ψ1,Ψ2〉.1

` def
= {〈1,M = M〉 : M ∈ T} ∪ {〈1,>〉}

where N is countably infinite set of atomic names as usual and > /∈ T.
The difference with Pi-calculus is the T nominal datatype. Other nom-

inal datatypes and operations are unchanged.
Unsurprisingly, the definition of the terms nominal datatype T forms a

carrier set for a term algebra. In a term algebra variables are part of the
carrier set (cf. Appendix B.3).

The signature is
Σ = {nextFreq}

where the function symbol nextFreq arity is 1. Since we can use names as
variables, we invoke the T constructor (Definition 32 in Appendix B) on the
above signature and names to get a set. Given that T is a least fixed-point
of the above definition, and T (Σ,N ) constructs a least set, inductively, they
coincide

T (Σ,N ) = T
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and thus T is a carrier set of the Σ-term algebra T (Σ,N ).
A natural choice to implement this datatype is Sml’s algebraic datatypes.

We have two cases: one for names, and one the function symbol.

datatype term = Name of name
| NextFreq of term

Because no binders are present in T, the computation of the equality on
terms in the entailment is trivial, and we use the built-in Sml equality to
compute the syntactic equality.

fun e n t a i l s ( Unit , Eq (m, n ) ) = (m = n)
| e n t a i l s ( Unit , True ) = t rue

Obviously, any term of T always contains exactly one name. A channel
equivalence condition contains exactly two names, so we just do a structural
recursion to extract those names.

fun supportT (Name n) = [ n ]
| supportT ( NextFreq m) = supportT m

fun supportC (Eq (m, n ) ) = supportT m @ supportT n
| supportC True = [ ]

The swapping of names in terms are easily implemented with the func-
tion swap name. We only need to propagate the swap name function down to
the contained name.

fun swapT pi (Name n) = Name (swap name pi n)
| swapT pi ( NextFreq t ) = NextFreq (swapT pi t )

fun swapC True = True
| swapC pi (Eq ( t1 , t2 ) ) = Eq (swapT pi t1 , swapT pi t2 )

Again, as we do not have binders in terms we do not need to concern
our selves with a possibility of name capture whenever we do a substitution.
The function substT implements a substitution function for terms. Given a
substitution sequence sigma it first recursively gets to the name of a term, and
then tries to find a substitution mapping with that name. If found returns
the term from the mapping, otherwise it returns the name unchanged.

fun substT sigma (Name a ) =
( case List . f i n d ( fn (b , ) ⇒ a = b) sigma of

NONE ⇒ Name a
| SOME ( , t ) ⇒ t )

| substT sigma ( NextFreq n) = NextFreq ( substT sigma n)

As mentioned previously, alpha equivalence is the same as syntactic
equivalence for terms.

fun eqT ( a , b) = a = b

For finding a substitution function for a syntactic equation system (this
is what a transition constraint for FHSS is) we again employ the Martelli-
Montanari (MM) unification algorithm. This time, as we are dealing with
more complex terms, we reintroduce and adapt the rules used to solve the
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Pi-calculus instance transition constraints (see section 3.2.1) to the FHSS
instance case and add two new rules5 for dealing with non-trivial terms.
We refer to [19] for more details on MM, and to [2] for the alternative
presentation of the algorithm.

Here we present the rules for solving transition constraint for FHSS, a
brief description follows afterwards.

(νã){|nextFreq(N)
.↔ nextFreq(M)|} ∧ C � (νã){|N .↔M |} ∧ C

(Decom)
(νã){|nextFreq(N)

.↔ a|} ∧ C � (νã){|a .↔ nextFreq(N)|} ∧ C
(Swap)

(νã){|>|} ∧ C � C
(TrT)

(νã){|a .↔ a|} ∧ C � C
(TrEq)

(νã){|a .↔ N |} ∧ C
[a:=N ]
� C[a := N ]

if a,N#ã ∧ a#N (Elim)

(νã){|a .↔ N |} ∧ C ��
if a 6= N ∧ (a ∈ n(N) ∨ a ∈ ã ∨ n(N) ⊆ ã) (Fail)

The (Decom) rule, as the name suggests, decomposes terms into struc-
turally smaller terms and returns the decomposition for further unifica-
tion, since only the difference between terms is at play, e.g. the constraint
nextFreq(nextFreq(a))

.↔ nextFreq(b) entails the solutions [b := nextFreq(a)].
The (Swap) rule exchanges the positions of terms in channel equivalence
if the right hand side term is a name. With this rules we do not need to
introduce symmetric versions of other rules. The (Elim) rule produces a
substitution mapping (a partial solution). Such a substitution mapping is
valid only when neither side of the equation has restricted names, and the
name on the left side is not in the term of the right hand side (as this would
give rise to an infinite term), e.g. constraints (νã){|a .↔ nextFreq(a)|} are dis-
allowed. The second check is also known by the name “occurs check” [19];
more will be said about it later. The second check has a second purpose,
it also says that this is not a trivial case (handled by (TrEq)). And the
(Fail) rule is triggered if it is not a trivial case and not a (Elim) case. As
before a solution – a substitution sequence – is produced when there are no
more rules to apply. See 3.2.1 for a simpler case.

The following example should make it clearer how the above rules inter-
act. Let us return to the agent we gave at the beginning of this section, but

5In fact, these two new rules are required by the MM algorithm, but are not needed
for Pi-calculus instance case.
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let us swap the constituent agents over the parallel.

nextFreq(nextFreq(a)) (x).Q | nextFreq(b) 〈nextFreq(b)〉.P

This agent gives rise to the transition constraint:

(νε){|nextFreq(nextFreq(a))
.↔ nextFreq(b)|}

The course of unification rule application might look like:

(νε){|nextFreq(nextFreq(a))
.↔ nextFreq(b)|} �

(Decom)

(νε){|nextFreq(a)
.↔ b|} �

(Swap)

(νε){|b .↔ nextFreq(a)|}
[b:=nextFreq(a)]

�
(Elim)

true[b := nextFreq(a)] = true

Since there is only one (Elim) rule above, the computed substitution
sequence is [b := nextFreq(a)], which is identical to the substitution sequence
we deduced at the beginning of the section.

In contrast, suppose we have a constraint:

(νε){|a .↔ nextFreq(a)|}

The (Fail) rule would be triggered as a is in the support of nextFreq(a),
i.e. a ∈ {a}. The motivation of this rule is that this kind of constraint gives
rise to the infinite term:

nextFreq(nextFreq(· · · (nextFreq(· · · )) · · · ))

Obviously, this kind of term cannot be computed and it is not part of
the least fixed-point definition of T.

The rules above produces a substitution sequences which composed gives
a substitution which is a Most General Unifier (cf. Section 3.2.1 and [19]).
The following function implements the above rules. It takes a transition
constraint and an accumulated substitution sequence and returns either a
complete substitution sequence for the constraint or a condition which trig-
gered a failure rule. We also assume that the function composeSubst compos-
ing substitution sequences is defined (Section 3.2.1), and that the function
freshL, computing ã#b̃, is also defined.

fun mgu [ ] sigma = Either . RIGHT sigma
(∗ (TrT) case ∗)

| mgu ( ( avec , Unit , True ) :: c s ) sigma =
mgu cs sigma
(∗ (Decom) case ∗)

| mgu ( ( avec , Unit , (Eq ( NextFreq a , NextFreq b ) ) ) :: c s )
sigma =
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mgu ( ( avec , Unit , (Eq ( a , b ) ) ) :: c s ) sigma
(∗ (Swap) case ∗)

| mgu ( ( avec , Unit , (Eq ( NextFreq a , Name b ) ) ) :: c s )
sigma =

mgu ( ( avec , Unit , (Eq (Name b , NextFreq a ) ) ) :: c s )
sigma

(∗ If the name is on the left hand side of the channel equivalence ∗)
| mgu ( ( avec , Unit , (Eq (Name a , n ) ) ) :: c s ) sigma =

i f Name a = n then mgu cs sigma (∗ (TrN) case ∗)
else

(∗ if a#ã ∧ ã#N ∧ a#N ∗)
i f L . f r e s h a avec andalso

f r e shL avec ( supportT n) andalso
L . f r e s h a ( supportT n)

then
(∗ compose the produced s u b s t i t u t i o n
∗ sequence wi th the accumulated and
∗ app ly i t to the r e s i d u a l ∗)

mgu ( Constra int . subst cs [ ( a , n ) ] )
( composeSubst sigma (a , n ) )

else (∗ o therw i s e (Fail) ∗)
Either . LEFT [ ( Eq (Name a , n ) ) ]

Just like in the Pi-calculus example we implement the function solve by
using the function mgu.

fun s o l v e cs =
case mgu cs [ ] of

Either . RIGHT sigma ⇒ Either . RIGHT [ ( sigma , Unit ) ]
| Either . LEFT phi ⇒ Either . LEFT [ phi ]

At this point, we are only left with implementing the printing and pars-
ing functions, and most of them are directly transferable from Pi-calculus
instance example. We only describe the printing and parsing of terms; other
details are exactly as in the Pi-calculus instance.

Recall that we are using strings to represent names. The matter of print-
ing a term then becomes only to prepend the required amount of ”nextFreq”

strings.

fun printT (Name n) = n
| printT ( NextFreq t ) = ” nextFreq ( ” ˆ printT t ˆ ” ) ”

We use the same structures for parsing as before in the Pi-calculus in-
stance (Section 3.2.1) but this time we make their definitions visible in the
current namespace. In addition, we open the Missing structure which pro-
vides some auxiliary functions. In particular, we use the construct </.../>,
which makes any function, accepting a tuple as an argument, into a left as-
sociative infix operator, e.g. the function fun add (x,y) = x + y could be used
infix in 2 </add/> 5 to add two numbers and produce the result 5.

structure Parser = Parser ( Str ingStream )
structure Lex = PsiParserBase ( Parser )
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The grammar production rule for the terms are bit more interesting this
time, since it is recursive.

〈term〉 ::= ‘nextFreq’ ‘(’ 〈term〉 ‘)’ | 〈identifier〉

This rule is straightforward to express with an parser combinators. But
before we do that, we need to address a technicality arising from the usage
of recursive parser combinators. Sml is a functional programming language
with eager evaluation strategy, i.e. function arguments are evaluated before
they are applied to a function. When using recursion in parser combinators
we may get an undesired effect that the parser combinator is applied too
“early” i.e. too eagerly. In most cases we want the parser combinator to be
applied when the previous combinator in the sequence is completed, and not
when it becomes an argument to a sequencing operator. For tackling this
we use the delayed function which takes a parser combinator function with
type unit → ’a parser and calls it only when the previous parser combinator
completes. An alternative is to use the sequencing operator �= even when
the result of a previous combinator is not needed and there is a need for a
recursive application.

Let us return to the function implementing the above grammar produc-
tion rule. The two alternatives of a grammar production are modelled with
the combinator choice and using the previously described construct to make it
into an infix operator. The first alternative is to match the string ”nextFreq”

and the opening parenthesis as tokens, then try to parse an inner term and
finally to match the matching closing parenthesis and returning the result-
ing term. The second alternative is to parse an identifier and return it as a
name term. The function is quite similar to the production rule, alas a bit
more verbose since it is intertwined with actions.

fun term ( ) =
( stok ” nextFreq ” � s tok ” ( ” �
( de layed term ) �=
( fn t ⇒ s tok ” ) ” � re turn ( NextFreq t ) ) )

</cho i c e/>
( Lex . i d e n t i f i e r �= return o Name)

This ends the FHSS instance example. Adding structured terms does
not complicate the instance significantly since the same known techniques
apply, e.g. the standard mgu computation.

3.2.3 Common ether

In this section, we explore non-trivial assertions. The Psi-calculus instance
that we implement is called common ether [4, Section 2.6]. Although the
assertions that we define are quite simple they induce a surprisingly big state
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space for even the transition constraint solving. We implement a constraint
solver for transition constraints and describe the details as in other examples.

We take the same approach when presenting as in the FHSS instance ex-
ample (Section 3.2.2). We describe only the differences with the Pi-calculus
instance example (Section 3.2.1). Not the whole code is listed (although
it is listed in the same order as it appears in a file), and we skip the Sml
structure definitions.

As usual, we begin with an example of an agent of this instance. In the
following example, we introduce step-by-step the features of this instance.
Let us take the following agent and let us assume a#b:

a (x).P | b y.Q

because of the above assumption, communication would not be possible in
the Pi-calculus instance. But using assertions, we can enable communica-
tion. We model a single global communication channel, without requiring
a global knowledge of available receiving or transmitting channel names.
In the environment we record the available names for accessing the global
communication channel.

(L{a}M | a (x).P ) | (b y.Q | L{b}M)

may silently transition into

(L{a}M | P )[x := y] | (Q | L{b}M)

How can we make these seemingly independent environments coalesce?
This is a feature of the operational semantics: recall that the rules Com
and Par compose juxtaposed assertions of the frame of an agent with the
current assertion (Figure 1). By taking assertion composition as set union
we derive the following

Com

Par
{a, b} B a (x).P

···−→
···

. . .

{b} B L{a}M | a (x).P
···−→
···

. . .
Par

{a, b} B b y.Q
···−→
···

. . .

{a} B b y.Q | L{b}M ···−→
···

. . .

1 B (L{a}M | a (x).P ) | (b y.Q | L{b}M) τ−→
C

. . .

Note that at the top of the derivation tree the whole environment is available
and there it is trivial to make a decision.

One peculiarity arises, that channel equivalence is not reflexive. But
this is allowed by Psi-calculus since channel equivalence must be transitive
and symmetric but not necessarily reflexive (Definition 15 in Section 2.2).
Consider the following agent with no environment.

a (x) | a y
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the above agent does not have a τ transition, while the following has

a (x) | a y | L{a}M

so by adding the environment L{a}M the above agent τ transitions into

0 | 0 | L{a}M

A more interesting example agent

((νa)L{a}M | a (x).P ) | ((νb)L{b}M | b y.Q)

silently transitions into

((νa)L{a}M | P )[x := y] | ((νb)L{b}M |Q)

Let us formalise the above discussion into the Psi-calculus instance def-
inition.

T
def
= N

C
def
= {a = b : a, b ∈ T}

A
def
= Pfin(N )

.↔ def
= =

⊗ def
= ∪

1
def
= ∅

` def
= {〈Ψ, a .↔ b〉 : a, b ∈ Ψ ∧ Ψ ∈ A}

While the agent’s observed behaviour is quite complex, the instance
definition is compact and succinct. To represent the communication channel,
a set of names is sufficient. That is the nominal datatype for assertions is
all possible subsets of names. Composition of environments is set union.

Probably the simplest way to represent a set in Sml is with the list data
structure. The assertion is a set of names so in Sml we choose to represent
it as a name list. We allow duplicates in a list, this does not introduce
problems but we need to be careful and have this in mind.

type a s s e r t i o n = name l i s t

Implementing set operations is straightforward, and the unit constant
and entail operations are almost a direct translation of the above definition.
We use the auxiliary function Lst.member to test membership in a list.

val uni t = [ ]
fun e n t a i l s ( ps i , Eq ( a , b ) ) =

Lst . member a p s i andalso Lst . member b p s i

The support of an assertion is exactly the assertion as it is only a list of
names.
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fun supportA p s i = p s i

The functor NominalNameList derives a nominal datatype structure of an
atom list. An atom list is the data of the nominal datatype and the structure
L contains all the nominal operations defined on it. An assertion is such a
nominal datatype.

structure L = NominalNameList ( struct
type atom = name
val new = StringName . g e n e r a t e D i s t i n c t end)

The above structure L provides the needed implementation of the swap-
ping function for an assertion.

fun swapA pi p s i = L . swap pi p s i

The function substA implements a substitution function by distributing
a function over a list which for every element tries to find a substitution
mapping and replaces the name if found and leaves it unchanged if not.
Compare this with the function substT in the Pi-calculus instance example:
the anonymous function is the same as the function substT. In fact, the
function substA is a unique extension of substT to an endomorphism (see [2]
or Appendix B.3).

fun substA sigma p s i =
map ( fn n ⇒

case List . f i n d ( fn ( a , b ) ⇒ a = n) sigma of
SOME ( , x ) ⇒ x

| NONE ⇒ n) p s i

Because we use lists to represent sets and we allow duplicates, we cannot
use built-in Sml equality to decide assertion equivalence. The order and the
frequency of elements in a list has no significance. We check if every element
in an assertion appears at least once in the other assertion, and vice versa.
If it is the case then both assertions are deemed to be equivalent.

fun eqA ( ps i , ps i ’ ) =
Lst . a l l ( fn a ⇒ Lst . member a ps i ’ ) p s i andalso
Lst . a l l ( fn a ⇒ Lst . member a p s i ) ps i ’

Now we turn to the description and implementation of a transition con-
straint solver. We will express the constraint solver as a transition system.
This transition systems is non-deterministic and forms a tree of solutions.
The function implementing the transition system follows the branches of a
solution tree and returns the leafs as a solution to the constraint.

In Figure 4 the transition system � for solving a transition constraint
is given. The state (configuration) of the system is of the form

〈(σ,Ψ′), C〉

where the tuple (σ,Ψ′) represents a partial solution to some constraint and
the constraint C is a constraint which still needs to be satisfied. A transition
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〈(σ,Ψ′), (νã){|Ψ ` a .↔ b|} ∧ C〉� 〈(σ[a′ := b′],Ψ′), C〉
if a#ã ∧ a′#Ψ′′ ∧ b#ã ∧ b′ ∈ Ψ′′ (Ce1)

〈(σ,Ψ′), (νã){|Ψ ` a .↔ b|} ∧ C〉� 〈(σ,Ψ′⊗{a′}), C〉
if a#ã ∧ a′#Ψ′′ ∧ b′ ∈ Ψ′′ (Ce2)

〈(σ,Ψ′), (νã){|Ψ ` a .↔ b|} ∧ C〉� 〈(σ[b′ := a′],Ψ′), C〉
if a#ã ∧ a′ ∈ Ψ′′ ∧ b#ã ∧ b′#Ψ′′ (Ce3)

〈(σ,Ψ′), (νã){|Ψ ` a .↔ b|} ∧ C〉� 〈(σ,Ψ′⊗{b′}), C〉
if a′ ∈ Ψ′′ ∧ b#ã ∧ b′#Ψ′′ (Ce4)

〈(σ,Ψ′), (νã){|Ψ ` a .↔ b|} ∧ C〉� 〈(σ,Ψ′⊗{a′, b′}), C〉
if a#ã ∧ a′#Ψ′′ ∧ b#ã ∧ b′#Ψ′′ (Ce5)

〈(σ,Ψ′), (νã){|Ψ ` a .↔ b|} ∧ C〉� 〈(σ[a′ := b′],Ψ′⊗{b′}), C〉
if a#ã ∧ a′#Ψ′′ ∧ b#ã ∧ b′#Ψ′′ (Ce6)

〈(σ,Ψ′), (νã){|Ψ ` a .↔ b|} ∧ C〉� 〈(σ[b′ := a′],Ψ′⊗{a′}), C〉
if a#ã ∧ a′#Ψ′′ ∧ b#ã ∧ b′#Ψ′′ (Ce7)

〈(σ,Ψ′), (νã){|Ψ ` a .↔ b|} ∧ C〉� 〈(σ,Ψ′), C〉
if Ψ′′ ` a′ = b′ (Ce8)

〈(σ,Ψ′), (νã){|Ψ ` a .↔ b|} ∧ C〉��
if Ψ′′ 0 a′ = b′ ∧ (a ∈ ã ∧ b ∈ b̃) (Ce9)

Figure 4: Common ether constraint refinement transition rules. The last
rule is not strictly necessary, but it is included for completeness. We also
define for each rule Ψ′′ = Ψσ⊗Ψ′ and a′ = aσ and b′ = bσ. Note a′, b′,Ψ′′

may be variants of an alpha conversion in order to respect ã#σ,Ψ′.

of � is a refinement of a partial solution to extend the partial solution to
include the next conjunct in the configuration

〈(σ,Ψ′), C ∧ C ′〉� 〈(σ′,Ψ′′), C ′〉

that is the tuple (σ′,Ψ′′) ∈ sol(C). Recall that we treat transition con-
straints as lists

(νã1){|Ψ1 ` ϕ1|} ∧ ((νã2){|Ψ2 ` ϕ2|} ∧ · · · (· · · ∧ true) · · · )

and there is no generality lost since ∧ is associative.
In order to find a solution (σ,Ψ′) to a constraint C we invoke

〈(Id, ∅), C〉�∗ 〈(σ,Ψ′), true〉

where�∗ is a transitive reflexive closure of�, and Id is the identity (empty)
substitution. We may also extract all the solutions generated by the rules
in figure 4 by taking all possible paths.
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Now that the mechanics of the transition system is established, we turn
to the motivation of the rules. We start with (Ce5) - (Ce7). Suppose we
have the constraint

C = (νε){|∅ ` a .↔ b|}

where neither a, nor b are bound and a#b. Note that sol(C) = sol(C∧true).
What solutions to C we can deduce? We can always make names channel
equivalent by just putting them in the environment, thus one possible so-
lution is (Id, {a, b}) (rule (Ce5)), i.e., {a, b} ` a .↔ b holds by definition.
Another possibility is putting only one name into an environment and re-
placing the other with that name, this gives us this solution ([a := b], {b}),
i.e., {b} ` b .↔ b (rule (Ce6)). And the last possibility is a symmetric ver-
sion of the previous solution (rule (Ce7)). There are more solutions to the
C constraint, but we do not want to include “junk”.

This generalises to partial solutions. For the above example the tree of
solutions look like

〈(Id, ∅), C〉
��

��

ww

wwnnnnnnnnnnnn ((

((QQQQQQQQQQQQ

〈(Id, {a, b}), true〉 〈([a := b], {b}), true〉 〈([b := a], {a}), true〉

Now suppose we have the constraint

(νε){|{b} ` a .↔ b|}

there are two possible solutions either we substitute a with b (rule (Ce1))
or add the name a to the environment (rule (Ce2)). If we were to restrict
the name b as

(νb){|{b} ` a .↔ b|}

then we would be facing one possibility – adding a to the environment (rule
(Ce2)). The rules (Ce2) and (Ce4) are symmetrical versions of the rules
(Ce1) and (Ce3), respectively.

The rule (Ce8) is a trivial case when the constraint is entailed without
need for further refinement. The rule (Ce9) signifies failure where there are
no solutions for a constraint. This is the case when no other rule applies.

The function tr implements the rules given in figure 4. The function is
presented with a partial solution and a constraint, and tries to determine
which of the rules are applicable by testing side conditions of rules (the
first element of a tuple of the list rules). Then the list of applicable rules is
constructed by collecting only the functions with a true side condition and
those functions are evaluated, i.e. a partial solution is computed. If there
are no such functions tr signals a failure with the function fail . If there
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are such functions then a node is constructed with the function node, and
all the branches are recursively computed. The functions node and fail are
discussed later.

fun t r ( ( sigma , ps i ’ ) , [ ] ) = node ( ( sigma , ps i ’ ) , [ ] )
| t r ( ( sigma , ps i ’ ) , ( ( c as ( avec , ps i , (Eq ( a , b ) ) ) ) :: c s ) )
= Constra int . subst [ c ] sigma |>
( fn [ ( , ps i ’ ’ , (Eq ( a ’ , b ’ ) ) ) ] ⇒

let
val ps i ’ ’ = compose ( ps i ’ ’ , ps i ’ )
(∗ menmonic a f = a i s f r e s h in avec ∗)
val a f = L . f r e s h a avec
val bf = L . f r e s h b avec
val af ’ = L . f r e s h a ’ ps i ’ ’
val bf ’ = L . f r e s h b ’ ps i ’ ’
(∗ mnemonic am = a i s member o f avec ∗)
val am = not a f
val bm = not bf
val am’ = not af ’
val bm’ = not bf ’
val r u l e s = [
(∗ CE1 ∗)
( ( a f andalso af ’ andalso bf andalso bm’ ) ,

( fn ( ) ⇒ ( composeSubst sigma (a ’ , b ’ ) , ps i ’ ) ) ) ,

(∗ CE2 ∗)
( ( a f andalso af ’ andalso bm’ ) ,

( fn ( ) ⇒ ( sigma , compose ( ps i ’ , [ a ’ ] ) ) ) ) ,

(∗ CE3 ∗)
( ( a f andalso am’ andalso bf andalso bf ’ ) ,

( fn ( ) ⇒ ( composeSubst sigma (b ’ , a ’ ) , ps i ’ ) ) ) ,

(∗ CE4 ∗)
( (am’ andalso bf andalso bf ’ ) ,

( fn ( ) ⇒ ( sigma , compose ( ps i ’ , [ b ’ ] ) ) ) ) ,

(∗ CE5 ∗)
( ( a f andalso af ’ andalso bf andalso bf ’ ) ,

( fn ( ) ⇒ ( sigma , compose ( ps i ’ , [ a ’ , b ’ ] ) ) ) ) ,

(∗ CE6 ∗)
( ( a f andalso af ’ andalso bf andalso bf ’ ) ,

( fn ( ) ⇒ ( composeSubst sigma (a ’ , b ’ ) ,
compose ( ps i ’ , [ b ’ ] ) ) ) ) ,

(∗ CE7 ∗)
( ( a f andalso af ’ andalso bf andalso bf ’ ) ,

( fn ( ) ⇒ ( composeSubst sigma (b ’ , a ’ ) ,
compose ( ps i ’ , [ a ’ ] ) ) ) ) ,

(∗ CE8 ∗)
( ( e n t a i l s ( ps i ’ ’ , Eq ( a ’ , b ’ ) ) ) ,

( fn ( ) ⇒ ( sigma , ps i ’ ) ) )
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]

val v a l i d = map ( fn ( , c ) ⇒ c ( ) )
(List . f i l t e r ( fn ( cond , s o l ) ⇒ cond ) r u l e s )

in
case v a l i d of

[ ] ⇒ f a i l ( )
| ⇒ node ( ( sigma , ps i ’ ) ,

map ( fn s o l ⇒ t r ( so l , c s ) ) v a l i d )
end

| ⇒ Err . undef ined ( ) )

These two functions imitate the construction of the solution tree and
can be thought of as typical Sml data constructors. But we do not need
the internal nodes of the tree, hence these functions discard the intermediate
results. The function fail just returns an empty list. The function node takes
two arguments (as a tuple) where the first is the node – a partial solution
(σ,Ψ) – and the second is a list of nodes branches. Since we do not keep the
intermediary structure, when a we encounter a leaf node (a node without
branches) we return a singleton list with that node, otherwise we drop the
node and return the union of branches.

and f a i l ( ) = [ ]
and node (n , [ ] ) = [ n ]
| node (n , l ) = List . concat l

The only thing is left to do is to plug the function tr into the function
solve.

fun s o l v e cs =
let

val s o l s = t r ( ( [ ] , [ ] ) , c s )
in

case s o l s of
[ ] ⇒ Either . LEFT [ ]

| ⇒ Either . RIGHT s o l s
end

This ends the common ether example. The common ether Psi-calculus
instance introduces the non-trivial assertions, due to this extra effort is re-
quired for designing a transition constraint solver. It is a mix of finding
a mgu and careful case analysis. This demonstrates the Psi-calculus ver-
satility, showing that we can implement very interesting logics completely
outside of the Psi-calculi meta-theory.
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4 Conclusion

In this thesis, we presented an automated tool for the Psi-calculi framework.
We defined a terminating operational semantics which we implemented in
the tool and proved equivalent to the original symbolic operational semantics
up to bisimulation. We also extended the Psi-calculi framework with process
constants.

This tool is the second automated tool developed for the Psi-calculi
framework, the first one [31] is for verifying Psi-calculus instances in a proof
assistant.

4.1 Future work

We chose simplicity and clarity over performance. In many instances, the
performance could be improved by simply using better optimised data struc-
tures. The bisimulation checking algorithm suffers from a diamond graph
problem that is the algorithm may revisit the same agent exponentially many
times, we could solve this with some form of caching of agents.

Currently, in order to define a new instance or to modify an instance
we need to implement it in Sml together with constraint solvers, we intend
to provide a generic framework for known instance classes, for example Psi-
calculi parameters that form free algebras.

We intend to integrate the tool with the Nominal Isabelle [28] theorem
prover assistant and the tool [31]. We intend to use the bisimulation checker
for generating proofs for the assistant.

The current implementation of the bisimulation algorithm has some
drawbacks. The constraints generated by the algorithm include freshness
constraint which complicates the constraint solver. We would like to inves-
tigate an algorithm which does not require freshness constraints. Another
drawback is that the constraints generated by the algorithm entail solutions
which contain too little useful information about the reason two agents are
bisimilar. We also would like to add an implementation of the strong bisim-
ulation algorithm to the tool.

4.2 Related work

There have been a number of various automated tools developed for process
calculi. The most relevant to our work are Mobility Workbench (MWB) [29,
30], SBC [7], and Another Bisimulation Checker (ABC) [8]. MWB is a tool
for the polyadic pi-calculus [21]. Its bisimulation checker is based on a
different approach than symbolic semantics called open bisimulation. ABC
is also a tool for checking open bisimulation of the pi-calculus. SBC is
bisimilarity checker for the spi-calculus, its bisimilarity checker is of interest
as it is based on the symbolic spi-calculus semantics.
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A Pi-calculus bisimulation constraint solver

In this section, we continue the Pi-calculus instance example implementa-
tion (Section 3.2.1). We implement a bisimulation constraint solver (Ap-
pendix C.1) for the instance. As in other examples (Section 3.2), we use a
literal programming style for describing the constraint solver and we omit
the line numbering.

The constraints used by the symbolic bisimulation algorithm is more
complex than that of symbolic transition constraints. Even when a Psi-
calculus instance does not provide any additional logic, bisimulation con-
straints entail a first-order logic without quantifiers and with equality. Know-
ing this, to find a solution to a bisimulation constraint is the same problem
as to find a model satisfying a preposition logic formula (SAT). We use one of
the classical algorithms for SAT in propositional logic, DPLL [11, 10]. The
DPLL algorithm is extendible with additional theories [22]. The theories en-
able the algorithm to be used to solve formulae of superset of propositional
logic. Our implementation of the algorithm is not intended to be efficient,
the main purpose of it is to provide a sample implementation of a bisimula-
tion constraint solver. Furthermore, the freshness constraint (Definition 38
in Appendix C) solution depends on a complete model of the constraint
which it is part of. We introduce an additional step to handle freshness
constraints. This step backtracks if it fails. This kind of additional steps
might be complicated to use in an off-the-shelf SAT solver.

While it is feasible to translate a first-order logic without quantifiers
and with an equality (ground logic) into a propositional logic [13] and thus
solve it with a SAT algorithm, it is not clear that such translation exists for
freshness constraints.

A constraint that is produced by the bisimulation algorithm contains
trivially solvable sub-constraints and a constraint accepted by the DPLL
algorithm must be in CNF form. Trivial constraints can be solved at a
separate stage with a simpler constraint solver. We use a term rewriter [2]
to convert constraints into CNF constraints and to solve trivial constraints.
A term rewriter is provided by the tool’s framework, we demonstrate how
to implement term rewriting rules.

Recall that the structure PiSymbolicInstance (Section 3.2.1) contains the
Sml code presented here.

A.1 Constraints

The table below lists the bisimulation algorithm constraint forms (see Ap-
pendix C.1 for the bisimulation algorithm) and the Sml representation.

64



Notation Sml code
true True

false False

(νã){|1 ` a .↔ b|} Atomic (avec, unit, Eq(a,b))

{|a = b|} TermEq (a,b)

{|a#P |} FreshP (a,p)

C ∧ C ′ Conj (c,c ’)

C ∨ C ′ Disj (c,c ’)

C ⇒ C ′ Imp (c,c’)

First we define negation since we need it translation into CNF.

¬C def
= C ⇒ false

We write (νã){|a .↔ b|} for (νã){|1 ` a .↔ b|}, and {|a = b|} denotes a term
equality constraint.

Similarly to the transition constraints, the bisimulation constraint is
a nominal datatype and has a substitution function defined on it, we get
the default implementation of bisimulation constraint by applying the func-
tor BisimConstraint.

structure Bis imConstra int = Bis imConstra int ( PiInstanceNom )

The functor BisimConstraint defines the constraints required by the
bisimulation constraint generation algorithm.

A.2 Term rewriting and all that

A term rewriter is a syntactic transformation function which maps terms to
terms by applying a set of term rewriting (transformation) rules, usually a
set of identities (one direction) [2]. In our case, the terms are constraints. A
term rewriter is provided by the BisimConstraint structure. For a full account
of term rewriting systems see [19, 2].

As mentioned in the introduction, we use a term rewriter for simplifying
constraints (solving trivial sub-constraints) produced by the bisimulation
algorithm, we also use a term rewriter for translating a constraint to a
Conjunctive Normal Form (CNF).

The function rewrite (from the structure BisimConstraint) takes a list of
term rewriting rules and a constraint. A term rewriting rule is a function
which given a constraint and returns either a constraint if the rewrite rules
is applicable or, otherwise, a failure. For instance a term rewriting rule

C ∧ true→ C

can be implemented as a Sml function
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val conjRightUnit = fn ( Conj ( c , True ) ) ⇒ SOME c
| ⇒ NONE

For instance, in order to remove all the right units in a constraint c with
the above term rewriting rule, we do rewrite [conjRightUnit] c.

Now we are ready to express the term rewriting rules for solving the
trivial constraints, they are as follows.

{|1 ≤ 1|} → true (νã){|>|} → true (νã){|a .↔ a|} → true

{|a = a|} → true (νã){|a .↔ b|} → false if a#b ∧ (a ∈ ã ∨ b ∈ b̃)

Compared with rules for solving trivial transition constraints in Section 3.2.1,
we add two more rules to solve additional cases. The static implication case
is always true as the Pi-calculus instance does not feature assertions; term
equality is the same as channel equivalence without binders.

Additionally, we can trivially solve freshness constraints if there are no
sub-constraints in a constraint C with the channel equivalence (or the term
equivalence) which contain a name used in a freshness constraint. By pa-
rameterising the term rewriter on a constraint C we get

{|a#P |} →C true if a#C

Since in Pi-calculus instance we can regard channel equivalence and term
equality as the same constraint, we convert channel equivalence to term
equality and we name this transformation a normalisation.

(νã){|a .↔ b|} → {|a = b|} if a, b#ã

After solving the trivial constraints, we get a number of redundant con-
straints which we can prune by simplification. For example, the simplifica-
tion rules simplificationRules provided by the functor BisimConstraint are the
following (the symmetric versions are elided).

false ∧C → false true ∧C → C C ∧C → C C ∧ (C ∨C ′)→ C

false∨C → C true∨C → true C ∨C → C false⇒ C → true

C ⇒ true→ true · · · ∧ C ∧ · · · ∧ ¬C ∧ · · · → false

· · · ∨ C ∨ · · · ∨ ¬C ∨ · · · → true ¬¬C → C

Note the above rewriting rules are identities in first-order logic. It is not
hard to show that these hold for the bisimulation constraints.

First, we make all the definition locally visible.

local open Bis imConstra int in

The following code implements the trivial constraint solving and simpli-
fication rules.
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val t r i v i a l C o n d i t i o n R u l e s =
( fn ( StImp ( ps i , ps i ’ ) ) ⇒ SOME True
| ⇒ NONE ) ::

( fn ( Atomic ( avec , unit , T) ) ⇒ SOME True
| ⇒ NONE ) ::

( fn ( Atomic ( avec , unit , Eq ( a , b ) ) ) ⇒
i f a = b then SOME True else NONE

| ⇒ NONE ) ::

( fn (TermEq ( a , b ) ) ⇒
i f a = b then SOME True else NONE

| ⇒ NONE ) ::

( fn ( Atomic ( avec , unit , Eq ( a , b ) ) ) ⇒
i f a 6= b andalso

( Lst . member a avec orelse Lst . member b avec )
then SOME False else NONE

| ⇒ NONE ) ::

( fn ( Atomic ( [ ] , unit , Eq(a , b ) ) ) ⇒ SOME (TermEq ( a , b ) )
| ⇒ NONE ) ::

( fn ( Atomic ( ( avec as (n :: ns ) ) , unit , Eq ( a , b ) ) ) ⇒
i f L . f r e s h a avec andalso L . f r e s h b avec

then SOME ( Atomic ( [ ] , unit , Eq(a , b ) ) )
else NONE

| ⇒ NONE ) ::

[ ]

The trivial freshness constraint rule.

fun f r e shne s sRu l e c =
( fn ( FreshP ( a , p ) ) ⇒

i f Bis imConstra int . f r e s h a c then SOME True
else NONE

| ⇒ NONE ) :: [ ]

As we already mentioned, we employ the term rewriter for transforming
a constraint into a CNF form. Let us first recall that CNF is a formula of
the form

(`1,1 ∨ · · · ∨ `1,m1) ∧ · · · ∧ (`n,1 ∨ · · · ∨ `n,mn)

i.e. a conjunction of disjunctions of literals. A literal can be of two kinds a
positive and a negative of some atomic formula A:

` ::= A | ¬A

In the Pi-calculus instance case, an atomic formula is one of:

A ::= {|a = b|} | {|a#P |}

In Sml code.
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fun i s L i t e r a l ( FreshP ) = t rue
| i s L i t e r a l ( Imp ( FreshP , Fa l se ) ) = t rue
| i s L i t e r a l (TermEq ) = t rue
| i s L i t e r a l ( Imp (TermEq , Fa l se ) ) = t rue
| i s L i t e r a l = f a l s e

For obtaining a CNF formula from an arbitrary constraint, the following
procedure is used:

• Remove implications.

• Move all the negations inwards.

• Distribute disjunctions over conjunctions.

The first step is this rewrite rule

C ⇒ C ′ → ¬C ∨ C ′

The second step is de Morgan’s laws

¬(C ∧ C ′)→ ¬C ∨ ¬C ′ ¬(C ∨ C ′)→ ¬C ∧ ¬C ′

And the last step

C ∨ (C ′ ∧ C ′′)→ (C ∨ C ′) ∧ (C ∨ C ′′)

The above procedure is implemented by using these term rewriting rules
in the function cnf in the BisimConstraint structure.

A.3 DPLL algorithm

After the simplification, normalisation, and transformation to a CNF form
we use the Davis-Putnam-Logemann-Loveland[11, 10] algorithm to find a
model, i.e. a solution to the constraint. The simplest form of DPLL algo-
rithm is used to find a model (a valuation to variables) to a propositional
logic formula but the bisimulation constraint give more expressiveness than
propositional logic. The DPLL algorithm can be extended to supersets of
propositional logic by treating the atomic formulas of background theory T
as propositional variables, and by defining custom decision procedures for
the theory T in the model. This method generally known as SAT Modulo
Theory (SMT), see [22] for a description and survey of SMT approaches.
We also use [22] as a guideline and we present here their formulation of the
algorithm as a transition system.

The DPLL algorithm accepts a formula in CNF form. When describing
the algorithm we use the following notation for CNF formula.

`1,1 ∨ · · · ∨ `1,m1 , . . . , `n,1 ∨ · · · ∨ `n,mn
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i.e., we separate the conjuncts with commas.
A central concept in DPLL is a (partial) model. A model is a consis-

tent set of literals `1, . . . , `n. The set can be thought as a conjunction so
consistency means an absence of a contradiction. The decision procedure
of the theory T is parameterised with a relation M |= C. This relation,
intuitively, means if the constraint C can be solved trivially by considering
literals in the modelM as true. In our presentation, by replacing literals of
a modelM in the constraint C with constraints true and by expecting the
outcome of the simplification and the trivial constraint solving to reduce the
constraint C to the constraint true. If a model is inconsistent, we say it is
in a fail state ⊥.

The algorithm is formulated with a transition systems where transitions
take the form:

M 
 C ↪→M′ 
 C

the modelM is a partial model, and the transition goes into a partial model
M′ with more literals accounted for. Note the constraint is not changed
although in the implementation we simplify the constraint according the
partial model.

We implement the simplest form of DPLL algorithm, given by the state
transition rules below, taken from [22] with modifications discussed later.

M 
 C,c ∨ ` ↪→ M` 
 C,c ∨ `
if M |= ¬c ∧ l 6∈ M (UnitProp)

M 
 C ↪→ M` 
 C
if (∃c ∈ C)` ∈ c ∧ (∀c ∈ C)¬` 6∈ c ∧ ` 6∈ M (PureLit)

M 
 C ↪→ M`d 
 C
if ` 6∈ M ∧ (∃c ∈ C)` ∈ c ∨ ¬` ∈ c (Decide)

M 
 C,c ↪→ �
if M = ⊥ ∨ (M |= ¬c ∧ @`d ∈M) (FailC)

M`dN 
 C,c ↪→ M¬` 
 C,c
if (M`dN = ⊥ ∨M`dN |= ¬c) ∧ @`′d ∈ N (Backtrack)

Recall the constraint C is in a CNF form. We mark a literal ` as `d to
denote a decision point where we might backtrack if a consistent model is
not found. Note the literal is positive. If there is no more rules to apply
then M is a complete model.

We briefly summarise the DPLL rules: (UnitProp) applies whenever
there is a clause in a constraint such that by taking out the literal ` model
entails the rest of the clause as false, therefore it forces the literal ` to be
added as a positive in a model as it makes the clause true; (PureLit)
applies when there is a clause with the literal ` which no other clause in the
constraint C has a negative of that literal so this forces literal into a model as
a positive, otherwise the decision rule applies (Decide), which adds a literal
as a positive and marks it as a decision, such that the (Backtrack) rule
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can return to that point where the decision was made and reverse it (negate
the literal and unmark it as a decision) if the decision was wrong. Lastly, fail
(FailC) if a model entails negative clause and there were no decisions made.
If none of the above rules apply then we are left with a complete model which
satisfies the constraint. We extend the original DPLL algorithm with the
disjuncts in rules (FailC) and (Backtrack) where it is checked if a model
itself is in a consistent state (cf. [22]).

Next we describe the model and its construction from literals.

A.4 Model

Here we consider the T part in the SMT problem. From the previous section
recall the operation in the transition system

M`

we call it concatenation. So, the objective of this section is to define this
operation for the Pi-calculus instance bisimulation constraints, and by doing
so establish the background theory.

Let us reiterate the constraints that form the model.

A ::= {|a = b|} | {|a#P |}

The equality is transitive coupled with a fact that literals may be negated,
the näıve approach does not work as it produces an inconsistent model. For
instance, if we have a model

M = {|a = b|}, {|b = c|}

and we have a literal to concatanate with

` = ¬{|a = c|}

by just adding the literal ` to the model M gives the following model M, `

M, ` = {|a = b|}, {|b = c|},¬{|a = c|}

but this model is inconsistent because by transitivity the constraint {|a = c|}
is in the model M.

The solution we use is to compute an equivalence closure (a transitive,
reflexive, symmetric closure) every time a literal is added to a model, we
denote it by

M=

Continuing with the example the model is (we omit the reflexive and sym-
metric literal)

M= = {|a = b|}, {|b = c|}, {|a = c|}
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now it is trivial to detect the inconsistency. In fact, in our implementation
we do not even need to check for such inconsistency as the model would entail
the literal ¬{|a = c|} in a constraint considered as the constraint false and
it would be reduced by the simplifier. As we later see, the computation of
equivalence closure will benefit us when extracting a solution from a model.

Formally, an equivalence closure on a binary relation R can be given as
the least relation R=:

R= = {(b, a) : (a, b) ∈ R=}
∪ {(a, c) : ∃b.(a, b) ∈ R= ∧ (b, c) ∈ R=}
∪ R

The equivalence closure on a model M is

M= = {{|a = b|} : {|a = b|} ∈ M}= ∪ M

i.e. treating literals of the form {|a = b|} in M as binary tuple and by ex-
tracting these tuples, then computing an equivalence closure on them, and
finally adding them back to the model.

The implementation of computing equivalence closure on a model is also
split into two operations.

The least fixed-point definition of equivalence closure gives straightfor-
ward computation algorithm. The function eqClosure’ computes R= given
above when it is provided with a list of tuples.

fun eqClosure ’ i d s =
let

(∗ a t u p l e membership t e s t i n g in a l i s t ∗)
fun eqInClosure ( a , b) i d s =

Lst . e x i s t s ( fn id ⇒ id = ( a , b ) ) i d s

(∗ symmetry ∗)
val r = map ( fn ( a , b ) ⇒ (b , a ) ) i d s
val r = List . f i l t e r ( fn ( a , b ) ⇒

not ( eqInClosure ( a , b ) i d s ) ) r
val r = i d s @ r

(∗ t r a n s i t i v i t y ∗)
val t = map ( fn ( a , b ) ⇒

map ( fn ( , c ) ⇒ ( a , c ) )
(List . f i l t e r ( fn (b ’ , c ) ⇒ b = b ’ ) r ) ) r

val t = List . concat t
val t = List . f i l t e r

( fn ( a , b ) ⇒ not ( eqInClosure ( a , b ) r ) ) t
in

i f n u l l t
then r
else eqClosure ’ ( r @ t )

end
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The fixed-point computation for an equivalence closure presented above
is not an efficient way for computing an equivalence closure but it is a
straightforward way and it is easy to implement. For a more efficient solution
see Galler-Fischer [12] data structure for computing equivalence classes.

The function eqClosure is the final step for computing and equivalnce
closure of the model M.

fun eqClosure m =
let

val ( eq ,m’ ) = Either . p a r t i t i o n
(map ( fn c ⇒

case c of
TermEq ⇒ Either . LEFT c

| ⇒ Either . RIGHT c ) m)
val eqT = map ( fn (TermEq eq ) ⇒ eq

| ⇒ Err . undef ined ( ) ) eq
val eqCl = eqClosure ’ eqT
val eq ’ = map ( fn eq ⇒ TermEq eq ) eqCl

in
eq @ m’

end

A syntactic equality on literals is not sufficient as the term equality and
negation of the term equality is commutative, what is more, a freshness
constraint may contain alpha equivalent agents. This motivates us to be
explicit in the following definition of constraint equality

{|a = b|} = {|a′ = b′|} ⇔ a = a′ ∧ b = b′ ∨ a = b′ ∧ b = a′

¬{|a = b|} = ¬{|a′ = b′|} ⇔ a = a′ ∧ b = b′ ∨ a = b′ ∧ b = a′

{|a#P |} = {|a′#P ′|} ⇔ a = a′ ∧ P =α P
′

¬{|a#P |} = ¬{|a′#P ′|} ⇔ a = a′ ∧ P =α P
′

The function lEq implements above equivalence. It expects two literals
and returns true if they are equivalent and false if they are not.

fun lEq l l ’ =
case ( l , l ’ ) of

(TermEq ( a , b ) , TermEq ( a ’ , b ’ ) ) ⇒
( a = a ’ andalso b = b ’ ) orelse
( a = b ’ andalso b = a ’ )

| ( Imp(TermEq ( a ,b ) , Fa l se ) ,
Imp(TermEq ( a ’ , b ’ ) , Fa l se ) ) ⇒

( a = a ’ andalso b = b ’ ) orelse
( a = b ’ andalso b = a ’ )

| ( FreshP ( a , p ) , FreshP (b , q ) ) ⇒ a = b andalso
Psi . eqD(p , q )

| ( Imp( FreshP (a , p ) , Fa l se ) ,
Imp( FreshP (b , q ) , Fa l se ) ) ⇒ a = b andalso

Psi . eqD(p , q )
| ⇒ f a l s e

Computing of ` ∈M, now becomes straightforward.
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fun inM l m = Lst . e x i s t s ( fn l ’ ⇒ lEq l l ’ ) m

We also require a function which would compute a negation of a literal,
i.e. ¬(¬`) = ` and ¬(`) = ¬`.

fun negL (Imp ( c , Fa l se ) ) = c
| negL c = (Imp ( c , Fa l se ) )

Now we have everything needed to define the concatenation operationM`
on the modelM and the literal `. A concatenation may result in a new model
with the literal taken into the account of a model or the inconsistent state ⊥.
The concatenation operation is the theory part of SMT, however, there is a
need to do theory judgment at the point when a full model is constructed
by the DPLL algorithm, see validateAndReturn and dpllSAT functions.

We have four cases of literals to consider. In all cases, we do not need to
check for an inconsistency arising from a model already containing a negated
literal to that being added. As we mentioned before, we are guaranteed that
such negated literal would not be considered for an addition to a model.

When adding a term equality literal to a model, we check if the model
would be consistent after the addition. A freshness constraint disallows a
name to be used in the domain of a substitution, and a model serves as a
means to extract a substitution sequence, consequentially an inconsistency
may arise if both of the equality sides are disallowed in a substitution se-
quence. Note this needs to be checked for the model with an added literal
and an equivalence closure, for instance if we have {|a = b|}, {|a#P |}, {|c#P |}
model and a candidate literal is {|b = c|} and if we would not require an
equivalence closure then such candidate would be added to a model but
there is no substitution sequence which would satisfy such model, we may
compute these substitution sequences from above model [a := c, b := c],
[b := a], [b := c], [b := a, c := b] but neither of them satisfy such model. The
second clause requires that there must not be an induced equivalence and
disequality. A resulting model is an equivalence closure.

M{|a = b|} =


⊥ if ∃P, P ′, c, d.{|c#P |}, {|d#P ′|}, {|c = d|} ∈ M′
⊥ if ∃c, d.¬{|c = d|}, {|c = d|} ∈ M′
M′ otherwise

where M′ = (M, {|a = b|})=.
The disequality case does not pose any complications as the negations

are reduced before applying this operation (more on this later).

M¬{|a = b|} =M,¬{|a = b|}

In case when adding a freshness constraint, the only inconsistency that
may arise is disallowing both of the sides of some equality in a model for a
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substitution.

M{|a#P |} =

{
⊥ if ∃b, P ′.{|b#P ′|}, {|a = b|} ∈ M
M, {|a#P |} otherwise

The last case is simply adding the literal into the model.

M¬{|a#P |} =M,¬{|a#P |}

Note the concatenation operation does not guaranty a model is free from
inconsistencies. The clauses that check for inconsistencies arising from fresh-
ness constraints are there for an early detection, a recheck is needed for
freshness constraints in a model as the last step since they depend on the
substitution sequence constructed, i.e., a complete model.

The function extendM computes the concatenation operation given a
model m and a literal l, returns a new model SOME on success, otherwise
NONE if the model would be inconsistent after addition of the literal.

fun extendM m ( l as TermEq ( a , b ) ) =
let

val meq = eqClosure ( l :: m)
val f r = List . concat

(map ( fn ( FreshP ( a , ) ) ⇒ [ a ] | ⇒ [ ] ) meq)
in

i f Lst . e x i s t s
( fn (TermEq ( c , d ) ) ⇒ Lst . member c f r

andalso Lst . member d f r
| ⇒ f a l s e ) meq

then NONE

else
i f Lst . e x i s t s

( fn ( e l l as TermEq ( a , b ) ) ⇒ inM ( negL e l l ) meq
| ⇒ f a l s e ) meq

then NONE

else SOME meq
end
| extendM m ( l as Imp(TermEq( a , b ) , Fa l se ) ) = SOME ( l :: m)
| extendM m ( l as FreshP ( a , ) ) =

i f Lst . e x i s t s ( fn ( FreshP (b , ) ) ⇒
inM (TermEq (a , b ) ) m | ⇒ f a l s e ) m

then NONE

else SOME ( l :: m)
| extendM m ( l as ( Imp ( FreshP , Fa l se ) ) ) = SOME ( l :: m)
| extendM = Err . e r r o r ”An undef ined case in extendM”

A.5 The implementation of DPLL

The implementation we give here is reminiscent of On-Line SAT solver (see
[22, Section 3.2] for a survey of SMT techniques), i.e., a theory judgement
is made every time a literal is added to a model, and instead of restarting
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a SAT procedure whenever model is inconsistent, the algorithm backtracks
to the last known good point where model was still consistent.

In our implementation of the DPLL algorithm, a state transition simpli-
fies a CNF constraint

M, C 
M′, simpM′(C)

such that literals entailed by the model with an added literal are simplfied.
This gives us a strict termination condition

M, C 
M′, true

i.e., M′ is a complete model to the initial constraint.
For implementing the simpM function we yet again use the term rewriter.

We introduce additional to the simplification term rewriting rules parame-
terised over the model M.

`→M true if ` ∈M `→M false if ¬` ∈M

The function modelRules implements the above term rewriting rules. The
function given a model m produces a singleton list with term rewriting rule.

fun modelRules m =
[ fn l ⇒

i f i s L i t e r a l l then
i f inM l m then SOME True
else i f inM ( negL l ) m then SOME False
else NONE

else NONE ]

The above entailment rewriting rules are applied together with the sim-
plification rules. The function simpM runs a term rewriter on c constraint
using the simplification rules an the rules we defined above.

fun simpM m c =
r e w r i t e ( s i m p l i f i c a t i o n R u l e s @ modelRules m) c

In order to simplify the implementation of the DPLL algorithm, we treat
constraints in CNF form as a list of lists, that is, a list of list of disjuncts.
The function disjToList accepts a constraint which is disjunction of atomic
constraints and returns a list of atomic constraints.

fun d i s j T o L i s t ( D i s j ( c , c ’ ) ) = d i s j T o L i s t c @ d i s j T o L i s t c ’
| d i s j T o L i s t c = [ c ]

Similarly, the function cnfToList accepts a constraint in CNF form and
produces a list of lists of atomic constraints.

fun cnfToList ( Conj ( c , c ’ ) ) = cnfToList c @ cnfToList c ’
| cnfToList c = [ d i s j T o L i s t c ]
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The function simpClause uses the above simplification on a clause c. The
implementation is very simple: we reconstruct a disjunction, then we apply
the term rewriter and finally we split the disjunction into a list. So this
function implements the relation M |= c ∨ c′ ∨ . . . for a disjunction.

fun simpClause m c =
d i s j T o L i s t (simpM m ( d i s j u n c t c ) )

The function simpCNF is similar to the above simpClause but it accepts a
CNF. This is the relation M |= C.

fun simpCNF m c =
cnfToList (simpM m ( conjunct (map d i s j u n c t c ) ) )

The problem that we are solving is finding a solution for a bisimulation
constraint C, while the model we get from the DPLL algorithm is conjunc-
tion of constraints. We face with yet another layer of constraint solving
but we already solved a similar problem for the transition constraints. The
function modelSubst computes a mgu given a model m.

fun modelSubst m = modelSubst ’ m [ ]
and modelSubst ’ [ ] sigma = sigma
| modelSubst ’ (TermEq(a , b) :: eqs ) sigma =

modelSubst ’
(map ( fn e ⇒ Bis imConstra int . subst e [ ( a , b ) ] ) eqs )
( composeSubst sigma (a , b ) )

| modelSubst ’ ( :: eqs ) sigma = modelSubst ’ eqs sigma

We may not get a correct solution by extracting it from any model. We
first need to prepare a model for extraction. This is due to the freshness
constraints since it constrains the domain of the substitution function. We
are helped with the fact that the model is an equivalence closure, so we only
need to orient the equalities, more specifically delete the non conforming
equalities. The function orientM given a model m returns a model consisting
only with literals of kind of term equality.

fun orientM m =
let

val f r =
List . concat (map ( fn ( FreshP ( a , ) ) ⇒ [ a ] | ⇒ [ ] ) m)

val eq =
List . f i l t e r ( fn (TermEq ( a , ) ) ⇒ not ( Lst . member a f r )

| ⇒ f a l s e ) m
in

eq
end

By inspecting the DPLL rules, we notice that the model entailment
relation comes only in the formM |= ¬c, where c is a clause. Therefore we
can compute such relation just by simplifying the clause w.r.t. a model M
and expecting to find a constant false. This is exactly what the function
modelsNegC does, it expects a model m and a clause c.
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fun modelsNegC m c =
case simpClause m c of

[ Fa l se ] ⇒ t rue
| ⇒ f a l s e

We are now at a position where we have definitions required to implement
DPLL algorithm. We will implement the rules (UnitProp) and (PureLit)
as separate functions. They are called by the main function dpllSAT. The
failure is represented by NONE. The decision rule (Decide) is implemented
as two recursive calls returning the first one that succeeded that we get a
backtracking rule for free by using Sml backtracking mechanics.

The function pureLit implements the rule (PureLit). It takes a model
m and a CNF as a list, it traverses the list a clause at a time by checking
each literal in a clause for a negation of a literal in the rest of the CNF.
There is no need to check the whole CNF for the negation as the previous
queries would have identified a literal at the current position. The function
pureLit returns SOME literal if it finds a literal which has no negation in any
of the clauses, otherwise returns NONE.

fun pureLi t m [ ] = NONE

| pureLi t m ( c :: cn f ) =
case

List . f i n d
( fn l ⇒ not ( inM l m) andalso

Lst . a l l ( fn c ⇒ not ( inC ( negL l ) c ) ) cn f ) c
of NONE ⇒ pureLit m cnf
| SOME l ⇒ SOME l

This is just an auxiliary function for the above which checks if a literal l is
in a clause c.

and inC l c = Lst . e x i s t s ( fn l ’ ⇒ lEq l l ’ ) c

The other rule (UnitProp) is implemented by the function unitProp. It
takes the same arguments as the pureLit function. The function tries to find
a clause in a CNF formula in which taking out a literal would simplify that
clause to false by examining each clause in order. The function returns SOME

literal if such clause exist and otherwise NONE.

fun unitProp m [ ] = NONE

| unitProp m ( c l :: cn f ) =
case

List . f i n d
( fn ( l , c ) ⇒ (not ( inM l m) ) andalso modelsNegC m c )
( s p l i t L c l )

of NONE ⇒ unitProp m cnf
| SOME ( l , ) ⇒ SOME l

The function splitL is an auxiliary function for the above. This function
given a list, splitL returns a tuple list where every tuple contains an element
from the original list and the original list without that element.
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and sp l i tL ’ [ ] p l s = [ ]
| sp l i tL ’ ( l :: l s ) p l s =

( l , p l s @ l s ) :: sp l i tL ’ l s ( p l s @ [ l ] )
and s p l i t L l s = sp l i tL ’ l s [ ]

Now we look at a series of mutually recursive functions which complete
the DPLL algorithm.

The model may become inconsistent and therefore we should be able to
backtrack, i.e., the function extendAndDpll first tries to extend the model m

with the literal l and if it fails returns a failure, otherwise calls the main
function dpllSAT with the extended model.

fun extendAndDpll m l cn f =
case extendM m l of

NONE ⇒ NONE

| SOME m ⇒ dpllSAT m cnf

The function splitDpll is an implementation of both (Backtrack) and
(Decide) rules. So given a model m, a literal l, and a CNF cnf first try to
solve the cnf with positive literal, if that fails it backtracks and then tries to
solve the cnf by extending the model with a negative literal.

and s p l i t D p l l m l cn f =
case extendAndDpll m l cn f of

SOME m ⇒ SOME m
| NONE ⇒ extendAndDpll m ( negL l ) cn f

The main function of an implementation of the DPLL algorithm. It
accepts a model m and a constraint cnf in a CNF form. The first thing
it does at each recursive call is simplify the given CNF and checks if it
completed constructing a model and then validates it, if not, then it chains
the above rules, first by trying unit propagation, then by trying pure literal,
and lastly by doing a decision. The decision takes the first literal of the first
clause, other rules use the found literal.

and dpllSAT m [ ] = validateAndReturn m
| dpllSAT m ( cnf as ( c :: c s ) ) =

let
val cnf ’ = simpCNF m cnf

in
case cnf ’ of

[ [ True ] ] ⇒ validateAndReturn m
| ⇒ (

case unitProp m cnf ’ of
SOME l ⇒ extendAndDpll m l cnf ’

| NONE ⇒
( case pureLi t m cnf ’ of

SOME l ⇒ extendAndDpll m l cnf ’
| NONE ⇒

let
val l = hd c

in
s p l i t D p l l m l cnf ’
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end) )
end

A.6 Additional consistency check

Even though we are checking for inconsistencies when we are constructing
a model, we may not find all of them until a model is fully constructed.
So, as a last step, we check if freshness constraints and freshness constraint
negations hold with a complete model. Recall, freshness constraint’s {|a#P |}
solution space is defined by a#Pσ∧a#dom(σ), and for the negation we have
a ∈ n(Pσ) ∨ a ∈ dom(σ). For the former we only need to check the first
conjunct a#Pσ as the second is already true by the way we construct a
model and extract a substitution sequence, and for the latter we check both
disjuncts.

The function validateAndReturn takes a model m and returns a substitution
sequence, it does this by first constructing a substitution sequence from a
model and checking if all the freshness constraints and their negation hold,
and if that is the case it returns the substitution sequence, otherwise it fails
with NONE.

and validateAndReturn m =
let

val sigma = modelSubst ( orientM m)
in

i f
Lst . a l l (

fn ( FreshP ( a , p ) ) ⇒ Psi . f r e s h a ( Psi . subst p sigma )
| ( Imp ( FreshP ( a , p ) , Fa l se ) ) ⇒

not ( Ps i . f r e s h a ( Psi . subst p sigma ) ) orelse
Lst . member a (dom sigma )

| ⇒ t rue
) m

then SOME sigma
else NONE

end

The final step is to ‘plug in’ the DPLL algorithm into the framework.

A.7 Putting it together

The function solveBisim is an implementation of the bisimulation constraint
solver. It is similar to the solve function, it takes a constraint c and produces
a list of substitution and assertion or a counter example.

fun so lveBis im ’ c =
let

val c = r e w r i t e ( t r i v i a l C o n d i t i o n R u l e s
@ s i m p l i f i c a t i o n R u l e s ) c

val c = r e w r i t e ( f r e shne s sRu l e c ) c
val c = cnf c
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val cn f = cnfToList c
val s o l = dpllSAT [ ] cn f
val s o l s = case s o l of SOME sigma ⇒ [ sigma ]

| NONE ⇒ [ ]
val s o l s = map ( fn sigma ⇒ ( sigma , un i t ) ) s o l s

in
case s o l s of

[ ] ⇒ Either . LEFT [ ]
| ⇒ Either . RIGHT s o l s

end

val so lveBi s im = SOME so lveBis im ’

This ends the local open BisimConstraint.

end

This ends the implementation of the constraint solver for the constraints
generated by the bisimulation algorithm. The solution to such constraints
require more advanced techniques but SMT techniques are well established
field [22]. We did not show how to interface with an external SMT solver,
since we intended to show the principles underlying such solutions. We think
that by exposing an implementation we make a clearer connection with SMT
theory and how one would go about designing models and interfacing with
an external SMT solver. The real challenge is to define a model and the
decision procedure for that model.
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B Theory preliminaries

B.1 Fixed point equations on sets

In this thesis we used equations on sets of the following form

T = F(T )

where F is some total function that given a set returns a set. We tended to
use it in the manner shown below

T = A1 ∪ · · · ∪A2 ∪ {f(x1, . . . , xn) : P (x1, . . . , xn) ∧ x1 ∈ T ∧ · · · ∧ xn ∈ T}

the right hand side is the function F and Ai are some constant sets.
To be able to tell if they are solvable we need two notions.

Definition 26 (Monotonicity). If whenever we have T ⊆ T ′ then F (T ) ⊆
F (T ′) holds.

Definition 27 (Continuity). If T1 ⊆ · · · ⊆ Tn ⊆ · · · is an increasing se-
quence (a chain) and the if following holds⋃

i

F (Ti) = F (
⋃
i

Ti)

then F is continuous. Monotonicity is implied by continuity.

Any fixed-point equation is always solvable if the function is continuous.

Theorem 28 (First recursion theorem). Each continuous function F has a
least fixed-point.

All equations used in this thesis do have least fixed-points. In fact,
continuity in sets imply computability.

These results generalise to system of equations, see [26].

B.2 Transition systems

Throughout this thesis we used and developed a number of transition sys-
tems. Here we make the notion of a transition system precise. These defi-
nition can be found in [26].

Definition 29 (ts). A transition system (ts) is a structure 〈Γ,→〉 where Γ
is a set of elements, γ, called configurations, and → ⊆ Γ × Γ is a binary
relation called the transition relation.

Notation γ → γ′ means that there is a transition → from configuration
γ to configuration γ′.

A more familiar transition system is that of automaton.
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Definition 30 (lts). A labelled transition system (lts) is a structure 〈Γ, A,→
〉 where Γ is a set of configurations, and A is a set of labels (actions), and
→ ⊆ Γ×A× Γ is the transition relation.

The symbolic operation semantics is described in terms of a labelled
transition system, for instance P

α−→
C

P ′ is →⊆ P × (A× C)× P .

B.3 Some notions from universal algebra

This section is intended only just as a refresher on universal algebra. This
section only includes very few definitions used in universal algebra, and it
only includes those definitions that we use throughout this thesis. For an
account on universal algebra from computer science perspective please see
[2].

Definition 31 (Signature). A signature Σ is a set of function symbols.
Each function symbol f ∈ Σ is associated with an integer – the arity of
the function symbol. Function symbols of arity 0 are called constants. Σ(n)

denotes a set of function symbols of arity n from the signature Σ.

Definition 32 (Sigma-terms). Let Σ be a signature and N be a set of vari-
ables (names), such that Σ and N are disjoint Σ ∩ N = ∅. The T operator
constructs a set T (Σ,N ) called Σ-terms over N , and is defined inductively
as follows

• N ⊆ T (Σ,N ) (variables are among the terms),

• for all n ≥ 0 and all f ∈ Σ(n), and all t1, . . . , tn ∈ T (Σ,N ) we have
f(t1, . . . , tn) ∈ T (Σ,N )

Definition 33 (Sigma-algebra). Let Σ be some signature. A Σ-algebra A
consists of

• the underlying carrier set A (a non empty set);

• mappings associated with each of the function symbols f ∈ Σ(n)

fA : An → A

Definition 34 (Homomorphism). Let A and B be Σ-algebras. A Σ-homomorphism
φ : A → B is a mapping between carrier sets φ : A → B, such that for all
f ∈ Σ(n) and all ai ∈ A we have

φ(fA(a1, . . . , an)) = fB(φ(a1), . . . , φ(an))

An endomorphism is homomorphism φ : A → A.
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Definition 35 (Congruence). Let A be a Σ-algebra. An equivalence relation
≡ on the carrier set A of A is called a congruence iff for all f ∈ Σ(n) and
a1 ≡ b1, . . . , an ≡ bn where ai, bi ∈ A we have

fA(a1, . . . , an) ≡ fA(b1, . . . , bn)

Finally, a term algebra is Σ-algebra which is obtained in a kind of trivial
way.

Definition 36 (Term-algebra). Let Σ be a signature and N set of names
(variables). A Σ-algebra T (Σ,N ) is an algebra with a carrier set T (Σ,N )
and with the following mappings for f ∈ Σ(n) and terms ai ∈ T (Σ,N ).

fT (Σ,N ) : T (Σ,N )n → T (Σ,N ) = (a1, . . . , an) 7→ f(a1, . . . , an)

That is every function symbol is interpreted as itself.
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C Symbolic strong and weak bisimulations

These equivalence definitions for Psi-calculus are included here for complete-
ness, see [18, 17].

Definition 37 (Symbolic static equivalence). Two processes P and Q are
statically equivalent for C, written P 'C Q, if for each (σ,Ψ) ∈ sol(C) we
have that Ψ⊗F(P )σ ' Ψ⊗F(Q)σ.

Definition 38 (Bisimulation constraints). The constraints, ranged over by
C, are of the forms

Constraint The solutions are all pairs (σ,Ψ) such that
C,C ′ ::= Ct (σ,Ψ) |= Ct

{|M = N |} Mσ = Nσ
{|a#X|} (a#X)σ and a#dom(σ),Ψ
C ∧ C ′ (σ,Ψ) |= C and (σ,Ψ) |= C ′

C ∨ C ′ (σ,Ψ) |= C or (σ,Ψ) |= C ′

C ⇒ C ′ (σ,Ψ) |= C implies (σ,Ψ) |= C ′

F ≤ G (σ,Ψ) |= C s.t. ∀ϕ. Ψ⊗(Fσ) ` ϕ iff Ψ⊗(Gσ) ` ϕ

where Ct are the transition constraints. In {|a#X|}, X is any nominal data
type. We call {|a#X|} freshness constraint, and {|M = N |} term equality
constraint.

Definition 39 ((Early) Symbolic bisimulation). A symbolic bisimulation
S is a ternary relation between constraints and pairs of agents such that
S(C,P,Q) implies all of

1. P 'C Q, and

2. S(C,Q, P ), and

3. If P
τ−−→
CP

P ′ then there exists Ĉ such that C ∧CP ⇔
∨
Ĉ and for all

C ′ ∈ Ĉ there exists Q′ and CQ such that

(a) Q
τ−−→
CQ

Q′, and

(b) C ′ ⇒ CQ, and

(c) S(C ′, P ′, Q′)

4. If P
y(x)
−−→
CP

P ′, x#(P,Q,C,CP , y) and y#(P,Q,C) then there exists

Ĉ such that C ∧CP ⇔
∨
Ĉ and for all C ′ ∈ Ĉ there exists Q′ and CQ

such that

(a) Q
y(x)
−−→
CQ

Q′, and
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(b) C ′ ⇒ CQ, and

(c) S(C ′, P ′, Q′)

5. If P
y (νã)N−−−−−→
CP

P ′, ã#(P,Q,C,CP , y) and y#(P,Q,C) then there exists

Ĉ such that C∧CP ∧{|ã#P,Q|} ⇔
∨
Ĉ and for all C ′ ∈ Ĉ there exists

Q′ and CQ such that

(a) Q
y (νã)N ′
−−−−−→

CQ

Q′, and

(b) C ′ ⇒ CQ ∧ {|N = N ′|}, and

(c) S(C ′, P ′, Q′)

We write P ∼s Q if (true, P,Q) ∈ S for some symbolic bisimulation S, and
say that P is symbolically bisimilar to Q.

Definition 40 (Symbolic static implication). A process P statically implies
another process Q symbolically for C, written P ≤C Q, if for each (σ,Ψ) ∈
sol(C) we have that Pσ ≤Ψ Qσ.

Definition 41 (Weak Symbolic bisimulation). A weak symbolic bisimula-
tion S is a ternary relation between constraints and pairs of agents such that
S(C,P,Q) implies all of

1. there exists a set of constraints Ĉ such that C ⇔
∨
Ĉ

and for all C ′ ∈ Ĉ there exists Q′ and CQ such that

(a) Q ==⇒
CQ

Q′,

(b) C ′ ⇒ CQ,

(c) P ≤C′ Q′, and

(d) (C ′, P,Q′) ∈ S

2. S(C,Q, P ), and

3. If P
τ−−→
CP

P ′ then there exists Ĉ such that C ∧CP ⇔
∨
Ĉ and for all

C ′ ∈ Ĉ there exists Q′ and CQ such that

(a) Q ==⇒
CQ

Q′, and

(b) C ′ ⇒ CQ, and

(c) S(C ′, P ′, Q′)

4. If P
y(x)
−−→
CP

P ′, x#(P,Q,C,CP , y) and y#(P,Q,C) then there exists

Ĉ such that C ∧CP ⇔
∨
Ĉ and for all C ′ ∈ Ĉ there exists Q′ and CQ

such that
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(a) Q
y(x)
==⇒
CQ

Q′, and

(b) C ′ ⇒ CQ, and

(c) S(C ′, P ′, Q′)

5. If P
y (νã)N−−−−−→
CP

P ′, ã#(P,Q,C,CP , y) and y#(P,Q,C) then there exists

Ĉ such that C∧CP ∧{|ã#P,Q|} ⇔
∨
Ĉ and for all C ′ ∈ Ĉ there exists

Q′ and CQ such that

(a) Q
y (νã)N ′
=====⇒

CQ

Q′, and

(b) C ′ ⇒ CQ ∧ {|N = N ′|}, and

(c) S(C ′, P ′, Q′)

We write P
.
≈sC Q if (C,P,Q) ∈ S for some symbolic bisimulation S. We

write P
.
≈s Q for P

.
≈strue Q, and say that P is symbolically bisimilar to Q.

C.1 Algorithm for computing weak bisimulation

In this section we reproduce from [18] the algorithm for computing weak
bisimulations C. The algorithm is presented in figures 5, 6, 7. This algorithm
can be transformed into computing strong bisimulations [18].

The algorithm requires a more complex constraint language than tran-
sitional constraints definition 21 on page 18.

In appendix A we provide an example implemenation of a bisimulation
constraint solver for Pi-calculus instance.
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/* bisim(P,Q)
P and Q are agents. Returns a pair (C, T ) where C is a constraint such that
P

.
≈
smp

C Q and T is a table describing a witnessing bisimulation. */

bisim(P , Q) = close(P , Q, true, ∅)

/* close(P,Q,C,W)

P and Q are agents, C are the constraints seen so far, and W is a set of pairs of
agents that have already been visited by the algorithm. Returns a pair (C ′, T ),
where C ′ is a constraint necessary for P and Q to be bisimilar, and T is a table
describing a partial witnessing bisimulation. */

close(P , Q, C, W)

if (P , Q) ∈ W then

(true, ∅)
else let (Cstimp, Tstimp) = match-stimp(P , Q, C, W)

(C ′
stimp, T

′
stimp) = match-stimp(Q, P , C, W)

(Cτ , Tτ) = match-τ(P , Q, C, W)

(C ′
τ , T

′
τ) = match-τ(Q, P , C, W)

(Cout, Tout) = match-out(P , Q, C, W)

(C ′
out, T

′
out) = match-out(Q, P , C, W)

(Cin, Tin) = match-in(P , Q, C, W)

(C ′
in, T

′
in) = match-in(Q, P , C, W)

in (Cstimp ∧ C ′
stimp ∧ Cτ ∧ C ′

τ ∧ Cout ∧ C ′
out ∧ Cin ∧ C ′

in,

Tstimp t T ′
stimp t Tτ t T ′

τ t Tout t T ′
out t Tin t T ′

in t
{(P , Q) 7→ {C ∧ Cstimp ∧ Cτ ∧ Cout ∧ Cin}} t
{(Q, P ) 7→ {C ∧ C ′

stimp ∧ C ′
τ ∧ C ′

out ∧ C ′
in}})

Figure 5: bisim and close functions

87



/* match-stimp(P,Q,C,W)

The parameters are as in close(P,Q,C,W ). Returns a pair (C ′, T ) where C ′

is a constraint that is necessary for P to statically imply Q, and T is a table
describing a partial witnessing bisimulation. */

match-stimp(P , Q, C, W)

let Qtr = {(CQi, Qi) : Q ==⇒
CQi

Qi}

(C̃, T̃) = map λ(CQi, Qi).
let (Ci, Ti) =

close(P , Qi, C ∧ CQi, W ∪ {(P ,Q)})
in (CQi ∧ Ci ∧ (Ci ∧ CQi ⇒ F(P ) ≤ F(Qi)), Ti)

Qtr
in (true⇒

∨
C̃,

⊔
T̃)

/* match-τ(P,Q,C,W)

The parameters are as in close(P,Q,C,W ). Returns a pair (C ′, T ) where C ′

is a constraint that is necessary for Q to simulate P for τ -actions, and T is a
table describing a partial witnessing bisimulation. */

match-τ(P , Q, C, W)

let Ptr = {(CPi, Pi) : P
τ−−→
CPi

Pi}
Qtr = {(CQj , Qj) : Q ===⇒

CQj

Qj}

(C̃, T̃) = map (λ(CPi, Pi).

let (C̃i, T̃i) = map (λ(CQj , Qj) .

let (Cij , Tij) =

close(Pi, Qj , C ∧ CPi ∧ CQj ,W ∪ {(P ,Q)})
in (CQj ∧ Cij , Tij)) Qtr

in (CPi ⇒
∨
C̃i,

⊔
T̃i)) Ptr

in (
∧
C̃,

⊔
T̃)

Figure 6: match-stimp and match-τ functions
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/* match-out(P,Q,C,W)

The parameters are as in close(P,Q,C,W ). Returns a pair (C ′, T ) where C ′ is
a constraint that is necessary for Q to simulate P for outputs, and T is a table
describing a partial witnessing bisimulation. */

match-out(P , Q, C, W)

let Ptr = {(y (νã)N, CPi, Pi) : P
y (νã)N−−−−−→
CPi

Pi

∧ y = newName(P ,Q,C,X) ∧ ã#P ,Q,C,CPi, y}
(C̃, T̃) = map λ(y (νã)N, CPi, Pi).

let Qtr = {(z (νc̃)N ′, CQj , Qj) : Q
z (νc̃)N ′

=====⇒
CQj

Qj

∧ y = z ∧ ã = c̃}
(C̃i, T̃i) = map λ(z (νc̃)N ′, CQj , Qj)

let (Cij , Tij) =

close(Pi, Qj , C ∧ CPi ∧ CQj ∧ {|N = N ′|} ∧ {|ã#P ,Q|}, W ∪ {(P ,Q)})
in (CQj ∧ {|N = N ′|} ∧ Cij , Tij) Qtr

in (CPi ∧ {|ã#P ,Q|} ⇒
∨
C̃i,

⊔
T̃i) Ptr

in (
∧
C̃,

⊔
T̃)

/* match-in(P,Q,C,W)

The parameters are as in close(P,Q,C,W ). Returns a pair (C ′, T ) where C ′ is
a constraint that is necessary for Q to simulate P for inputs, and T is a table
describing a witnessing bisimulation. */

match-in(P , Q, C, W)

let Ptr = {(y(x), CPi, Pi) : P
y(x)
−−−→
CPi

Pi

∧ y = newName(P ,Q,C,X) ∧ x#P ,Q,C,CPi, y}
(C̃, T̃) = map λ(y(x), CPi, Pi).

let Qtr = {(z(x′), CQj , Qj) : Q
z(x′)
===⇒
CQj

Qj

∧ y = z ∧ x = x′}
(C̃i, T̃i) = map λ(z(x′), CQj , Qj) .

let (Cij , Tij) =

close(Pi, Qj , C ∧ CPi ∧ CQj ,W ∪ {(P ,Q)})
in (CQj ∧ Cij , Tij) Qtr

in (CPi ⇒
∨
C̃i,

⊔
T̃i) Ptr

in (
∧
C̃,

⊔
T̃)

Figure 7: match-out and match-in functions
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D Grammar

D.1 Command grammar

〈script〉 ::= 〈clause〉∗

〈clause〉 ::= 〈term〉 〈clause-args〉 ‘<=’ 〈agent〉 〈tr〉

〈clause-args〉 ::= ‘<’ 〈name-list〉 ‘>’ | ε

〈tr〉 ::= ‘;’ | 〈eof 〉 | ε

〈name-list〉 ::= ε | 〈name〉 (‘,’ 〈name〉)∗

D.2 Agent grammar

〈agent〉 ::= 〈parallel〉 | 〈restriction〉 | 〈replication〉 | 〈parens〉 | 〈prefix 〉
| 〈case〉 | 〈assertion〉 | 〈nil〉 | 〈invocation〉

〈parallel〉 ::= 〈agent〉 ‘|’ 〈agent〉

〈restriction〉 ::= ‘(’ ‘new’ 〈name〉 (‘,’ 〈name〉)∗ ‘)’ 〈agent〉

〈replication〉 ::= ‘!’ 〈agent〉

〈parens〉 ::= ‘(’ 〈agent〉 ‘)’

〈prefix 〉 ::= 〈prefix’ 〉 ‘.’ 〈agent〉
| 〈prefix’ 〉

〈prefix’ 〉 ::= 〈input〉 | 〈output〉

〈input〉 ::= 〈term〉 ‘(’ ‘\’ 〈name〉 (‘,’ 〈name〉)∗ ‘)’ 〈term〉
| 〈term〉 ‘(’ 〈name〉 ‘)’

〈input”〉 ::= ‘,’ 〈input〉

〈output〉 ::= ‘’’ 〈term〉 ‘<’ 〈term〉 ‘>’

〈case〉 ::= ‘case’ 〈case-clause〉 (‘[]’ 〈case-clause〉)∗

〈case-clause〉 ::= 〈cond〉 ‘:’ 〈agent〉

〈assertion〉 ::= ‘(|’ 〈assr〉 ‘|)’

〈nil〉 ::= ‘0’

〈invocation〉 ::= 〈identifier〉 ‘<’ 〈term-sequence〉 ‘>’

〈term-sequence〉 ::= ε | 〈term〉 (‘,’ 〈term〉)∗

〈name〉 ::= 〈literal〉

〈term〉 ::= 〈literal〉

〈cond〉 ::= 〈literal〉
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〈assr〉 ::= 〈literal〉

〈literal〉 ::= ‘"’ . . . ‘"’
| ‘’’ . . . ‘’’
| ‘{*’ . . . ‘*}’
| 〈identifier〉

〈identifier〉 ::= 〈id〉+ ‘’’∗

〈id〉 ::= 〈alpha-numeric〉 | ‘ ’

〈alpha-numeric〉 ::= [a-zA-Z0-9]
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